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Abstract We construct thin-shell wormholes in the mag-
netic Melvin universe. It is shown that in order to make a
TSW in the Melvin spacetime the radius of the throat cannot
be larger than 2

B0
, in which B0 is the magnetic field constant.

We also analyze the stability of the constructed wormhole in
terms of a linear perturbation around the equilibrium point.
In our stability analysis we scan a full set of the Equation
of States such as Linear Gas, Chaplygin Gas, Generalized
Chaplygin Gas, Modified Generalized Chaplygin Gas, and
Logarithmic Gas. Finally we extend our study to the worm-
hole solution in the unified Melvin and Bertotti–Robinson
spacetime. In this extension we show that for some specific
cases, the local energy density is partially positive but the
total energy which supports the wormhole is positive.

1 Introduction

The magnetic Melvin universe (more appropriately the
Bonnor–Melvin universe) [1–3] is sourced by a beam of
magnetic field parallel to the z-axis in the Weyl coordinates
{t, ρ, z, ϕ}. The metric depends only on the radial coordinate
ρ which makes a typical case of cylindrical symmetry. It is
a regular, non-black hole solution of the Einstein–Maxwell
equations. The behavior of the magnetic field is B (ρ) ∼ ρ

(for ρ → 0) and B (ρ) ∼ 1
ρ3 (for ρ → ∞). At radial infinity

the magnetic field vanishes but spacetime is not flat. On the
symmetry axis (ρ = 0) the magnetic field vanishes; since
the behavior is the same for 0 � |z| < ∞ the Melvin space-
time is not asymptotically flat also for |z| → ∞. The mag-
netic field can be assumed strong enough to warp spacetime
to the extent that it produces possible wormholes. Strong
magnetic fields are available in magnetars (i.e. B ∼ 1015G,
while our Earth’s magnetic field is BEarth ∼ 0.5G), pulsars
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and other objects. Since creation of strong magnetic fields
can be at our disposal in a laboratory—at least in very short
time intervals—it is natural to raise the question whether
wormholes can be produced in a magnetized superconduct-
ing environment. From this reasoning we aim to construct a
thin-shell wormhole (TSW) in a magnetic Melvin universe.
The method is an art of spacetime tailoring, i.e. cutting and
pasting at a throat region under well-defined mathematical
junction conditions. Some related papers can be found in [4–
17] for spherically symmetric bulk and in [18–24] for cylin-
drically symmetric cases. The TSW is threaded by exotic
matter, which is taken for granted, and our principal aim
is to search for the stability criteria for such a wormhole.
Two cylindrically symmetric Melvin universes are glued at
a hypersurface radius ρ = a = constant, which is endowed
with surface energy-momentum to provide necessary sup-
port against the gravitational collapse. It turns out that in the
Melvin spacetime the radial flare-out condition, i.e. dgϕϕ

da > 0
is satisfied for a restricted radial distance, which makes a
small scale wormhole. Specifically, this amounts to a throat
radius ρ = a < 2

|Bo| , so that for high magnetic fields the
throat radius can be made arbitrarily small. This can be
dubbed as a microscopic wormhole. As stated recently such
small wormholes may host the quantum Einstein–Podolsky–
Rosen (EPR) pair [25]. The throat is linearly perturbed in
the radial distance and the resulting perturbation equation
is obtained. The problem is reduced to a one-dimensional
particle problem whose oscillatory behavior for an effec-
tive potential V (a) about the equilibrium point is provided
by V ′′(a0) > 0. Given the Equation of State (EoS) on
the hypersurface we plot the parametric stability condition
V ′′(a0) > 0 to determine the possible stable regions. Our
samples of EoS consist of a Linear gas, various forms of
Chaplygin gas and a Logarithmic gas. We consider TSW also
in the recently found Melvin–Bertotti–Robinson magnetic
universe [26]. In the Bertotti–Robinson limit the wormhole
is supported by total positive energy for any finite extension
in the axial direction. For infinite extension the total energy
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reduces to zero, at least better than the total negative classical
energy.

The organization of the paper is as follows. The construc-
tion of TSW from the magnetic Melvin spacetime is intro-
duced in Sect. 2. Stability of the TSW is discussed in Sect.
3. Section 4 discusses the consequences of small velocity
perturbations. Section 5 considers TSW in Melvin–Bertotti–
Robinson spacetime and the Conclusion in Sect. 6 completes
the paper.

