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Abstract We give a detailed derivation of the Boltzmann
equation, and in particular its collision integral, in classical
field theory. We first carry this out in a scalar theory with
both cubic and quartic interactions and subsequently in a
Yang–Mills theory. Our method does not rely on a doubling
of the fields, rather it is based on a diagrammatic approach
representing the classical solution to the problem.

1 Introduction, motivation and the Boltzmann equation

Transport phenomena in QCD matter have been the subject
of extensive research over the last three decades. Particular
attention has been paid to calculating quantities like conduc-
tivity, viscosity and baryon diffusion [1–4] or the relaxation
of colorful excitations [5–10] in a weakly coupled Quark–
Gluon Plasma (QGP). A key element in such studies has
been the use of kinetic equations which are of the Boltzmann
type. The Boltzmann equation is an equation which describes
the time evolution of occupation numbers. An occupation
number is a dimensionless quantity defined as the number of
particles of a given species per unit phase space and divided
by the number of choices for each possible discrete degree of
freedom. For example, in a SU (Nc) pure gauge theory one
divides by 2(N 2

c − 1) for the polarizations and colors of the
gauge bosons to which we shall refer as gluons. The Boltz-
mann equation for the gluon occupation number f ( p, x, t)
reads
(

∂

∂t
+ v p · ∂

∂x
+ Fext · ∂

∂ p

)
f ( p, x, t) = C[ f ], (1.1)

a e-mail: mathieuv@indiana.edu
b e-mail: amh@phys.columbia.edu
c e-mail: trianta@ectstar.eu

with v p = p/E p the gluon velocity having unit magnitude,
Fext a generic external force and C[ f ] the collision term or
collision integral accounting for the interactions among glu-
ons. Considering only 2 → 2 elastic scattering this collision
term reads

C[ f ] = 1

4E p

∫
d̃ p1 d̃ p2 d̃ p3 (2π)4δ(4)(�p)

|M|2YM

2(N 2
c − 1)

× [
f p2

f p3

(
1 + f p1

)(
1 + f p

)
− f p f p1

(
1 + f p2

)(
1 + f p3

)]
, (1.2)

where we have used the compact notation f p = f ( p, x, t)
since the integrand is local in both x and t and defined in
general the integration measure

d̃ p ≡ d3 p
(2π)32E p

. (1.3)

Energy-momentum conservation in Eq. (1.1) is explicit,
while the scattering amplitude squared |M|2YM for the pro-
cess p2 p3 → pp1 is summed over initial and final colors
and polarizations and is given below in Eq. (3.19). Each of
the two terms in the square bracket in Eq. (1.2) has an intu-
itive interpretation. The first is a gain term proportional to
f p2

f p3
, with p2 and p3 disappearing to create p and p1,

while
(
1+ f p1

)
and

(
1+ f p

)
are Bose enhancement factors.

Similarly, the second is a loss term describing the disappear-
ance of p and p1 in order to create p2 and p3. Notice also that
this square bracket vanishes when occupation numbers are
given by the Bose–Einstein distribution. Further aspects of
this collision integral will be discussed in the next sections.

A valid question that one immediately asks is how such a
kinetic equation can be derived from first principles, i.e. from
the underlying quantum field theory. Indeed, this was first
addressed long time ago in non-relativistic quantum field
theory [11]. Using the Schwinger–Keldysh formalism and
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writing Dyson–Schwinger equations for the propagators, an
appropriate truncation supplemented with a gradient expan-
sion led to the non-relativistic version of the Boltzmann
equation given above. Notice that in such a limit the Bose
enhancement factors in the collision integral are absent and
the collision integral vanishes when occupation numbers are
given by the Maxwell–Boltzmann distribution. Using similar
Green’s function techniques in relativistic quantum field the-
ories, the Boltzmann equation was derived in [12] for scalar
fields, in [13] for charged scalar fields and in [14] for nuclear
matter described by the Walecka model. A somewhat differ-
ent derivation based on resuming ladder diagrams, again in
a scalar field theory, was given in [15], while kinetic equa-
tions for colorful excitations in a weakly coupled QGP were
obtained in [9,16,17] by performing gauge covariant gradi-
ent expansions. For both a pedagogical introduction and an
overview we refer the reader to [10,18].

Typically, the essential assumptions for arriving at such
a kinetic equation are two. First one needs that occupation
numbers do not become very large; for example in QCD
one needs f p � 1/αs while in a scalar theory with quartic
interactions (λφ4 theory) this constraint would be f p � 1/λ.
This is necessary, since otherwise a description using on-
shell scattering of individual particles no longer makes sense
as the time between scatterings is too short for an on-shell
approximation to be valid. Second one has to assume that
there are no large wavelength modes comparable to the mean
free path, otherwise one has to treat them in a suitable way.

Here we would like to study the conditions under which
bulk matter can be described by a Boltzmann equation with
a collision term given by elastic scattering, but also under
the additional assumption that the physical system is classi-
cal1. Then the extra condition f p � 1 is required in order to
have the possibility of a quantum-classical correspondence,
but when the coupling is sufficiently small there is a para-
metrically large window in which a kinetic description via a
Boltzmann equation should be valid. In fact such an obser-
vation and the corresponding derivation have been already
done a few years ago in the context of a λφ4 theory [21] (see
also [22]). In that work, the starting point of the analysis was
a doubling of the fields, a method which has been naturally
used for the corresponding quantum problem where separate
fields are needed for time evolution in the direct amplitude
and the complex conjugate amplitude. However, when occu-
pation numbers are large one combination of the fields, π in
[21], becomes a variable of constraint and the functional inte-
gration over π requires the other independent combination

1 A different connection between the classical approximation to statis-
tical field theory and the transport theory appears in studies of baryon
number violation via topological transitions in hot QCD; in that context,
the quantum Boltzmann equation for the relaxation of colorful excita-
tions has been used to construct a classical effective theory for the “ultra-
soft” modes responsible for the topological transitions [7,17,19,20].

of fields, φ, to obey the classical equations of motion of the
λφ4 theory. Thus, although there is only one dynamical vari-
able in the discussion given in [21], the constraint variable
appears explicitly in the perturbative classical calculation of
the Boltzmann collision term.

