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Abstract In this article, we investigate some features of
the perturbation theory in a spatially closed universe. We
will show that the perturbative field equations in a spatially
closed universe always have two independent adiabatic solu-
tions provided that the wavelengths of perturbation modes
are very much longer than the Hubble horizon. It will be
revealed that these adiabatic solutions do not depend on the
curvature directly. We also propose a new interpretation for
the curvature perturbation in terms of the unperturbed back-
ground geometry.

1 Introduction

The theory of the linear perturbations is an important part
of the modern cosmology which explains CMB anisotropies
and the origin of structure formation. This theory has been
investigated for a spatially flat universe to great extent [1–
10]. However, observational data point out a universe with
��

∼= .68 [11]. The existence of a positive cosmologi-
cal constant necessitates a de Sitter spacetime for the vac-
uum background. From the different forms of the de Sitter
spacetime with K = 0,±1, merely K = 1 case, namely,
a Lorentzian de Sitter spacetime, is maximally symmetric,
maximally extended, and also geodesically complete [12].
So in the following we assume � > 0 and K = 1 for the
vacuum background. Furthermore, it seems hard to believe
that the total density of the universe has exactly been tuned in
ρcrit0, because despite the fact that the observational data indi-
cate �K = 0 [11], this fine-tuning seems somehow unlikely.
Moreover, if �tot equals +1 exactly, this cannot last forever
because of the instability [13]. On the other hand, there are
some reasons why the universe may have positive spatially
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curvature with non-trivial topology. In other words, some
positive curvature models with non-trivial topology can solve
the problem of the CMB quadrupole and octopole suppres-
sion and also the mystery of the missing fluctuations which
appears in the concordance model of cosmology [14–18]. So
these reasons augment the probability of a spatially closed
case and it seems necessary to investigate the theory of small
fluctuations in spatially closed universes.

The outline of this article is as follows. In Sect. 2 we derive
the equations governing the linear perturbations in a FLRW
universe without fixing K . In Sect. 3 we study the spectral
and stochastic properties of these perturbations for the case
K = 1 and in Sect. 4 the gauge problem will be discussed.
Finally, in the last section we derive two independent adia-
batic solutions for the obtained equations with K = 1, while
the perturbations scales go outside of the Hubble horizon.
It will be seen that one of these solutions is decaying, so
it has no cosmological significance. We also deduce a new
geometrical interpretation for the curvature perturbation as
the conformal factor of the spatial section of the background
spacetime. Furthermore, we will show that for the super-
Hubble scales, curvature has no direct effect on the universe’s
evolution.

2 The perturbed spacetime

We assume that during most of the time the departures from
homogeneity and isotropy have been very small, so that they
can be treated as first order perturbations. The total perturbed
metric is

gμν = ḡμν + hμν, (1)

where ḡμν and hμν are the unperturbed metric and the first
order perturbation, respectively. Note that ḡμν is the FLRW
metric which in the comoving quasi-Cartesian coordinates
can be written as [2]
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g00 = −1, g0i = gi0 = 0,

gi j = a2 (t) g̃i j = a2 (t)

(
δi j + K

xi x j

1 − K x2

)
.

A bar over any quantity denotes its unperturbed value. Per-
turbing the metric leads to perturbing the connection and
Ricci tensor as [2]

δ�λ
μν = 1

2
ḡλρ(−2hρη�̄

η
μν +∂μhνρ +∂νhμρ −∂ρhμν), (2)

and

δRμν = ∂νδ�
λ
μλ − ∂λδ�

λ
μν + δ�λ

μρ�̄
ρ
νλ + δ�λ

νρ�̄
ρ
μλ

− δ�λ
μν�̄

ρ
ρλ − δ�λ

λρ�̄ρ
μν. (3)

The perturbative form of the Einstein field equations may be
written as

δRμν = −8πGδSμν, (4)

where

δSμν = δTμν − 1

2
ḡμνδT − 1

2
T̄ hμν. (5)

On the other hand, the perturbation of the energy-momentum
conservation law gives

∂μδT μ
ν−δ�λ

μν T̄ μ
λ−�̄λ

μνδT μ
λ+�̄

μ
μλδT λ

ν+δ�
μ
μλT̄ λ

ν = 0.

(6)

Setting ν equal to 0 and i gives the equations of energy
and momentum conservation, respectively. The explicit form
of these equations is too lengthy and complicated, so we
avoid expressing them here. Fortunately there is a mathemat-
ical technique, which simplifies these equations remarkably
[3–5]. According to this technique we can decompose hμν

into four scalars, two divergenceless, spatial vector and a
symmetric, traceless, divergenceless spatial tensor as fol-
lows:

h00 = −E, (7)

hi0 = a (∇i F + Gi ) , (8)

hi j = a2(Ag̃i j + Hi j B + ∇i C j + ∇ j Ci + Di j ), (9)

where ∇i is the covariant derivative with respect to the
spatial unperturbed metric ḡi j (= a2 g̃i j ) and Hi j = ∇i∇ j

is the covariant Hessian operator. All the perturbations
A, B, E, F, Ci , Gi and Di j are functions of t and x which
satisfy

∇ i Ci = ∇ i Gi = 0, (10)

g̃i j Di j = 0, ∇ i Di j = 0, Di j = D ji . (11)

Equation (8) is generalization of the Helmholtz decomposi-
tion theorem from R

3 to Riemannian manifolds. Equation (9)
is also a theorem in Riemannian geometry [19,20]. Accord-
ing to this theorem, every rank 2 symmetric tensor on a com-
pact Riemannian manifold can be uniquely represented in
form of Eq. (9). It is possible to carry out a similar decom-
position of the energy-momentum tensor. One can show that
[2]

δT00 = −ρ̄h00 + δρ,

δTi0 = p̄hi0 − (ρ̄ + p̄)δui ,

δTi j = p̄hi j + a2 g̃i jδp.