2 Thin-shell wormhole in Melvin geometry

Let us start with the Melvin magnetic universe spacetime
[1–3] in its axially symmetric form

ds2 = U (ρ)
(
−dt2 + dρ2 + dz2

)
+ ρ2

U (ρ)
dϕ2 (1)

in which

U (ρ) =
(

1 + B2
0

4
ρ2

)2

(2)

where B0 denotes the magnetic field constant. The Maxwell
field two-form, however, is given by

F = ρB0

U (ρ)
dρ ∧ dϕ. (3)

We note that the Melvin solution in Einstein–Maxwell the-
ory does not represent a black hole solution. The solution is
regular everywhere as seen from the Ricci scalar and Ricci
sequence

R = 0

RμνRμν = 4B4
0

U (ρ)8
(4)

as well as the Kretschmann scalar

K = 4B4
0

(
3B4

0ρ
4 − 24B2

0ρ
2 + 80

)

U (ρ)8
. (5)

In [27], the general conditions which should be satisfied to
have cylindrical wormhole possible are discussed. In brief,
while the stronger condition implies that

√
gϕϕ should take

its minimum value at the throat, the weaker condition states
that

√
gϕϕgzz should be minimum at the throat. The stronger

and weaker conditions are called radial flare-out and areal
flare-out conditions respectively [28–30]. As we shall see in
the sequel, in the case of TSW

√
gϕϕ and

√
gϕϕgzz should

only be increasing function at the throat in radial flare-out
and areal flare-out conditions. In the case of the Melvin
spacetime,

√
gϕϕ = ρ

1 + B2
0

4 ρ
2

(6)

and
√

gϕϕgzz = ρ. (7)

One easily finds that areal flare-out condition is trivially sat-
isfied and the radial flare-out condition requires ρ < 2

B0
.

Following Visser [4,31], from the bulk spacetime (1) we
cut two non-asymptotically flat copies M± from a radius
ρ = a with a > 0 and then we glue them at a hypersurface
� = �± which is defined as H (ρ) = ρ− a (τ ) = 0. In this
way the resultant manifold is complete. At hypersurface �
the induced line element is given by

ds2 = −dτ 2 + U (a) dz2 + a2

U (a)
dϕ2 (8)

in which

− 1 = U (a)
(
−ṫ2 + ρ̇2

)
(9)

where a dot stands for derivative with respect to the proper
time τ on the hypersurface�. The Israel junction conditions
which are the Einstein equations on the junction hypersurface
read (8πG = 1)

k j
i − kδ j

i = −S j
i , (10)

in which k j
i = K j(+)

i − K j(−)
i , k = tr

(
k j

i

)
and

K (±)
i j = −n(±)γ

(
∂2xγ

∂Xi∂X j
+ �

γ
αβ

∂xα

∂Xi

∂xβ

∂X j

)

�

(11)

is the extrinsic curvature. Also the normal unit vector is
defined as

n(±)γ =
(

±
∣∣∣∣gαβ

∂H
∂xα

∂H
∂xβ

∣∣∣∣
−1/2

∂H
∂xγ

)

�

(12)

and S j
i = diag

(−σ, Pz, Pϕ
)

is the energy-momentum tensor
on �. Explicitly we find

n(±)γ = ±
(
−ȧU (a),U (a)

√
�, 0, 0

)
�
, (13)

in which � = 1
U (a) + ȧ2. The non-zero components of the

extrinsic curvature are found as

K τ(±)
τ = ± 1√

�

(
ä + U ′

U
ȧ2 + U ′

2U 2

)
(14)

K z(±)
z = ± U ′

2U

√
�, (15)

and

K ϕ(±)
ϕ = ±

(
1

a
− U ′

2U

)√
�, (16)

in which prime implies ∂
∂a . Imposing the junction conditions

[32–36] we find the components of the energy-momentum
tensor on the shell which are expressed as
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σ = −2

a

√
� (17)

Pz = 2ä + 2U ′
U ȧ2 + U ′

U 2√
�

+
(

2

a
− U ′

U

)√
�, (18)

and

Pϕ = 2ä + 2U ′
U ȧ2 + U ′

U 2√
�

+ U ′

U

√
�. (19)

Having the energy density on the shell, one may find the total
exotic matter which supports the wormhole per unit z by

� = 2πaU (a) σ, (20)

which is clearly exotic.