There are two major differences between the current work
and the one in [21]. The first is that we simply use a different
method which does not rely on the doubling of the fields;
we solve classical equations of motion, with retarded bound-
ary conditions as appropriate to the problem, in which only
one field evolves and interacts. Occupation numbers are not
defined in terms of Green’s function, as usually done in the
quantum analyses and in that of [21]. Instead we start from
the “canonical” definition that f p should be proportional to
a∗

pa p where a∗
p and a p are the classical analogs of creation

and annihilation operators, i.e. the coefficients in the expan-
sion of the classical field in plane waves. In this language
it is clear how the constraint f p � 1 emerges, since in the
classical treatment we consider these expansion coefficients
as numbers and not as operators, thus effectively ignoring
all possible commutators. Now we can follow the classical
time evolution of the field coefficients and, in turn, that of
the occupation numbers.

The second difference with respect to [21] is that we
extend the analysis to the case of a Yang–Mills theory. In
order to efficiently deal with the latter, we shall first con-
sider a scalar theory with both cubic, gφ3, and quartic,
λφ4, interactions. Then the study of the Yang–Mills theory
becomes much easier since the topology in the diagrammatic
expansion is the same, with the only additional complication
being the introduction of spin and color degrees of freedom.
Our calculations, using classical field equations as already
stressed, are given as the first terms in a power series in g2

and λ in the scalar theory and in g2 in the Yang–Mills the-
ory. They agree with the corresponding quantum field theory
result so long as occupation numbers satisfy f p � 1 and
after ensemble averages (whose particular details should not
matter when the constraints in the occupation numbers are
satisfied) over the initial conditions are performed in both
the classical and quantum approaches. Thus, we shall even-
tually arrive at the collision integral in Eq. (1.2), but it will
contain only the cubic in f terms and not the quadratic ones,
cf. Eq. (3.25). The equilibrium limit in that equation is now
given by f p = kT/E p, which is clearly the large occupa-
tion limit of the Bose–Einstein distribution occurring when
E p � kT .

In order to make our discussion as simple as possible we
have made a number of assumptions: (i) We suppose that the
elements of our initial ensemble of field configurations are
homogeneous in space. This assumption is not really neces-
sary, but it simplifies our task considerably. What one must
actually assume is that inhomogeneities occur on a scale large
compared to the wavelengths dominating the problem and
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this is sufficient to get an effective momentum conservation,
e.g. the δ(3)(� p) emerging in Eq. (2.17). When such spatial
inhomogeneities are present they trivially give rise to the drift
term v p · ∂ f p/∂x which appears in the Boltzmann equation
in Eq. (1.1) and combines with ∂ f p/∂t term to form the nat-
ural “convective” derivative. (ii) We assume the absence of
long range coherent fields which would give rise to the term
Fext · ∂ f p/∂ p in Eq. (1.1). (iii) We finally suppose that our
initial fields ensemble does not have long range coherences in
wavelengths so that Eq. (2.4), which defines the occupation
numbers, is appropriate. Similar assumptions were made in
the analysis of [21], however, other possibilities are available
as we now discuss.

The above assumptions are generally satisfied in recent
studies of scalar field theories and their simulations [23–
25]. However, in simulations of Yang–Mills theories this is
not always the case. On the one hand, in [26,27] the initial
conditions are very much as we have taken them and one
expects that after a short time, allowing occupation numbers
to become smaller than 1/αs , the classical field theory sim-
ulations should agree with the Boltzmann equation. Indeed,
this seems to be the case, as the results in [26,27] are very
close to the Boltzmann-based description given in [28]. On
the other hand, the recent simulations in [29] begin with long
range coherent fields and thus Eq. (2.4) is not satisfied. At
this point it is not clear at what time the classical field evo-
lution of [29] would admit an equivalent description via a
Boltzmann equation.

In Sect. 2 we do the derivation for the scalar theory with
gφ3 and λφ4 interactions. The calculation is based on suit-
able Feynman rules which allow for a diagrammatic solution
of the classical equations of motion. We have separated the
calculation in three subsections in which we calculate in great
detail the λ2, the λg2, and the g4 terms respectively. Each of
the aforementioned terms contains all the gain and loss terms
of the collision integral. Then, in Sect. 3, we give the deriva-
tion for a Yang–Mills theory by paying special attention to
the points that require extra treatment compared to the scalar
theory case.

2 Scalar field theory with cubic and quartic vertices

Let us start by considering a massless scalar field theory
with cubic and quartic interactions in D = 4 dimensions.
The action is given by

Sφ =
∫

d4x Lφ =
∫

d4x

[
1

2
(∂μφ)2 − g

3! φ3 − λ

4! φ4
]

,

(2.1)

and while the coupling λ is dimensionless, the coupling g has
mass dimension 1. In this work, and in view of the perturba-

tion theory to follow, we shall assume that λ and g2/M2 are
of the same order, where M is a typical mass scale for the
scattering processes to be taken into account. In general, we
can decompose the real classical field φ according to

φ(x) = ∫ d3 p
h p

(
a p e−ip·x + a∗

p eip·x
)

with

h p =
√

(2π)32E p ,
(2.2)

and where p is an on-shell four-momentum so that p · x =
E p x0 − p · x and E p = | p|. Since we have an interact-
ing field theory, the coefficients a p and a∗

p are generally
time-dependent. However, the Boltzmann equation is valid
when the typical collision time is much smaller than the time
between two collisions. Thus, even though we will assume
that a p is time-dependent, we will take this dependence to
be much slower than that of the plane wave in Eq. (2.2). This
allows us to invert Eq. (2.2) and express a p in terms of the
field φ as

a p = i

h p

∫
d3x eip·x [φ̇(x) − iE pφ(x)

]
. (2.3)

In the case of a homogeneous medium it is natural to define
the occupation number f p, a dimensionless quantity, as

〈
a∗

p′a p

〉
= δ

(3)

p p′ f p, (2.4)

with the shorthand notation δ
(3)

p p′ ≡ δ(3)( p − p′) and where
the brackets stand for the ensemble average. We aim to find
the time evolution of the occupation number in the classical
theory and therefore we need to determine the corresponding
evolution of the coefficients a p and the field φ. The classical
equation of motion of φ clearly reads

�xφ = J (x) ≡ − g

2! φ2 − λ

3! φ3, (2.5)

with the convention �x = ∂2
0 − ∇2

x and where we have
defined for our convenience the “current” J . Let us now split
the full interacting field φ according to