We can decompose the velocity perturbation δui into the
gradient of a scalar (velocity potential) δu and a transverse
vector δuV

i ,

δui = ∇i (δu) + δuV
i , ∇ iδuV

i = 0. (12)

We may account for the imperfectness of the cosmic fluid by
adding a term �i j to δTi j . �i j is known as the anisotropic
inertia tensor field of the fluid and may be decomposed just
like as hi j ,

�i j = a2(Hi j�
S + ∇i�

V
j + ∇ j�

V
i + �T

i j ), (13)

where �V
i and �T

i j satisfy conditions analogous to Eqs. (10)
and (11), which are satisfied by Ci and Di j in return. In
Eq. (13) there is no term proportional to g̃i j , because δTi j

itself contains such a term. Finally, we have

δT00 = −ρ̄h00 + δρ, (14)

δTi0 = p̄hi0 − (ρ̄ + p̄)(∇iδu + δuV
i ), (15)

δTi j = p̄hi j + a2(g̃i jδp + Hi j�
S + ∇i�

V
j

+ ∇ j�
V
i + �T

i j ). (16)

Now let us define the Laplace–Beltrami operator,

∇2 = ḡi j Hi j = ḡi j∇i∇ j .

Thus, for scalar field S we have

a2∇2S = g̃i j∂i∂ jS − 3K (∂iS)xi . (17)

Also for the vector field Vi and the tensor field Ti j we can
write

a2∇2Vi = g̃ jk∂ j∂kVi −KVi −2K (∂iV j )x j −3K
(
∂ jVi

)
x j ,

(18)
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a2∇2Ti j = g̃kl∂k∂lTi j − 2KTi j − 2K (∂iT jk)xk

− 2K (∂ jTik)xk − 3K (∂kTi j )xk

+ 2K 2g̃i jTkl x
k xl . (19)

Substituting Eqs. (7), (8), (9), (12), (14), (15), and (16) in
the field and conservation equations namely Eqs. (4) and (6)
and also separating the terms containing g̃i j , ∇i , and Hi j ,
accompanied by using Eqs. (17), (18), and (19) results in
three independent sets of coupled equations.

2.1 Scalar mode equations

These equations involve just scalars:

2K A + ȧa2∇2 F − 3aȧ Ȧ − 1

2
ȧa3∇2 Ḃ − 1

2
a2 Ä

+ (2ȧ2 + aä)E + 1

2
aȧ Ė + 1

2
a2∇2 A

= 4πGa2(−δρ + δp + a2∇2�S), (20)

4ȧF −3aȧ Ḃ+2aḞ −a2 B̈+E + A=−16πGa2�S, (21)

a Ȧ − ȧE − K aḂ + 2K F = 8πGa(ρ̄ + p̄)δu, (22)

3
ȧ

a
Ȧ + aȧ∇2 Ḃ + 3

2
Ä + 1

2
a2∇2 B̈ − 3

2

ȧ

a
Ė

− ȧ∇2 F − a∇2 Ḟ − 1

2
∇2 E − 3

ä

a
E

= −4πG(δρ + 3δp + a2∇2�S), (23)

∂δρ

∂t
+ ∇2[−a(ρ̄ + p̄)F + (ρ̄ + p̄)δu + aȧ�S]

+ 1

2
(ρ̄ + p̄)(3 Ȧ + a2∇2 Ḃ) + 3

ȧ

a
(δρ + δp) = 0, (24)

.

p̄ δu + (ρ̄ + p̄)
∂δu

∂t
+ 1

2
(ρ̄ + p̄)E + δp + a2∇2�S

+ 2K�S = 0. (25)

2.2 Vector mode equations

We have

2ȧGi − 3aȧĊi + aĠi − a2C̈i = −16πGa2�V
i , (26)

−1

2
a3∇2Ċi + 1

2
a2∇2Gi − K aĊi + K Gi

= 8πGa (ρ̄ + p̄) δuV
i , (27)

.

p̄ δuV
i + (ρ̄ + p̄)

∂δuV
i

∂t
+ a2∇2�V

i + 2K�V
i = 0. (28)

2.3 Tensor mode equation

We have

a2∇2 Di j −3aȧ Ḋi j −a2 D̈i j −2K Di j =−16πGa2�T
i j . (29)

As previously mentioned, in linear perturbation theory, the
scalar, vector, and tensor modes evolve independently. The
vector and tensor modes are not important for structure for-
mation because they produce no density perturbation, albeit
they affect the CMB anisotropy.

3 Fourier decomposition and random fields

In this section, we study the spectral and stochastic proper-
ties of the perturbations for the case K = +1. Albeit the
equations have been derived in Sect. 2 to describe the time
evolution of the perturbative quantities, viewed as functions
of position (at fixed time) they are considered as random
fields on S3(a), because they are defined on a homogeneous
and isotropic space [7,21]. Now we investigate the stochastic
properties of perturbations for every mode separately.