3 Stability of the thin-shell wormhole against a linear
perturbation

Recently, we have generalized the stability of TSWs in cylin-
drical symmetric bulks in [37]. Here we apply the same
method to the TSWs in Melvin universe. Similar to the spher-
ical symmetric TSW, we start with the energy conservation
identity on the shell which implies
(

aSi j
; j =

) d

dτ
(aσ)+

[
aU ′

2U

(
Pz − Pϕ

)+ Pϕ

]
da

dτ

= da

dτ

U ′

U

(
4 − a

U ′

U

)√
�. (21)

As we have shown in previous section the expressions
given for surface energy density σ and surface pressures Pz

and Pϕ are for a dynamic wormhole. This means that if there
exists an equilibrium radius for the throat radius, say a = a0,

at this point ȧ0 = 0 and ä0 = 0 and consequently the form of
the surface energy density and pressure reduce to the static
forms as

σ0 = − 2

a0
√

U0
(22)

Pz0 = 2

a0
√

U0
(23)

and

Pϕ0 = 2
U ′

0

U0
√

U0
. (24)

Let us assume that after the perturbation the surface pressures
are a general function of σ which may be written as

Pz = � (σ) (25)

and

Pϕ = �(σ) (26)

such that at the throat i.e. a =a0, � (σ0)= Pz0 and �(σ0)=
Pϕ0. From (17) one finds a one-dimensional type equation
of motion for the throat

ȧ2 + V (a) = 0, (27)

in which V (a) is given by

V (a) = 1

U
−
(aσ

2

)2
. (28)

Using the energy conservation identity (21), one finds

(aσ)′ = −
[

aU ′

2U
(� (σ)−�(σ))+�(σ)

]

+ U ′

U

(
4 − a

U ′

U

)√
�, (29)

which helps us to show that V ′ (a0) = 0 and

V ′′
0 =

(
2U0 + a0U ′

0

) [
U ′

0

(
�′

0 −� ′
0

)
a0 − 2U0�

′
0

]

2U 3
0 a2

0

− U 2
0

(
2U ′

0−4a0U ′′
0

)+U0
(
2U ′′

0 U ′
0a2

0 +7a0U ′2
0

)−3a2
0U ′3

0

2U 4
0 a0

.

(30)

Note that a subscript zero means that the corresponding quan-
tity is evaluated at the equilibrium radius i.e., a = a0. We also
note that a prime denotes derivative with respect to its argu-
ment, for instance � ′

0 = ∂�
∂σ

∣∣
σ=σ0

while U ′
0 = ∂U

∂a

∣∣
a=a0

.

Now, if we expand the equation of motion of the throat about
a = a0 we find (up to second order)

ẍ + ω2x=̃0 (31)

in which x = a − a0 and ω2 = 1
2 V ′′ (a0) . This equation

describes the motion of a harmonic oscillator provided ω2 >

0 which is the case of stability. If ω2 < 0 it implies that after
the perturbation an exponential form fails to return back to
its equilibrium point and therefore the wormhole is called
unstable.

To draw conclusions as to the stability of the TSW in
Melvin magnetic space we should examine the sign of
V ′′ (a0), and in any region where V ′′ (a0) > 0 the worm-
hole is stable and in contrast if V ′′ (a0) < 0 we conclude
that the wormhole is unstable. From Eq. (30), we observe
that this issue is identified with a, U0, U ′

0, U ′′
0 together with

�′
0 and � ′

0. Since the form of U (a) is known, in order to
examine the stability of the wormhole one should choose a
specific EoS, i.e. � (σ) and �(σ). In the following section
we shall consider the well-known cases of EoS which have
been introduced in the literature. For each case we determine
whether the TSW is stable or not.
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3.1 Specific EoS

As we have already mentioned, in this chapter we go through
the details of some specific EoS and the stability of the cor-
responding TSW.

3.1.1 Linear gas (LG)

Our first choice of the EoS is a LG in which � ′ (σ ) = β1

and �′ (σ ) = β2 with β1 and β2, two constant parameters
related to the speed of sound in z and ϕ directions. We also
find the form of � (σ) and �(σ) which are

� (σ) = β1σ +�0 (32)

and

�(σ) = β2σ +�0 (33)

with �0 and �0 as integration constants. We impose
� (σ0) = Pz0 and �(σ0) = Pϕ0, which yields

�0 = Pz0 − β1σ0 (34)

and

�0 = Pϕ0 − β2σ0. (35)

In the case with β1 = β2 = β, we find that � and � are
related as

� −� = Pz0 − Pϕ0, (36)

but in general they are independent. In Fig. 1 we consider
β1 = β2 = β and the resulting stable region with V ′′

0 > 0 is
displayed.