φ = φ(0) + δφ, (2.6)

where φ(0) is the free field, i.e. it satisfies the homogeneous
version Eq. (2.5), while δφ is the modification arising from
the presence of interactions; it satisfies Eq. (2.5) and thus can
be formally written as

δφ(x) =
∫

d4 y i�(x − y)J (y). (2.7)

In the above � is the free propagator of the scalar field and
is determined by

�x�(x − y) = −i δ(4)(x − y). (2.8)

123



2873 Page 4 of 15 Eur. Phys. J. C (2014) 74:2873

The solution to the above is

�R(x) =
∫

d4k

(2π)4 e−ik·x�R(k)

=
∫

d4k

(2π)4 e−ik·x i

k2 + iεk0 , (2.9)

where ε → 0+ so that the propagator is proportional to

(x0), as is straightforward to check by performing the inte-
gration over k0. More precisely, one finds

�R(x) = −i
(x0)

∫
d3k

(2π)3

sin(Ek x0)

Ek
eik·x . (2.10)

Therefore, the propagator in Eq. (2.9) is the retarded (or
causal) one, since this is the natural choice when initial con-
ditions (that is, φ(0)) are given. For later use let us note that
this retarded propagator can also be written as

�R(k) = i

2Ek

[
P

k0 − Ek
− iπδ(k0 − Ek)

− P

k0 + Ek
+ iπδ(k0 + Ek)

]
, (2.11)

where P stands for principal value and therefore one has a
clear separation of the real and imaginary contributions to
the propagator.

Now, in analogy to Eq. (2.6) we can split the coefficient
a p as

a p = a(0)
p + δa p (2.12)

and using the form of the propagator given in Eq. (2.10)
just above we easily find that the piece δa p generated by the
interactions is given by

δa p = i

h p

∫
d4 y eip·y 
(x0 − y0)J (y). (2.13)

The corresponding change in the occupation number reads

δ
(3)

p p′ δ f p = 2Re
[〈

a(0)∗
p′ δa p

〉] + 〈
δa∗

p′ δa p
〉
, (2.14)

where, in writing the first term on the r.h.s. of the above, we
have anticipated that it will be proportional to δ

(3)

p p′ like the
l.h.s. Finally, by taking a time derivative we arrive at

δ
(3)

p p′ ḟ p = 2Re
[〈

a(0)∗
p′ δȧ p

〉] + 2Re
[〈
δa∗

p′ δȧ p
〉]
, (2.15)

where, with a slight notational abuse, δȧ p stands for the time
derivative of δa p. We shall refer to the two terms in the r.h.s. of
Eq. (2.15) as the crossed and diagonal terms, respectively.

In general one cannot solve Eq. (2.7) and/or Eq. (2.13);
that would be equivalent to solving the full nonlinear classi-
cal problem, which is in any case beyond our goals. What we
shall do is to assume that the correction δa p is small com-

pared to a(0)
p and perform a calculation to first non-vanishing

order in λ ∼ g2/M2. Eventually this translates to imposing
the condition that occupations numbers do not get large, more

precisely f p � 1/λ. Recalling that the classical approxima-
tion to the problem also requires f p � 1, we see that there is
a parametrically large window of validity for the “classical”
Boltzmann equation, so long as the couplings are sufficiently
small.

2.1 The λ2 terms and the Feynman rules for classical
diagrams in the scalar theory

To illustrate the procedure, we shall first do a step-by-step
calculation for the λ2 contribution to the diagonal term in
Eq. (2.15), which simply means that we need to find the order
λ contribution to δa p. Since the current in Eq. (2.5) is already
of order λ we can substitute the full field φ with its free part
φ(0). Next, for reasons to become apparent in a while, let us
consider the following particular term in [φ(0)(y)]3

[φ(0)(y)]3 → 3
∫

d3 p1

h p1

d3 p2

h p2

d3 p3

h p3

a(0)∗
p1

a(0)
p2

a(0)
p3

×ei(p1−p2−p3)·y, (2.16)

where p1, p2, and p3 are on-shell four-momenta and with
the combinatorial factor 3 coming from the number of ways
we can pick the required product of field coefficients out of
[φ(0)]3. Now we can integrate over y to get

δa p =− i

h p

λ

2

∫
d3 p1

h p1

d3 p2

h p2

d3 p3

h p3

(2π)3δ(3)(� p)a∗
p1

a p2
a p3

×
∫

dy0 
(x0 − y0)ei�Ey0 (2.17)

where we have defined � p = p + p1 − p2 − p3 and �E =
E p + E p1

− E p2
− E p3

. Notice that we have dropped the
superscript (0) from the expansion coefficients, since this is
allowed to the level of accuracy and in order to have a more
economical notation. Furthermore, let us point out that at
this stage energy is not conserved at the vertex. The y0 time
integration is unbounded for large negative values and we
make it convergent via the “adiabatic” prescription �E →
�E − iε with ε → 0+ to find

δa p = 1

h p

(−iλ)

2

∫
d3 p1

h p1

d3 p2

h p2

d3 p3

h p3

(2π)3δ(3)(� p)

× ei(�E−iε)x0

i(�E − iε)
a∗

p1
a p2

a p3
. (2.18)

From the above “direct amplitude” (DA) it is straightforward
to construct its time derivative δȧ p and the “complex conju-
gate amplitude” (CCA) δa∗

p′ . When forming 〈δa∗
p′δȧ p〉 we

encounter a six-point correlator of the field coefficients and
since the system is dilute we will assume that it factorizes to a
product of two-point functions, that is, to a product of occu-
pation numbers. More precisely, we assume the ensemble
average
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〈
a∗

p1
a p2

a p3
a p′

1
a∗

p′
2
a∗

p′
3

〉 → 〈
a∗

p1
a p′

1

〉〈
a∗

p2
a p′

2

〉〈
a∗

p3
a p′

3

〉
+〈

a∗
p1

a p′
1

〉〈
a∗

p2
a p′

3

〉〈
a∗

p3
a p′

2

〉
=

[
δ
(3)

p1 p′
1
δ
(3)

p2 p′
2
δ
(3)

p3 p′
3

+δ
(3)

p1 p′
1
δ
(3)

p2 p′
3
δ
(3)

p3 p′
2

]
f p1 f p2 f p3

(2.19)

and since we integrate over all momenta one immediately
sees that the two terms in the above will eventually contribute
the same to the final result. Using the δ-functions arising from
the ensemble average in Eq. (2.19) one can readily perform
all the integrations over the primed momenta in the product
〈δa∗

p′δȧ p〉. Then the δ-function corresponding to momentum

conservation in the CCA becomes δ(3)( p′ + p1 − p2 − p3),
and after also using momentum conservation in the DA it
finally gives a factor δ