3.1 Scalar perturbations and scalar random fields

An important class of random fields are described by their
Fourier transformations. There are many different Fourier
transform conventions; however, here our intention is the
expansion of each mode of the perturbation fields in terms
of the corresponding eigenfunctions of the Laplace–Beltrami
operator. Thus, we have to find the eigenfunctions of ∇2 on
S3(a). For the scalar mode we have

∇2
 = �
, (30)

where ∇2 = ḡi j Hi j . In pseudo-spherical coordinates with
the line element

ds2 = a2(dχ2 + sin2 χdθ2 + sin2 χsin2 θdϕ2), (31)

Eq. (30) gives

1

a2

(
∂2


∂χ2 + 1

sin2 χ

∂2


∂θ2 + 1

sin2 χ sin2 θ

∂2


∂ϕ2

+ 2 cot χ
∂


∂χ
+ cot θ

sin2 χ

∂


∂θ

)
= �
. (32)

Solving Eq. (32) one gets the following eigenvalues and
eigenfunctions [22–25]:

� = �n = 1 − n2

a2 , n = 1, 2, ... (33)


 = Ynlm (χ, θ, ϕ) = �nl (χ) Ylm (θ, ϕ) , (34)

n = 1, 2, ..., l ≤ n − 1, |m| ≤ l,
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where

�nl (χ) = (2l)!!√
a3

√
2

π

n (n − l − 1)!
(n + l)! sinl χCl+1

n−l−1 (cos χ)

(35)

are known as Fock harmonics [22,25]. Also Ylm and Cλ
n are

scalar spherical harmonics on S2 and Gegenbauer (ultras-
pherical) polynomials, respectively. It can be shown that∫

S3(a)

dμYnlm (χ, θ, ϕ)Y∗
n′l ′m′ (χ, θ, ϕ)=δnn′δll ′δmm′ , (36)

where dμ = a3 sin2 χ sin θdχdθdϕ is the invariant volume
element on S3(a). Scalar harmonics on S3(a) also can be
expressed in terms of Jacobi polynomials or associated Leg-
endre functions [26,27]. Furthermore the Ynlm constitute a
complete orthonormal set for the expansion of any scalar field
on S3(a). Thus, for the scalar perturbative quantity A(t, x)

at some instant (which thereafter will be denoted by A(x))
we can write

A (x) =
∑
nlm

AnlmYnlm (χ, θ, ϕ) . (37)

Anlm just like A (x) is a scalar random field. Apart from
the distribution function of Anlm , its simplest statistics are
described by the mean value and two-point covariance func-
tion, and the latter is defined by 〈Anlm A∗

n′l ′m′ 〉. Here 〈 〉
means the ensemble average which equals the spatial aver-
age according to the ergodic theorem [7].
The homogeneity of S3(a) implies for any pair of scalar ran-
dom fields A and B

〈A(x)B∗(x′)〉 = 〈A(x + R)B∗(x′ + R)〉. (38)

(R is an arbitrary 3-vector in R
3.) Thus 〈A(x)B∗(x′)〉 must

be just a function of x − x′. This implies that

〈Anlm A∗
n′l ′m′ 〉 ∝ δnn′δll ′δmm′ . (39)

It means that Anlm and An′l ′m′ are uncorrelated random fields
for different indices (indeed it results from the homogeneity
of the universe). The homogeneity also implies that the coef-
ficient of proportionality in Eq. (39) is just a function of n
i.e.

〈Anlm A∗
n′l ′m′ 〉 = P0

A (n) δnn′δll ′δmm′ . (40)

P0
A (n) is a power spectrum or spectral density of A (the

superscript “0” over P states corresponding to the spin of
the random field) which depends on the distribution function
governing A. Moreover, we have

〈Anlm B∗
n′l ′m′ 〉 = P0

A,B (n) δnn′δll ′δmm′ , (41)

in which P0
A,B (n) is a joint power (cross-correlation) spec-

trum of A and B [28,29]. One may define the correlation
coefficient between A and B:

�A,B (n) = P0
A,B (n)√

P0
A (n) P0

B (n)

. (42)

−1 ≤ �A,B (n) ≤ 1 and the two extreme values �A,B (n) =
+1 and �A,B (n) = −1 correspond, respectively, to full
correlation and full anti-correlation [29].

Finally, let us define the spectral index of the random field
A as

NA = 4 + n

P0
A (n)

d P0
A (n)

dn
. (43)

Now we prove that the homogeneity of the universe yields
Eq. (41). First, let us calculate 〈A(x)B∗(x′)〉

〈A (x) B∗(x′)〉
=

∑
nlm

∑
n′l ′m′

〈Anlm B∗
n′l ′m′ 〉Ynlm (x) Y∗

n′l ′m′(x′)

=
∑
nlm

P0
A,B (n) Ynlm (x) Y∗

n′l ′m′(x′)

=
∑
nl

2l + 1

4π
P0

A,B (n) �nl (χ)�nl(χ
′)Pl(x̂.x̂′). (44)