3.1.2 Chaplygin gas (CG)

Our second choice of the EoS is a CG. The form of � ′ and
�′ are given by

� ′ = β1

σ 2 and �′ = β2

σ 2 (37)

in which β1 and β2 are two new positive constants. Further-
more, one finds

� (σ) = −β1

σ
+�0 (38)

and

�(σ) = −β2

σ
+�0 (39)

in which as before �0 and �0 are two integration con-
stants. Imposing the equilibrium conditions � (σ0) = Pz0

and �(σ0) = Pϕ0 we find

�0 = Pz0 + β1

σ0
(40)

and

Fig. 1 Stability of TSW supported by LG in terms of a0 B0 and β =
β1 = β2. We note that the upper bound of a0 B0 is chosen to be 2.

This let a2

f (a) to remain an increasing function with respect to a. This
condition is needed to have a TSW possible in CS spacetime [26]

Fig. 2 Stability of TSW supported by CG in terms of a0 B0 and β =
β1 = β2

�0 = Pϕ0 + β2

σ0
. (41)

In Fig. 2 we plot the stability region of the TSW in terms of
β1 = β2 = β and B0a. We note that setting β1 = β2 = β

makes� and� dependent as in the LG case i.e., (36), but in
general they are independent.

3.1.3 Generalized Chaplygin gas (GCG)

After CG in this part we consider a GCG EoS which is defined
as
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Fig. 3 Stability of TSW supported by GCG in terms of a0 B0 and β =
β1 = β2 with various value of ν. The stable region is noted

� ′ = β1

σ |σ |ν and �′ = β2

σ |σ |ν (42)

and consequently

� (σ) = − β1

ν |σ |ν +�0 (43)

and

�(σ) = − β2

ν |σ |ν +�0. (44)

As before β1 and β2 are two new positive constants, 0 < ν ≤
1 and �0 and �0 are integration constants. If we set β1 =
β2 = β again � and � are not independent as Eq. (36). The
equilibrium conditions imply

�0 = Pz0 + β1

ν |σ0|ν (45)

while

�0 = Pϕ0 + β2

ν |σ0|ν . (46)

In Fig. 3 we show the effect of the additional freedom i.e.,
ν in the stability of the corresponding TSW. We note that
although in the standard definition of the GCG one has to
consider 0 < ν ≤ 1 in our figure we also considered beyond
this limit.

3.1.4 Modified generalized Chaplygin gas (MGCG)

Another step toward further generalization is to combine the
LG and the GCG. This is called MGCG and the form of the
EoS may be written as

� ′ = ξ1 + β1

σ |σ |ν and �′ = ξ2 + β2

σ |σ |ν . (47)

Fig. 4 Stability of TSW supported by MGCG in terms of a0 B0 and
β = β1 = β2. The different curves are for different values of ξ = ξ1 =
ξ2 and ν is chosen to be ν = 1

Herein, β1 > 0, β2 > 0, ξ1 and ξ2 are constants and 0 < ν ≤
1. The form of � and � can be found as

� (σ) = ξ1σ − β1

ν |σ |ν +�0 (48)

and

�(σ) = ξ2σ − β2

ν |σ |ν +�0. (49)

As before �0 and �0 are integration constants which can
be identified by imposing similar equilibrium conditions i.e.,
� (σ0) = Pz0 and �(σ0) = Pϕ0. After that we find

�0 = Pz0 + β1

ν |σ0|ν − ξ1σ0 (50)

and

�0 = Pϕ0 + β2

ν |σ0|ν − ξ2σ0. (51)

In Fig. 4 we plot the stability region of the TSW supported
by the MGCG with additional arrangements as ξ1 = ξ2 = ξ

and β1 = β2 = β.We again comment that these make� and
� dependent, while in general they are independent. In Fig.
4 specifically we show the effect of the additional freedom
to the GCG, i.e., ξ in a frame of β and B0a.

3.1.5 Logarithmic gas (LogG)

Finally we consider the LogG with

� ′ = −β1

σ
and �′ = −β2

σ
(52)
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Fig. 5 Stability of TSW supported by LogG in terms of a0 B0 and
β = β1 = β2. We note that the upper bound of a0 B0 is chosen to be 2

where β1 > 0 and β2 > 0 are two positive constants. The
EoS are given by

� = −β1 ln

∣∣∣∣
σ

σ0

∣∣∣∣+�0 and � = −β1 ln

∣∣∣∣
σ

σ0

∣∣∣∣+�0 (53)

in which the β1 ln |σ0| + �0 and β2 ln |σ0| + �0 are inte-
gration constants. Imposing the equilibrium conditions one
finds�0 = Pz0 and�0 = Pϕ0. In Fig. 5 we plot the stability
region in terms of β1 = β2 = β versus B0a.