(3)

p p′ as expected (cf. the discussion after
Eq. (2.14)). Now �E becomes the same in the DA and in the
CCA and we have

Re
i

�E + iε
= ε

(�E)2 + ε2 = πδ(�E), (2.20)

which is the required energy conservation. Now we put every-
thing together in Eq. (2.15) to finally arrive at the λ2 gain term

ḟ p
∣∣A
λ2 = 1

4E p

∫
d̃ p1 d̃ p2 d̃ p3 (2π)4δ(4)(�p) λ2 f p1

f p2
f p3

,

(2.21)

where �p = p + p1 − p2 − p3 with all four-momenta being
on-shell and where we have adopted the compact notation
introduced in Eq. (1.3) for the integration measure.

Let us note here that it is only the choice made in Eq. (2.16)
for the field coefficients which leads to energy conserva-
tion. Any other combination, e.g. an a∗a∗a term, will lead
to complex exponentials with uncompensated energy differ-
ences. Such exponentials will average to zero at large times,
since the time scales describing variations in the Boltzmann
equation are supposed to be very large compared to the typ-
ical interaction times. λ2 is simply the amplitude squared
|M(p2 p3; pp1)|2 in the λφ4 theory and Eq. (2.21) acquires
a natural interpretation as a gain term arising from a 2 → 2
scattering. The integrand is naturally proportional to the
occupation numbers of the incoming particles f p2

and f p3
,

while f p1
appears as a Bose enhancement factor. The (square

of the) Feynman diagram related to the term we have just cal-
culated is shown in Fig. 1.

Let us now establish some Feynman rules for the classical
problem at hand in order to systematize the calculation for
the remaining terms. For any diagram in the DA we have the
following momentum space rules:

Fig. 1 The λ2 contribution to δa pδa∗
p′ , cf. Eq. (2.18). A circled cross

stands for an external insertion while the open line corresponds to the
momentum measured. The ensemble average will set p′

1 = p1, p′
2 =

p2 and p′
3 = p3 (or p′

2 = p3 and p′
3 = p2), while momentum

conservation in both the DA and in the CCA will lead to p′ = p

• Assign a factor 1/h p from the definition of δa p.
• Assign a factor −ig for each cubic vertex and a factor −iλ

for each quartic one.
• Divide by the symmetry factor. The maximum such factor

we will come across is 2; this will take place when two
field coefficients of the same type, that is, two a’s or two
a∗’s, are connected to the same vertex.

• Impose three-momentum conservation at each vertex.
• Assign an overall factor (2π)3δ(3)(� p) where � p is the

sum over all external three-momenta in which the momen-
tum p and the momenta associated with a∗’s are taken with
a positive sign, while the momenta associated with a’s are
taken with a negative sign.

• Impose energy conservation at all, but one (see next rule),
vertices.

• Assign a factor exp[i(�E − iε)x0]/[i(�E − iε)] with
ε → 0+ at the vertex which connects to the measured
occupation factor. �E is the energy imbalance at the ver-
tex, and thus also that of the full diagram, with E p taken
with a positive sign.

• Use the retarded propagator �R(k) = i/(k2 + iεk0), with
ε → 0+, for each internal line. The four-momentum
k should flow towards the measured occupation fac-
tor. Equivalently, one can use the advanced propagator
�A(k) = �R(−k) = i/(k2 − iεk0) if the four-momentum
k is taken to flow away from the measured occupation fac-
tor.

• Integrate according to
∫ d3 p

h p
a∗

p or
∫ d3 p

h p
a p for each exter-

nal line, but not for the measured particle.

We stress that these rules are just a convenient representation
of the perturbative solution to the classical problem. It is
trivial to check that they lead to Eq. (2.18) when considering
the DA in Fig. 1.

Next, we shall use these Feynman rules to calculate the
remaining λ2 terms. These come from the crossed term in
Eq. (2.15) and it is clear that now we need to compute δa p to
order λ2. To this order, the two diagrams which will eventu-
ally satisfy energy conservation are shown in Fig. 2. As we
shall see, the Fig. 2.a leads to the loss terms in the Boltzmann
equation while 2.b leads to a gain term.
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Fig. 2 The λ2 contributions to
δa p leading to a the loss terms
and b a gain term in the
Boltzmann equation

(a) (b)

Even though it is not necessary, let us mention, just for
illustrative purposes, that such diagrams arise from the cur-
rent J (y) expanded to order λ2 which can easily be found to
be

J (y) = −λ2

12
φ2(y)

∫
d4z i�(y − z)φ3(z), (2.22)

where we have dropped the superscript (0) in the field φ.
Now one would need to expand all the free fields in plane
waves as before, but as explained above it is more convenient
and much less tedious to directly use the Feynman rules. We
readily see that the Fig. 2.a gives

δa p = − 1

h p

λ2

2

∫ ∏
i

d3 pi

h pi

(2π)3δ(3)(� p)

× ei(�E−iε)x0

i(�E − iε)
�R(k) a∗

p1
a p2

a∗
p4

a p5
a p6

, (2.23)

with � p = p + p1 + p4 − p2 − p5 − p6, �E =
E p+E p1

+E p4
−E p2

−E p5
−E p6

, and k = p5+p6−p4. The
symmetry factor 2 in the denominator comes about because
the diagram remains invariant under the exchange of the legs
corresponding to momenta p5 and p6. Differentiation w.r.t x0

cancels the energy denominator and multiplication with a∗
p′

(cf. Eq. (2.15)) leads again to a product of six field coeffi-
cients. As in Eq. (2.19) we assume that the six-point corre-
lator factorizes into a product of occupation numbers, that
is,

〈
a∗

p1
a p2

a∗
p4

a p5
a p6

a∗
p′
〉 → 2δ(3)

p1 p5
δ(3)

p2 p4
δ
(3)

p6 p′ f p′ f p1
f p2

.