On the other hand, according to the addition formula of
Gegenbauer polynomials (Fock harmonics) [30] we have

sin nγ

sin γ
= π

2

a3

n

n−1∑
l=0

(2l + 1)�nl (χ)�nl(χ
′)Pl(x̂.x̂′), (45)

where cos γ = cos χ cos χ ′ + sin χ sin χ ′ (x̂.x̂′). Conse-
quently

〈A (x) B∗(x′)〉 = 1

2π2a3

1

sin γ

∞∑
n=1

n P0
A,B (n) sin nγ, (46)

which is obviously invariant under the following transforma-
tions:

{
ϕ → ϕ + δ

ϕ′ → ϕ′ + δ
,

⎧⎨
⎩

ϕ = ϕ′
θ → θ + δ

θ ′ → θ ′ + δ

,

⎧⎪⎪⎨
⎪⎪⎩

ϕ = ϕ′
θ = θ ′

χ → χ + δ

χ ′ → χ ′ + δ

(47)

Moreover, one can show that

cos γ = 1 − 1

2
(cos χ − cos χ ′)2 − 1

2
|x − x′|2. (48)
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This shows for χ = χ ′, that the cos γ is a function of
|x − x′|, and thus we conclude that Eq. (41) depends merely
on |x − x′|. Now let us turn to the vector mode.

3.2 Vector perturbations and vector random fields

In order to investigate the vector perturbation we should find
the vector spherical harmonics on S3(a) first. They are solu-
tions of the following equation:

∇2Vi = ϒVi , ∇ i Vi = 0 (49)

The transversality condition is added as a constraint, because
every vector perturbation in cosmology (Ci , Gi , �V

i ) is
divergenceless. It can be shown that the vector spectrum of
S3(a) is [22–25]

ϒ = ϒn = 2 − n2

a2 , n = 2, 3, ..., (50)

and there are two independent eigenfunctions, which in
pseudo-spherical coordinates are

(V o
1 )nlm = 0,

(V o
2 )nlm = − a√

l (l + 1)
sin χ�nl (χ)

1

sin θ

∂Ylm

∂ϕ
,

(V o
3 )nlm = a√

l (l + 1)
sin χ�nl (χ) sin θ

∂Ylm

∂θ
, (51)

and the other

(V e
1 )nlm = a

√
l (l + 1)

n

�nl (χ)

sin χ
Ylm (θ, ϕ),

(V e
2 )nlm = a

n
√

l (l + 1)
[(l + 1) cos χ�nl (χ)

−
√

n2 − (l + 1)2 sin χ�nl+1 (χ)]∂Ylm

∂θ
,

(V e
3 )nlm = a

n
√

l (l + 1)
[(l + 1) cos χ�nl (χ)

−
√

n2 − (l + 1)2 sin χ�nl+1 (χ)]∂Ylm

∂ϕ
. (52)

One can show that
∫

S3(a)

dμḡi j (V o
i )nlm(V o

j )∗n′l ′m′

=
∫

S3(a)

dμḡi j (V e
i )nlm(V e

j )
∗
n′l ′m′ = δnn′δll ′δmm′ (53)

and

ḡi j (V o
i )nlm(V e

j )n′l ′m′ = 0. (54)

These vector harmonics constitute a complete orthonormal
set for the expansion of any transverse vector field on S3(a).
Thus, for the vector perturbation Ai (x) we can write

Ai (x) =
∑
nlm

[Ao
nlm(V o

i )nlm + Ae
nlm(V e

i )nlm], (55)

where Ao
nlm and Ae

nlm are two random fields and like scalar
perturbations we have

〈Ao
nlm Ao∗

n′l ′m′ 〉 = Po
A (n) δnn′δll ′δmm′ ,

〈Ae
nlm Ae∗

n′l ′m′ 〉 = Pe
A (n) δnn′δll ′δmm′ ,

〈Ao
nlm Ae∗

n′l ′m′ 〉 = Poe
A (n) δnn′δll ′δmm′ .

It yields

〈Ai (x)A∗
j (x)〉 =

∑
nlm

[Po
A(n)(V o

i (x))nlm(V o∗
i (x))nlm

+ Pe
A(n)(V e

i (x))nlm(V e∗
i (x))nlm

+ Poe
A (n)(V o

i (x))nlm(V e∗
i (x))nlm

+ Poe
A (n)(V e

i (x))nlm(V o∗
i (x))nlm]. (56)

On the other hand, 〈Ai (x)A∗
j (x)〉 must not change under a

parity transformation, because the probability distribution
function is invariant under a spatial inversion, and we have
Poe

A (n) = 0. Furthermore,

Po
A(n) = Pe

A(n) = P+1
A (n). (57)

Because the power spectrum just depends on the probability
distribution function it cannot be a function of parity. Thus,

〈Ao
nlm Ao∗

nlm〉 = 〈Ae
nlm Ae∗

nlm〉 = P+1
A (n)δnn′δll ′δmm′ (58)

〈Ao
nlm Ae∗

nlm〉 = 0. (59)

The last relation means that Ao
nlm and Ae

nlm are statistically
independent random fields; however, they have the same
spectrum.