4 Small velocity perturbation

In the previous chapter we have considered a linear perturba-
tion around the equilibrium point of the throat. As we have
considered above, the EoS of the fluid on the thin shell after
the perturbation had no relation with its equilibrium state.
However, by setting β1 = β2 in our analysis in previous
chapter, implicitly we accepted that � −� = Pz − Pϕ does
not change in time, a restriction that is physically acceptable.

In this chapter we consider the EoS of the TSW after
the perturbation same as its equilibrium point. This in fact
means that the time evolution of the throat is slow enough
that any intermediate step between the initial point and a
certain final point can be considered as another equilibrium
point (or static). Quantitatively it means that Pz

σ
= −1 (same

as Pz0
σ0

= −1) and Pϕ
σ

= −a U ′
U (same as Pϕ0

σ0
= −a0

U ′
0

U0
)

and consequently, from (17), (18) and (19), we find a single
second order differential equation which may be written as

2ä + U ′

U
ȧ2 = 0. (54)

This equation gives the exact motion of the throat after the
perturbation. (We note once more that the process of time
evolution is considered with small velocity). This equation
can be integrated to obtain

ȧ = ȧ0

√
U0

U
. (55)

A second integration with the exact form of U yields

a

(
1 + B2

0

12
a2

)
= a0

(
1 + B2

0

12
a2

0

)
+ ȧ0

√
U0 (τ − τ0) .

(56)

The motion of the throat is under a negative force per unit
mass which is position and velocity dependent. As is clear
from the expression of ȧ, the magnitude of velocity is always
positive and it never vanishes. This means that the motion of
the throat is not oscillatory but builds up in the same direction
after perturbation. Also from (56) we see that in proper time
if ȧ0 > 0, a goes to infinity and when ȧ0 < 0, a goes to
zero. In both cases the particle-like motion does not return to
its initial position a = a0. These mean that the TSW is not
stable under small velocity perturbations.

5 TSW in unified Bertotti–Robinson and Melvin
spacetimes

Recently two of us found a new solution to the Einstein–
Maxwell equations which represents unified Bertotti–
Robinson and Melvin spacetimes [26] whose line element
is given by

ds2 = −e2udt2 + e−2u
[
e2κ

(
dρ2 + dz2

)
+ ρ2dϕ2

]
(57)

where

eu = F =λ0

[√
ρ2+z2 cosh

(
B0

λ0
lnρ

)
−zsinh

(
B0

λ0
lnρ

)]

(58)

and

eκ = F2
(
ρ2 + z2

)
⎡
⎣ ρ

1+ B0
2λ0

z +√
ρ2 + z2

⎤
⎦

2B0
λ0

. (59)

Herein λ0 and B0 are two essential parameters of the space-
time which are related to the magnetic field of the system and
the topology of the spacetime. The magnetic potential of the
spacetime is given by

Aμ = �(ρ, z) δϕμ (60)

in which

�ρ (ρ, z) = ρe−2uψz (61)
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and

�z (ρ, z) = −ρe−2uψρ (62)

with

ψ = λ0

[√
ρ2 + z2

]
+ B0z. (63)

The standard method of making TSW implies that H (ρ) =
ρ − a (τ ) = 0 is the timelike hypersurface where the throat
is located and the line element on the shell reads

ds2 = −dτ 2 + e−2u(a,z)
[
e2κ(a,z)dz2 + a2dϕ2

]
. (64)

The 4-vector normal to the shell is found to be

n(±)γ = ±
(
−ȧeκ , e2(κ−u)

√
�, 0, 0

)
�
,

with � = (
e2(u−κ) + ȧ2

)
and the non-zero elements of the

extrinsic curvature tensor become

K τ(±)
τ = ±

[
ä + (

κ ′ − u′) ȧ2

√
�

+ u′√�
]
, (65)

K z(±)
z = ∓ (u′ − κ ′)√�, (66)

and

K ϕ(±)
ϕ = ∓

(
u′ − 1

a

)√
�. (67)

Upon the Israel junction conditions, one finds

σ = 2
√
�

(
2u′ − κ ′ − 1

a

)
, (68)

Pz = 2

[
ä + (

κ ′ − u′) ȧ2

√
�

+ 1

a

√
�

]
(69)

and

Pϕ = 2

[
ä + (

κ ′ − u′) ȧ2

√
�

+ κ ′√�
]
. (70)