(2.24)

The factor of 2 comes because p5 has to be contracted with
either p1 or p′ (and, correspondingly, p6 with either p′ or
p1) and both terms contribute equally. The δ-function in the
integrand of Eq. (2.23) reduces to δ

(3)

p p′ , and then �E vanishes
and k becomes p + p1 − p2. Furthermore, making use of
Eq. (2.11) we have

Re

(
− i

k2 + iεk0

)
= Im

(
1

k2 + iεk0

)

= − π

2Ek
δ(k0 − Ek), (2.25)

which expresses energy conservation. Notice that due to
the three δ-functions in Eq. (2.24), there are only two
three-momentum integrations to be done which means the
δ-function of the three-momentum conservation has been
already implicitly used. To comply with the notation of
Eq. (2.21) one can re-insert an integration over the momen-
tum k, which we rename to p3, accompanied by δ(3)( p+ p1−
p2 − p3). Then by putting everything together in Eq. (2.15)
we arrive at the order λ2 loss terms

ḟ p
∣∣B
λ2 = − 1

4E p

∫
d̃ p1 d̃ p2 d̃ p3 (2π)4δ(4)(�p) λ2

×[
f p f p1

f p2
+ f p f p1

f p3

]
, (2.26)

where, as in Eq. (2.21), �p = p + p1 − p2 − p3 with all
four-momenta on-shell. Notice that we have been allowed to
let 2 f p f p1

f p2
→ f p f p1

f p2
+ f p f p1

f p3
in the integrand in

Eq. (2.26). Even though Fig. 2.a does not initially look like
2 → 2 scattering, such an interpretation is eventually possi-
ble since the propagator �R(k) is put on-shell (cf. Eq. (2.25)).
Thus, the Fig. 2.a does look like the amplitude squared |M|2
for 2 → 2 scattering. Indeed, this is apparent in the loss terms
of the Boltzmann equation given in Eq. (2.26); the integrand
is proportional to λ2 and to the occupation numbers f p and
f p1

of the “incoming” momenta while f p2
( f p3

) in the first
(second) term is a Bose enhancement factor.

Similarly, the Fig. 2.b gives

δa p = − 1

h p

λ2

4

∫ ∏
i

d3 pi

h pi

(2π)3δ(3)(� p)

× ei(�E−iε)x0

i(�E − iε)
�A(k) a p1

a p2
a∗

p4
a∗

p5
a p6

, (2.27)

with � p = p + p4 + p5 − p1 − p2 − p6, �E = E p +
E p4

+ E p5
− E p1

− E p2
− E p6

, and k = p4 + p5 − p6. The
symmetry factor 4 in the denominator comes about because
the diagram remains invariant under the exchange of the legs
corresponding to momenta p1 and p2 and the exchange of
the legs corresponding to p4 and p5. The six-point correlator
factorizes into a product of occupation numbers according to

〈
a p1

a p2
a∗

p4
a∗

p5
a p6

a∗
p′
〉 → 2δ(3)

p1 p5
δ(3)

p2 p4
δ
(3)

p6 p′ f p′ f p1
f p2

,

(2.28)
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where the factor of 2 arises because one can set p4 = p1,
p5 = p2 or p4 = p2, p5 = p1. The momentum k becomes
p1 + p2 − p. For the propagator, which is advanced since
we took the momentum to flow away from the measured
occupation factor, we have

Re

(
− i

k2 − iεk0

)
= Im

(
1

k2 − iεk0

)

= π

2Ek
δ(k0 − Ek). (2.29)

This is the point where the two diagrams in Fig. 2 differ from
each other. Compared to Eq. (2.25) the sign in Eq. (2.29)
has changed and therefore Fig. 2.b leads to a gain term. As
before we insert an integration over the momentum k, which
we rename to p3, accompanied by δ(3)( p+ p3− p1− p2) and
we immediately let p1 ↔ p3. We put everything together in
Eq. (2.15) to arrive at the order λ2 second gain term

ḟ p
∣∣C
λ2 = 1

4E p

∫
d̃ p1 d̃ p2 d̃ p3 (2π)4δ(4)(�p) λ2 f p f p2

f p3
,

(2.30)

where �p is as in Eqs. (2.21) and (2.26). Again, as already
explained below Eq. (2.26) for the corresponding loss term,
the Fig. 2.b eventually acquires an interpretation as 2 → 2
scattering. The integrand is proportional to the scattering
amplitude squared λ2 and to the occupation numbers f p2

and
f p3

of the “incoming” momenta while f p is a Bose enhance-
ment factor.

Adding all the λ2 contributions from Eqs. (2.21), (2.26),
and (2.30) we arrive in fact at the Boltzmann equation in the
classical φ4 theory, that is,

ḟ p
∣∣
λ2 = 1

4E p

∫
d̃ p1 d̃ p2 d̃ p3 (2π)4δ(4)(�p) λ2

×[
f p2

f p3

(
f p1

+ f p
) − f p f p1

(
f p2

+ f p3

)]
.

(2.31)

2.2 The g4 terms

Let us turn our attention to contributions arising solely from
the cubic vertices, i.e. the g4 terms. What is non-trivial, com-
pared to the λ2 terms, is that now the amplitude squared |M|2
depends on the kinematics. This dependence, containing the
well-known s, t , and u diagrams, should come out from our
calculation.

Before writing down the diagrams, and focusing first on
the diagonal term δa∗

p′ δȧ p in Eq. (2.15), we give for com-

pleteness the current J (y) to order g2; a single iteration leads
to

J (y) = −g2

2
φ(y)

∫
d4z i�(y − z)φ2(z). (2.32)

(a) (b)

Fig. 3 The g2 contributions to δa p leading to a gain term in the Boltz-
mann equation

The Feynman diagrams for δa p, which in the end will con-
tribute to the Boltzmann equation, are shown in Fig. 3. In
analogy to the corresponding λ term [cf. Eq. (2.18)] we need
a product of the type a∗aa, and since a∗ can originate either
from φ(y) or from φ(z) we have the two distinct diagrams
in Fig. 3. Using the Feynman rules we can combine both
diagrams into

δa p = − 1

h p

g2

2

∫ ∏
i

d3 pi

h pi

(2π)3δ(3)(� p)
ei(�E−iε)x0

i(�E − iε)

×[
�R(p2 + p3) + 2�R(p3 − p1)