3.3 Tensor perturbations and tensor random fields

Every symmetric, traceless, and transverse covariant tensor
of rank 2 on S3(a) can be expanded in terms of t–t tensor
spherical harmonics [22]. These harmonics can be classified
into two groups.
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Odd parity

(T o
11)nlm = 0,

(T o
22)nlm = − a2√

2(n2 − 1)l(l − 1) (l + 1) (l + 2)

× sin χ [(l + 2) cos χ�nl (χ)

−
√

n2 − (l + 1)2 sin χ�nl+1 (χ)] Xlm (θ, ϕ)

sin θ
,

(T o
33)nlm = a2√

2
(
n2 − 1

)
l (l − 1) (l + 1) (l + 2)

× sin χ [(l + 2) cos χ�nl (χ)

−
√

n2 − (l + 1)2 sin χ�nl+1 (χ)]
× sin θ Xlm (θ, ϕ) ,

(T o
12)nlm = −a2

√
(l − 1) (l + 2)

2
(
n2 − 1

)
l (l + 1)

× �nl (χ)
1

sin θ

∂Ylm

∂ϕ
,

(T o
13)nlm = a2

√
(l − 1) (l + 2)

2
(
n2 − 1

)
l (l + 1)

× �nl (χ) sin θ
∂Ylm

∂θ
,

(T o
23)nlm = a2√

2
(
n2 − 1

)
l (l − 1) (l + 1) (l + 2)

× sin χ [(l + 2) cos χ�nl (χ)

−
√

n2 − (l + 1)2 sin χ�nl+1 (χ)]
× sin θWlm (θ, ϕ) , (60)

where

Xlm (θ, ϕ) = 2

(
∂2Ylm

∂θ∂ϕ
− cot θ

∂Ylm

∂ϕ

)
, (61)

Wlm (θ, ϕ) = 2
∂2Ylm

∂θ2 + l (l + 1) Ylm (θ, ϕ). (62)

Even parity

(T e
11)nlm = a2

n

√
l (l − 1) (l + 1) (l + 2)

2(n2 − 1)

�nl (χ)

sin2 χ
Ylm (θ, ϕ) ,

(T e
22)nlm = − a2

2n

√
l (l−1) (l+1) (l+2)

2(n2−1)
�nl (χ) Ylm (θ, ϕ)

+ a2

n
√

2(n2 − 1)l (l − 1) (l + 1) (l + 2)

× Gnl (χ) Wlm (θ, ϕ) ,

(T e
33)nlm = − a2

2n

√
l (l − 1) (l + 1) (l + 2)

2(n2 − 1)

× �nl (χ) sin2 θYlm (θ, ϕ)

− a2

n
√

2(n2 − 1)l (l − 1) (l + 1) (l + 2)

× Gnl (χ) sin2 θWlm (θ, ϕ) ,

(T e
12)nlm = a2

n

√
(l − 1) (l + 2)

2(n2 − 1)l (l + 1)

× [(l + 1) cot χ�nl (χ)

−
√

n2 − (l + 1)2�nl+1 (χ)]∂Ylm

∂θ
,

(T e
13)nlm = a2

n

√
(l − 1) (l + 2)

2(n2 − 1)l (l + 1)

× [(l + 1) cot χ�nl (χ)

−
√

n2 − (l + 1)2�nl+1 (χ)]∂Ylm

∂ϕ
,

(T e
23)nlm = a2

n
√

2(n2 − 1)l (l − 1) (l + 1) (l + 2)

× Gnl (χ) Xlm (θ, ϕ) , (63)

where

Gnl (χ) = (l + 2) cos2 χ�nl (χ) − (n2 − 1) sin2 χ�nl (χ)

+ 1

2
(l − 1) (l + 2) �nl (χ) −

√
n2 − (l + 1)2

× sin χ cos χ�nl+1 (χ). (64)

It is also possible to express the tensor spherical harmonics
in terms of the Chebyshev polynomials of the first kind [31].
It can be shown that

∇2(T o
i j )nlm = 3 − n2

a2 (T o
i j )nlm, n = 3, 4, ... (65)

∇2(T e
i j )nlm = 3 − n2

a2 (T e
i j )nlm, n = 3, 4, ... (66)

and also
∫

S3(a)

dμḡik ḡ jl(T o
i j )nlm(T o

kl)
∗
n′l ′m′

=
∫

S3(a)

dμḡik ḡ jl(T e
i j )nlm(T e

kl)
∗
n′l ′m′ = δnn′δll ′δmm′ . (67)
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The set {(T o
i j )nlm, (T e

i j )nlm} constitutes a complete orthonor-
mal basis for the expansion of any symmetric traceless-
divergence-free covariant tensor field of rank 2 on S3(a).
On the other hand, the tensor mode is completely character-
ized by two traceless-transverse symmetric tensors Di j (t, x)

and �T
i j (t, x). We can expand them in terms of t–t tensor

spherical harmonics on S3(a):

Di j (x) =
∑
nlm

[Do
nlm(T o

i j )nlm + De
nlm(T e

i j )nlm]. (68)

There is a similar expansion for �T
i j (t, x). (Note that we drop

t here, because all quantities are considered at a fixed instant.)
Do

nlm and De
nlm just like Di j (t, x) are two random fields, so

〈Do
nlm Do∗

n′l ′m′ 〉 = 〈De
nlm De∗

n′l ′m′ 〉
= P+2

D (n) δnn′δll ′δmm′ , (69)

where P+2
D (n) is the power spectrum of the gravitational

wave Di j [32]. The probability distribution is independent of
parity, so we cannot expect 〈Do

nlm Do∗
n′l ′m′ 〉 and 〈De

nlm De∗
n′l ′m′ 〉

to have different values. In addition, because the scalar, vec-
tor, and tensor modes are independent, their joint power
spectra vanish.