The results given above can be used to find the σ0, Pz0 and
Pϕ0 at the equilibrium radius a = a0 i.e.,

σ0 = 2e(u−κ)
(

2u′ − κ ′ − 1

a

)∣∣∣∣
a=a0

, (71)

Pz0 = 2

a
e(u−κ)

∣∣∣∣
a=a0

(72)

and

Pϕ0 = 2κ ′e(u−κ)
∣∣∣
a=a0

. (73)

Next, we use the exact form of κ and u to find the energy
density of the shell, which can be written as

σ0 = 2a0

a2
0 + z2

− (ε + 1)2

a0
+ 2εa0√

a2
0 + z2

(
z +

√
a2

0 + z2

)

(74)

in which ε = B0
λ0
. To analyze the sign of σ0 we introduce

ζ = z
a0

and rewrite the latter equation as

a0σ = − (1 + ε)2 +
2
(
ζ + (1 + ε)

√
1 + ζ 2

)

(
1 + ζ 2

) (
ζ +√

1 + ζ 2
) . (75)

One of the interesting cases is when we set ε = −1, which
yields

a0σ0 = 2ζ
(
1 + ζ 2

) (
ζ +√

1 + ζ 2
) . (76)

This is positive for ζ > 0 (z > 0), negative for ζ < 0 (z < 0)
and zero for ζ = 0 (z = 0).Another interesting case is when
we set ε = 0 which is the BR limit of the general solution
(57–59). In this setting we find

a0σ0 = 2

1 + ζ 2 − 1 (77)

which is positive for |ζ | < 1. In Fig. 6 we plot the region on
which a0σ0 ≥ 0 in terms of ε and ζ. To find the total energy
of the shell we use

� =
2π∫

0

+∞∫

−∞

∞∫

0

σ0δ (ρ − a0)
√−gdρdzdϕ (78)

Fig. 6 a0σ0 versus ε and ζ. The shaded region in the region on which
a0σ0 is positive
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which after some manipulation becomes

� = 2π

+∞∫

−∞
σ0a0e2(κ0−u0)dz, (79)

in which κ0 = κ|a=a0 and u0 = u|a=a0 . Upon some further
manipulation we arrive at

�

2πλ2
0a2ε2−1

0

=
∞∫

−∞

⎡
⎣ 2

(
ζ+(1+ε)√1+ζ 2

)

(
1+ζ 2

)3 (
ζ+√1+ζ 2

)− (1+ε)2(
1+ζ 2

)2

⎤
⎦

×
(√

1+ζ 2cosh(εlna0)−ζ sinh(εlna0)
)2

(
ζ+√1+ζ 2

)4ε dζ.

(80)

Although this integral cannot be evaluated explicitly for arbi-
trary ε at least for ε = 0 it gives

� = lim
R→∞

4πλ2
0 R

a0
(
1 + R2

) , (81)

which is positive. Obviously this limit (i.e. ε = 0) corre-
sponds to the Bertotti–Robinson limit of the general solution
in which for R < ∞ construction of a TSW with a positive
total energy becomes possible.

6 Conclusion

A large class of stable TSW solutions is found by employ-
ing the magnetic Melvin universe through the cut-and-paste
technique. The Melvin spacetime is a typical cylindrically
symmetric, regular solution of the Einstein–Maxwell equa-
tions. Herein the throat radius of the TSW is confined by
a strong magnetic field; for this reason we phrase them as
microscopic wormholes. Being regular its construction can
be achieved by a finite energy. It has recently been suggested
that the mysterious EPR particles may be connected through a
wormhole [38]. From this point of view the magnetic Melvin
wormhole may be instrumental to test such a claim. We have
applied radial, linear perturbation to the throat radius of the
TSW in search for stability regions. In such perturbations
we observed that the initial radial speed must be chosen zero
in order to attain a stable TSW. Different perturbations may
cause collapse of the wormhole. As the material on the throat
we have adopted various equations of states, ranging from
an ordinary linear/logarithmic gas to a Chaplygin gas. The
repulsive support derived from such sources gives life to the
TSW against the gravitational collapse. Besides pure Melvin
case we have also considered TSW in the magneticuniverse

of unified Melvin and Bertotti–Robinson spacetimes. The
pure Bertotti–Robinson TSW has positive total energy for
each finite axial length (R < ∞). The energy becomes zero
when the cut-off length R → ∞.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
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