]
a∗

p1
a p2

a p3
,

(2.33)

with �E and � p as in Eq. (2.18). The two diagrams differ
only in the symmetry factors (1/2 and 1 respectively) and in
the argument of the retarded propagator. Eq. (2.33) is very
similar to Eq. (2.18) with the only difference being the pres-
ence of a propagator for each of the two terms. In fact, the
only role of these propagators is to lead to the proper form of
|M|2 in the gφ3 theory. Therefore the calculation is almost
identical to the one following Eq. (2.18). In particular, notice
that the real part of the propagators, since they are in general
off-shell, does not play any role in the computation of the
diagrams under current consideration and the energy con-
servation will emerge as in Eq. (2.20). We just need to be
careful to pick-up the correct arguments of the propagators
after the contractions between the DA and the CCA due to
the ensemble average. Defining the Mandelstam variables

s = (p + p1)
2, t = (p − p2)

2 and

u = (p − p3)
2 = (p1 − p2)

2, (2.34)

it is just a matter of simple bookkeeping to find the propagator
products after taking the ensemble average of δa∗

p′ δȧ p. For
p′

1 = p1, p′
2 = p2, and p′

3 = p3 (with the prime denoting
momenta in the CCA) we have

�R(p2 + p3)�
∗
R(p′

2 + p′
3) = 1/s2,

�R(p2 + p3)�
∗
R(p′

3 − p′
1) = 1/st,

�R(p3 − p1)�
∗
R(p′

2 + p′
3) = 1/st,

�R(p3 − p1)�
∗
R(p′

3 − p′
1) = 1/t2,

(2.35)
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(a) (b) (c)

(d) (e) (f)

Fig. 4 The g4 contributions to δa p leading to the loss terms in the
Boltzmann equation. From top left to bottom right, the first four dia-
grams arise from the first term of the current in Eq. (2.38) while the

last two arise from the second one. The last term in Eq. (2.38) does not
contribute to the Boltzmann equation

while for p′
1 = p1, p′

2 = p3, and p′
3 = p2

�R(p2 + p3)�
∗
R(p′

2 + p′
3) = 1/s2,

�R(p2 + p3)�
∗
R(p′

3 − p′
1) = 1/su,

�R(p3 − p1)�
∗
R(p′

2 + p′
3) = 1/st,

�R(p3 − p1)�
∗
R(p′

3 − p′
1) = 1/tu.

(2.36)

Putting everything together and noticing that one can let
2/t2 → 2/u2 and 2/st → 2/su inside the integrand we
find the gain term

ḟ p
∣∣A
g4 = 1

4E p

∫
d̃ p1 d̃ p2 d̃ p3 (2π)4δ(4)(�p)

×
[

g2

s
+ g2

t
+ g2

u

]2

f p1
f p2

f p3
. (2.37)

Considering now the crossed term a∗
p′δȧ p in Eq. (2.15),

one needs to calculate δa p to order g4. After straightforward
iterations one finds that the current J (y) to this order reads
(in a compact notation where repeated coordinates are inte-
grated over)

Jy = −g4

2
φy i�yzφz i�zwφwi�wuφ2

u

−g4

4
i�yzφz i�zwφ2

wi�yuφ2
u

−g4

8
φy i�yz i�zwφ2

wi�zuφ2
u . (2.38)

In Fig. 4 we show the six diagrams contributing to δa p. All
corresponding expressions are very similar to Eq. (2.23) with
the extra element of having two more propagators. We have

δa p = 1

h p

g4

2

∫ ∏
i

d3 pi

h pi

(2π)3δ(3)(� p)

× ei(�E−iε)x0

i(�E − iε)
a∗

p1
a p2

a∗
p4

a p5
a p6

�R(p5 + p6 − p4)

× [
�R(p5 + p6)�R(p5 + p6 − p4 + p2)

+ �R(p5 + p6)�R(p5 + p6 − p4 − p1)

+ 2�R(p5 − p4)�R(p5 + p6 − p4 + p2)

+ 2�R(p5 − p4)�R(p5 + p6 − p4 − p1)

+ �R(p5 + p6)�R(p5 + p6 − p4 − p)

+ 2�R(p5 − p4)�R(p5 + p6 − p4 − p)
]
, (2.39)

with �E and � p as in Eq. (2.23).
At this point it is appropriate to say that only a propagator

with argument the sum of three external momenta will have
a real part leading to conservation of energy. In fact, we have
already used this property when considering the propagators
in Eq. (2.33); none of the two propagators there acquired a
real part. Moreover, this is also the reason that no diagram
coming from the last term of the current in Eq. (2.38) con-
tributes to the Boltzmann equation; any propagator in such a
diagram will have as an argument the sum of either two or four
external momenta, as one can easily verify by simply drawing
it. Thus, energy conservation will emerge out of Eq. (2.39),
as in Eq. (2.25), from the propagator �R(p5 + p6 − p4) and
the only extra work we have to do is to carefully calculate the
arguments of the remaining propagators in the square bracket
in Eq. (2.39) after taking the ensemble average of a∗

p′δȧ p and
without worrying about their real parts. One has to always
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identify p4 with p2, while there is the possibility to choose
p5 = p1, p6 = p or p5 = p, p6 = p1. It is an easy exercise
to verify that the sum of propagator products in the square
bracket in Eq. (2.39) becomes

[∑
�R�R

] → −2

[
1

s
+ 1

t
+ 1

u

]2

. (2.40)

Following now the exact same steps as in the case of the cor-
responding λ2 term, and noticing in particular that the inte-
grand is still invariant under p2 ↔ p3, and thus under t ↔ u,
so that we can let 2 f p f p1

f p2
→ f p f p1

f p2
+ f p f p1

f p3
, we

arrive at the g4 loss terms

ḟ p
∣∣B
g4 = − 1

4E p

∫
d̃ p1 d̃ p2 d̃ p3 (2π)4δ(4)(�p)

×
[

g2

s
+ g2

t
+ g2

u

]2 [
f p f p1

f p2
+ f p f p1

f p3

]
.