4 The gauge problem

In this section, we investigate the behavior of the perturba-
tions under the gauge transformations. The equations derived
in Sect. 2 may have physically equivalent solutions. This
problem is called gauge freedom. Similar to the Einstein
field equations this gauge freedom may be fixed by choos-
ing a coordinate system. For this purpose, let us consider a
spacetime coordinate transformation,

xμ → x ′μ = xμ + εμ (x), (70)

with small εμ (x) in the same sense as that hμν and the other
perturbations are small. In cosmology, we call Eq. (70) a
gauge transformation if it affects only the field perturbations
and preserves the unperturbed metric [2,33]. Under such a
gauge transformation, the metric of the spacetime changes
as

gμν (x) → g′
μν(x ′) = ∂xρ

∂x ′μ
∂xλ

∂x ′ν gρλ (x) , (71)

equivalently

gμν (x) = ∂x ′ρ

∂xμ

∂x ′λ

∂xν
g′
ρλ (x + ε) . (72)

It yields

ḡμν (x) + hμν (x) = (δρ
μ + ∂μερ)(δλ

ν + ∂νε
λ) ×

×[ḡρλ (x + ε) + h′
ρλ (x)]. (73)

After simplification we have

h′
μν (x) = hμν (x) − ελ(∂λḡμν) − ḡμλ(∂νε

λ) − ḡνλ(∂μελ).

(74)

Thus

�hμν (x) = h′
μν (x) − hμν (x) = −∇μεν − ∇νεμ, (75)

where ∇μ is the covariant derivative corresponding to ḡμν .
Consequently

�h00 = −2ε̇0, (76)

�hi0 = �h0i = −ε̇i − ∂iε0 + 2
ȧ

a
εi , (77)

�hi j = −∇iε j − ∇ jεi + 2aȧg̃i jε0, (78)

where ∇i is the covariant derivative respect to ḡi j .
Similarly we can derive the effect of gauge transformation
Eq. (70) on the energy-momentum tensor:

�(δTμν) = −ελ(∂λT̄μν) − T̄μλ(∂νε
λ) − T̄νλ(∂μελ), (79)

or in more detail

�(δT00) = 2ρ̄ε̇0 + .

ρ̄ ε0, (80)

�(δTi0) = �(δT0i ) = 2 p̄
ȧ

a
εi − p̄ε̇i + ρ̄∂iε0, (81)

�(δTi j ) = − p̄(∇iε j + ∇ jεi ) + d

dt
(a2 p̄)g̃i jε0. (82)

In order to derive the gauge transformations of the scalar,
vector, and tensor parts of hμν and Tμν , it is necessary to
decompose the spatial part of εμ as follows:

εi = ∇iε
S + εV

i , ∇ iεV
i = 0. (83)

Now with substitution of Eq. (83) into Eqs. (76), (77), (78),
(80), (81), and (82), we find

�A = 2 ȧ
a ε0, �B = − 2

a2 εS,

�E = 2ε̇0, �F = 1
a

(−ε̇S − ε0 + 2 ȧ
a εS

)
,

�Ci = − 1
a2 εV

i , �Gi = 1
a

(−ε̇V
i + 2 ȧ

a εV
i

)
,

�Di j = 0, ��S = ��V
i = ��T

i j = 0,

�δu = −ε0, �δuV
i = 0,

�δρ = .

ρ̄ ε0, �δp = .

p̄ ε0.

(84)
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Obviously �S,�V
i ,�T

i j , Di j and δuV
i are gauge invariant

quantities. Besides, one can construct more gauge invariant
quantities by combination of the perturbative quantities, e.g.
ζ = A

2 − H δρ
.
ρ̄

(H = ȧ
a ), which is known as the curvature

perturbation on the uniform density slices [34,35]. Note in
particular that ζ is a pivotal quantity in cosmology, which
is related to the fluctuations of inflation as well as the CMB
angular power spectrum [32,36] and consequently connects
the primordial perturbations to the present observational data.
All of the tensor quantities are gauge invariant and as a result
gauge fixing is not required. On the other hand, for the vector
mode, we can fix a gauge by choosing εV

i so that either Ci

or Gi vanishes. For the scalar perturbations, fixing a gauge
means choosing ε0 and εS , so there are several ways to fix a
gauge [5], but here we concentrate on a special gauge which
was introduced by Mukhanov et al. [37] and is known as
the Newtonian gauge. In this gauge we choose ε0 and εS by
setting B = F = 0. It is convenient to write E and A in this
gauge as

E = 2
, A = −2�. (85)


 and � are known as Bardeen’s potentials [34]. This gauge
eliminates the gauge freedom completely, in contrast to the
synchronous gauge [2,38], which was introduced by Lifshitz
[3]. In the Newtonian gauge the line element of the universe
takes the form

ds2 = − (1 + 2
) dt2 + a2 g̃i j (1 − 2�) dxi dx j , (86)

and the gravitational field and conservation equations become

− 4

a2 � + 6H�̇ + �̈ + 2(3H2 + Ḣ)
 + H
̇ − ∇2�

= 4πG(−δρ + δp + a2∇2�S), (87)

� − 
 = 8πGa2�S, (88)

�̇ + H
 = −4πG (ρ̄ + p̄) δu, (89)

3�̈ + 6H�̇ + 3H
̇ + ∇2
 + 6(H2 + Ḣ)


= 4πG(δρ + 3δp + a2∇2�S), (90)

3 (ρ̄ + p̄) �̇ = ∂δρ

∂t
+ 3H (δρ + δp)

+ ∇2[(ρ̄ + p̄) δu + a2 H�S] (91)

(ρ̄+ p̄)
=− .

p̄ δu−(ρ̄+ p̄)
∂δu

∂t
−δp−a2∇2�S −2�S .