(2.41)

Regarding the second g4 gain term, we can draw four
diagrams with the external lines a p1a p2 a∗

p4
a∗

p5
a p6 . Then, in

analogy to the computation performed for Fig. 2.b, it is not
hard to convince ourselves that we get a contribution

ḟ p
∣∣C
g4 = 1

4E p

∫
d̃ p1 d̃ p2 d̃ p3 (2π)4δ(4)(�p)

×
[

g2

s
+ g2

t
+ g2

u

]2

f p f p2
f p3

. (2.42)

Now we put together all the g4 contributions from
Eqs. (2.37), (2.41), and (2.42) to arrive at the Boltzmann
equation in the classical φ3 theory, that is,

ḟ p
∣∣
g4 = 1

4E p

∫
d̃ p1 d̃ p2 d̃ p3 (2π)4δ(4)(�p)

×
[

g2

s
+ g2

t
+ g2

u

]2[
f p2

f p3

(
f p1

+ f p
)

− f p f p1

(
f p2 + f p3

)]
. (2.43)

2.3 The λg2 terms and the Boltzmann equation for the full
scalar theory

Finally, in order to complete the derivation of the Boltzmann
equation in the full scalar theory, i.e. with both cubic and
quartic vertices, we need to compute the terms of order λg2.

The first gain term emerging from the product δa∗
pδȧ p is

rather easy to obtain since we already have the λ and g2 con-
tributions to δa p as given in Eqs. (2.18) and (2.33), respec-
tively. Compared to the corresponding calculation of the λ2

and g4 terms, the only difference in this mixed term is coming
again from the propagators which after the ensemble average
give

�R(p2 + p3) + 2�R(p3 − p1) − �∗
R(p′

2 + p′
3)

− 2�∗
R(p′

3 − p′
1) → 4i

[
1

s
+ 1

t
+ 1

u

]
.

(2.44)

In the above we have user for one more time our freedom to
let 1/t → 1/u due to the invariance of the integrand in the
subsequent integrations. We finally find the gain term

ḟ p
∣∣A
λg2 = 1

4E p

∫
d̃ p1 d̃ p2 d̃ p3 (2π)4δ(4)(�p)

×2λ

[
g2

s
+ g2

t
+ g2

u

]
f p1

f p2
f p3

. (2.45)

Regarding the crossed term a∗
p′δȧ p term in Eq. (2.15),

we have to compute δa p to order λg2. After straightforward
iterations we find that the current J (y) to this order is given
by

Jy = − λg2

6
φy i�yzφz i�zwφ3

w − λg2

4
φ2

y i�yzφz i�zwφ2
w

− λg2

12
i�yzφ

2
z i�ywφ3

w

− λg2

4
φy i�yzφ

2
z i�zwφ2

w − λg2

8
φy i�yzφ

2
z i�ywφ2

w.

(2.46)

In Fig. 5 we present the five diagrams contributing to δa p to
order λg2. All corresponding expressions have similar struc-
ture to that of Eqs. (2.23) and (2.39), more precisely we have

δa p = i

h p

λg2

2

∫ ∏
i

d3 pi

h pi

(2π)3δ(3)(� p)

× ei(�E−iε)x0

i(�E − iε)
a∗

p1
a p2 a∗

p4
a p5 a p6�R(p5 + p6 − p4)

× [
�R(p5 + p6 − p4 + p2)+�R(p5 + p6 − p4 − p1)

+ �R(p5 + p6) + 2�R(p5 − p4)

+ �R(p5 + p6 − p4 − p)
]
, (2.47)

with �E and � p as in Eq. (2.23).
Energy conservation will come from the propagator

�R(p5 + p6 − p4) as in the respective λ2 and g4 terms.
Taking the ensemble average in the product a∗

p′δȧ p we will
identify p4 with p2, while there is the possibility to choose
p5 = p1, p6 = p or p5 = p, p6 = p1. Then the propagator
bracket in Eq. (2.47) becomes

[∑
�R

]
→ 4i

[
1

s
+ 1

t
+ 1

u

]
. (2.48)
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(a) (b) (c)

(d) (e)

Fig. 5 The λg2 contributions to δa p leading to the loss terms in the
Boltzmann equation. From top left to bottom right, the first two dia-
grams arise from the first term of the current in Eq. (2.46), the next two

from the second one while the last one comes from the third one. The
last two terms in Eq. (2.46) do not contribute to the Boltzmann equation

Now we copy the same steps as in the case of the correspond-
ing λ2 and g4 terms to arrive at the λg2 loss terms,

ḟ p
∣∣B
λg2 = − 1

4E p

∫
d̃ p1 d̃ p2 d̃ p3 (2π)4δ(4)(�p)

×2λ

[
g2

s
+ g2

t
+ g2

u

] [
f p f p1

f p2
+ f p f p1

f p3

]
.

(2.49)

Concerning the second λg2 gain term, we can draw four
diagrams with the external lines a p1

a p2
a∗

p4
a∗

p5
a p6

. Then, in
analogy to the previous respective computations, we get the
expected contribution

ḟ p
∣∣C
λg2 = 1

4E p

∫
d̃ p1 d̃ p2 d̃ p3 (2π)4δ(4)(�p)

×2λ
[

g2

s + g2

t + g2

u

]
f p f p2

f p3
. (2.50)

It is trivial to add Eqs. (2.45), (2.49), and Eq. (2.50) to get
the total λg2 contribution. By furthermore adding the total
λ2 and g4 expressions given in Eqs. (2.31) and (2.43), we
come to the Boltzmann equation for the full scalar theory

ḟ p = 1

4E p

∫
d̃ p1 d̃ p2 d̃ p3 (2π)4δ(4)(�p)

×|M|2φ
[

f p2
f p3

(
f p1

+ f p
) − f p f p1

(
f p2

+ f p3

)]
,

(2.51)

where we have defined the scattering amplitude squared of
the full scalar theory

|M|2φ =
[
λ + g2

s
+ g2

t
+ g2

u

]2

. (2.52)

Here we would like to stress that the specific combination
of the occupation numbers in Eq. (2.51) and the scattering
amplitude squared of the scalar theory have emerged as a
result of our calculation. Let us also notice that a factor 1/2
in front of the integral in Eq. (2.51) is a symmetry factor
due to the fact that particles 2 and 3, whose momenta are
integrated over, are identical.