(92)

In the next section we shall show that this system of equations
has two independent adiabatic solutions.

5 Adiabatic modes in a spatially closed universe

In this section, we want to generalize the Weinberg theorem
[2,39], which has been proved for a spatially flat universe to
the spatially closed case. According to this theorem whatever
the contents of the universe, the perturbative field equations
have two independent adiabatic solutions in the time inter-
vals when the perturbation scales are often very longer than
the Hubble horizon of the universe. These two solutions in
the Newtonian gauge are⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

� (t, x) = 
(t, x) = ζ (x)

[
H
a

t∫
t0

a (τ ) dτ − 1

]
,

δρ(t,x)
.
ρ̄

= δp(t,x)
.
p̄

= −δu (t, x) = − ζ (x)
a

t∫
t0

a (τ ) dτ ,

�S (t, x) = 0,

(93)

and⎧⎪⎨
⎪⎩

� (t, x) = 
(t, x) = χ (x) H
a ,

δρ(t,x)
.
ρ̄

= δp(t,x)
.
p̄

= −δu (t, x) = −χ(x)
a ,

�S (t, x) = 0,

(94)

in which ζ(x) is the curvature perturbation on the uniform
density slices when the perturbations are outside of the Hub-
ble horizon or equivalently the conformal factor of S3 and
χ(x) is an arbitrary function of position.
In order to prove this, initially we put �S = 0, because the
cosmic fluid is approximately perfect; thus, from Eq. (88) we
have

� = 
, (95)

Now take the gauge transformation

xμ → xμ + εμ (x) , (96)

which converts the present Newtonian gauge to another
Newtonian gauge. Consequently

�h00 = −2ε̇0 ⇒ �
 = ε̇0, (97)

�hi0 = 0 ⇒ −ε̇i − ∂iε0 + 2
ȧ

a
εi = 0, (98)

�hi j = −2a2 g̃i j�� ⇒ −∇iε j − ∇ jεi + 2aȧg̃i jε0

= −2a2 g̃i j��. (99)

Equation (98) results in

εi (t, x) = −a2

t∫
t0

∂iε0 (τ, x)

a2 (τ )
dτ + a2ηi (x) , (100)

in which t0 and ηi (x), respectively, are arbitrary time and
an arbitrary 3-vector field on S3. Substituting Eq. (100) into
Eq. (99) yields

123
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2

t∫
t0

Hi jε0 (τ, x)

a2 (τ )
dτ − (∇iη j + ∇ jηi )

+ 2H g̃i jε0 (t, x) = −2g̃i j��. (101)

Now suppose that ηi (x) is a conformal Killing vector of S3

∇iη j + ∇ jηi = 2γ (x) g̃i j , (102)

where γ (x) = 1
3∇iη

i is a function on S3, the so-called con-
formal factor of S3 [40]. Note that S3 has no homothetic
Killing vector [40,41], but due to its conformal symmetry,
it has a conformal Killing vector. Indeed in [42] it has been
proved that S3 has a four-gradient conformal Killing vector.
For instance, ηi = δm

i (m = 1, 2, 3) is a conformal Killing
vector of S3 with conformal factor −xm :

∇iδ
m

j + ∇ jδ
m

i = −2xm g̃i j .

On the other hand, on the super-Hubble scales we can
ignore the first term on the left side of Eq. (101), because

2
∫ t

t0
Hi j ε0(τ,x)

a2(τ )
dτ is of the order of 2

∫ t
t0

∇2ε0 (τ, x) dτ , so its

Fourier transform has same order of 2
∫ t

t0
1−n2

a2(τ )
ε0nlm (τ ) dτ ,

which is negligible for super-Hubble scales. Thus Eq. (101),
on the time intervals when the perturbation scales are very
longer than the Hubble horizon, turns to

−(∇iη j + ∇ jηi ) + 2H g̃i jε0(t, x) = −2g̃i j��,

or

�� = γ (x) − Hε0 (t, x) . (103)

Besides, in the Newtonian gauge both � and � + �� are
solutions, so that it results from the linearity of equations that
�� is another solution of the Newtonian field equations too.
It is also true for other perturbations. Consequently, we have
a set of solutions of the Newtonian gauge field equations:

� = γ (x) − Hε0 (t, x) , (104)


 = ε̇0 (t, x) , (105)

δρ = .

ρ̄ ε0 (t, x) , (106)

δp = .

p̄ ε0 (t, x) , (107)

δu = −ε0 (t, x) . (108)

Furthermore,

ζ = −� − H
δρ
.

ρ̄
= −γ (x) . (109)

It can be concluded from Eq. (109) that ζ is conserved i.e. it
does not depend on the time, so that the above solutions are

appropriate for a period when the perturbations are outside of
the Hubble horizon. In order to see the conservation of ζ on
the super-Hubbles scales, it is sufficient to write the Fourier
transformation of Eq. (24),

∂δρn

∂t
+ 1 − n2

a2 [−a (ρ̄ + p̄) Fn + (ρ̄ + p̄) δun + aȧ�S
n ]

+ 3

2
(ρ̄ + p̄) Ȧn + 1

2
(ρ̄ + p̄) (1 − n2)Ḃn

+ 3
ȧ

a
(δρn + δpn) = 0; (110)

for simplicity we drop l and m indices. On the super-Hubble
scales (n << aH) we can approximate this equation as
follows:

∂δρn

∂t
+ 3

2
(ρ̄ + p̄) Ȧn + 3

ȧ

a
(δρn + δpn) = 0. (111)

On the other hand, we have

An = 2ζn − 2

3

δρn

ρ̄ + p̄
. (112)

By substituting Eq. (112) in Eq. (111) and using the con-
servation law of energy in an unperturbed universe we can
write

ζ̇n =
.

p̄ δρn − .

ρ̄ δpn

3 (ρ̄ + p̄)2 . (113)

Thus for adiabatic perturbations for which δρn
.
ρ̄

= δpn
.
p̄

, we

have

ζ̇n = 0. (114)

Consequently, if the perturbations are adiabatic1, ζ is con-
served of course in the epoch when the wavelength of most
perturbations are very much longer than the Hubble radius.
Indeed, the conservation of ζ is a general theorem in cos-
mology which has been proved even for a nonlinear general-
ization of ζ [43]. Note that ignoring the first term of the left
hand side of Eq. (101) causes ζ to be independent of time,
which is equivalent to going outside of the Hubble horizon.
From the combination of Eqs. (95), (104), (105), and also
Eq. (109) we may write

ε̇0 (t, x) + Hε0 (t, x) = −ζ (x) . (115)

Equation (115) is a first order differential equation for
ε0 (t, x) and we solve it in two different cases: First we
assume ζ (x) �= 0, and consequently, Eq. (115) results in

1 Strictly speaking, the adiabatic condition is δρα
.
ρ̄α

= δρβ
.
ρ̄β

where α and β

stand for every two different species of cosmic fluid elements whereas
the condition δρn

.
ρ̄

= δpn
.
p̄

is known as the generalized adiabatic condi-

tion.
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ε0 (t, x) = −ζ (x)

a

t∫
t0

a (τ ) dτ . (116)

By inserting Eq. (116) in Eqs. (104)–(108) we have

� (t, x) = 
(t, x) = ζ (x)

⎡
⎣ H

a

t∫
t0

a (τ ) dτ − 1

⎤
⎦ , (117)

δρ (t, x) = −ζ (x)

.

ρ̄

a

t∫
t0

a (τ ) dτ , (118)

δp (t, x) = −ζ (x)

.

p̄

a

t∫
t0

a (τ ) dτ , (119)

δu (t, x) = ζ (x)

a

t∫
t0

a (τ ) dτ . (120)

On the other hand, if we take ζ = 0 Eq. (115) gives

ε0 (t, x) = −χ (x)

a
, (121)

where χ(x) is an arbitrary function on the S3(a). Note that in
this case ηi is a Killing vector of S3. By substituting Eq. (121)
in Eqs. (104)–(108) we derive the second set of solutions as
follows:

� (t, x) = 
(t, x) = χ (x)
H

a
, (122)

δρ (t, x) = −χ (x)

.

ρ̄

a
, (123)

δp (t, x) = −χ (x)

.

p̄

a
, (124)

δu (t, x) = χ (x)

a
. (125)

Unlike the first solution, this solution is a decaying mode, so it
can be neglected at late times and its existence is significant
just for counting of adiabatic solutions. In both solutions
δρ(t,x)

.
ρ̄

= δp(t,x)
.
p̄

, which means they are adiabatic solutions.

In general, S3 has four independent gradient conformal
Killing vectors and six independent Killing vectors, however,
we have totally two independent solutions for perturbations
equations in super-Hubble scales.

It can be shown that whatever would happen during infla-
tion, if the universe subsequently spends sufficient time in a
state of local thermal equilibrium with conserved quantities,
then the perturbations become adiabatic and they remain adi-
abatic, even when the conditions of local thermal equilibrium
are no longer satisfied [44].

6 Conclusion and summary

The de Sitter background is maximally extended and also
maximally symmetric if and only if K = 1, i.e. its spatial
section is closed. For this purpose, we obtained the required
linear perturbation field equations and then proved the exis-
tence of two independent adiabatic solutions for these equa-
tions in the time interval when perturbations scales go outside
of the Hubble horizon. We showed the curvature perturbation
on the uniform density slices in a spatially closed universe
is proportional to the divergence of the conformal Killing
vector of S3. This indicates some perturbative cosmologi-
cal potentials in the time intervals when the scales of the
majority of perturbative modes become longer than the Hub-
ble horizon and reduce to the geometrical properties of the
background. In comparison with the adiabatic solutions in
the spatially flat background, it seems that the curvature has
no direct role when aH � 1, but the dependence of ζ(x) on
the background geometry manifests itself even outside the
horizon where the curvature is significant. We also investi-
gate the stochastic properties of the perturbation fields in a
spatially closed background and show that their spectra are
discrete due to the compactness of S3(a).
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