Furthermore, notice that the explicit form of |M|2φ as
given in Eq. (2.52) was derived in detail in the context of
this scalar field theory. In the Yang–Mills case, which fol-
lows in the next section, we shall not derive the respec-
tive amplitude squared |M|2YM, since this is a standard,
albeit not trivial, textbook calculation. However, we shall
of course show that |M|2YM emerges in all terms in the
Boltzmann equation and this is sufficient for our proof.
Thus, it is useful to reflect back and see how we arrived
at |M|2φ in this section. This is straightforward for the diag-
onal gain term; combining Eqs. (2.18) and (2.33) we see
that Mφ(p2 p3; pp1) appears in the integrand in the DA.
Similarly M∗

φ(p′
2 p′

3; pp′
1) appears in the CCA and after

squaring and performing the ensemble average we arrive at
|M(p2 p3; pp1)|2φ . Regarding the crossed term it is enough
to look, for example, in the loss terms and a first discus-
sion has already appeared below Eq. (2.26) in the λφ4 case.
Putting together Eqs. (2.23), (2.39), and (2.47) we see that
Mφ(p2k; pp1)M∗

φ(p4k; p5 p6) appears in the DA. After
multiplying with the CCA taking the ensemble average and
using the fact that k is put on-shell according to Eq. (2.25)
we arrive again at |M(p2 p3; pp1)|2φ (cf. the renaming of the
momentum k below Eq. (2.25)).
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3 Yang–Mills theory

Now we would like to extend our analysis to the Yang–Mills
theory in D = 4 dimensions. Even though we will keep the
number of colors Nc arbitrary, we shall refer to the gauge
bosons as gluons. The topology of the diagrams is the same
as that in the full scalar theory studied in Sect. 2 and the extra
complications come only from the color and spin structure of
the diagrams. The Yang–Mills action in an axial gauge reads

SYM =
∫

d4x LYM

=
∫

d4x

[
−1

4
Fa

μν Fμν
a − 1

2ξ

(
nμ Aa

μ

)2
]

, (3.1)

with the field strength

Fa
μν = ∂μ Aa

ν − ∂ν Aa
μ + g f abc Ab

μ Ac
ν (3.2)

and where f abc are the familiar structure constants of the
SU (Nc) group. In general, nμ and ξ are arbitrary in Eq. (3.1),
but for our convenience we shall consider the light-cone
gauge defined by the conditions nμnμ = 0 and ξ → 0.
Introducing the polarization vectors ελ

μ( p) for the two trans-
verse (and physical) gluon polarizations, and which satisfy
p · ελ( p) = n · ελ( p) = 0, we can expand the gauge field as

Aa
μ(x) =

∫
d3 p
h p

[
aλa

p ελ
μ( p) e−ip·x

+aλa∗
p ελ∗

μ ( p) eip·x] . (3.3)

Assuming aλa
p is slowly varying and using the orthogonality

property of the polarization vectors, i.e. ελ( p) · ε∗
λ′( p) =

−δλλ′ one can invert the above to find

aλa
p = − i

h p

∫
d3x eip·xελ∗

μ ( p)[ Ȧμa(x) − iE p Aμa(x)].
(3.4)

Apart from the consideration of a homogeneous medium, we
will also assume that the occupation numbers are independent
of color and spin, that is,
〈(

aλ′a′
p′

)∗
aλa

p
〉 = δλλ′

δaa′
δ
(3)

p p′ f p. (3.5)

In order to follow the classical evolution of the system, we
need the corresponding equations of motion which read
(

gμν� − ∂μ∂ν − 1

ξ
nμnν

)
Aa

ν = Jμa(x) (3.6)

with a current having quadratic and cubic terms in the gauge
fields

J a
μ = −g f abc

[(
∂ν Ab

ν

)
Ac

μ + 2Ab
ν ∂ν Ac

μ − Ab
ν ∂μ Aνc

]

−g2 f abe f cde Ab
ν Aνc Ad

μ. (3.7)

Now we expand the full interacting field according to Aa
μ =

A(0)a
μ +δAa

μ, with A(0)a
μ a free field and δAa

μ the piece induced
by the interactions and given by

δAa
μ(x) = −

∫
d4 y iGμν(x − y)J νa(y), (3.8)

where we have already used the fact that the propagator is
diagonal in color. It is taken to be the retarded one, and in
momentum space in the light-cone gauge it reads

Gμν
R (k) = i

k2 + iεk0

(
−gμν + nμkν + nνkμ

n · k

)
, (3.9)

where ε → 0+, while the prescription for the axial pole is
irrelevant for our purposes2. Now expanding aλa

p = a(0)λa
p +

δaλa
p one finds that the change in the field coefficients is

given by3

δaλa
p = − i

h p

∫
d4 y eip·y 
(x0 − y0) ελ∗

μ ( p)Jμa(y).

(3.10)

Finally the occupation numbers evolve in time according to

δaa′
δλλ′

δ
(3)

p p′ ḟ p = 2Re
[〈

aλ′a′∗
p′ δȧλa

p
〉]

+2Re
[〈
δaλ′a′∗

p′ δȧλa
p

〉]
, (3.11)

where we have already dropped the superscript (0) in the
field coefficients.

3.1 The Feynman rules for the classical Yang–Mills
theory and the diagonal, gain, term

Before proceeding to calculate the diagonal contribution to
Eq. (3.11) let us establish the Feynman rules for the cal-
culation of δaλa

p . Most of the rules remain the same as the
corresponding ones in the scalar theory, while we have the
modifications listed below.

• Assign a factor V abc
μνρ(p1, p2, p3) for each cubic vertex and

a factor V abcd
μνρσ for each quartic one where

V abc
μνρ(p1, p2, p3) = g f abc[gμν(p1 − p2)ρ

+gνρ(p2 − p3)μ+gρμ(p3− p1)ν
]
,

(3.12)

V abcd
μνρσ = −ig2[ f abe f cde(gμρgνσ − gμσ gνρ)

+ f ace f bde(gμνgρσ − gμσ gνρ)

+ f ade f bce(gμνgρσ − gμρgνσ )
]
.

(3.13)

2 It cannot give rise to real parts leading to energy conservation as, for
example, in Eq. (2.25).
3 To that aim, one has to make use of Eq. (3.22), which appears in
Sect. 3.2.
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(a) (b) (c) (d)

Fig. 6 The g2 contribution to δa p, cf. Eq. (3.14). Momenta p2 and p3 flow inwards, while momenta p and p1 flow outwards in all four diagrams.
The momentum of the exchanged gluon in diagrams b, c, and d flows towards the measured occupation number f p

• Use the retarded propagator Gμν
R (k) given in Eq. (3.9)

for each internal line with the four-momentum k flowing
towards the measured occupation factor. Equivalently, one
can use the advanced propagator Gμν

A (k) = Gμν
R (−k) if

the four-momentum k is taken to flow away from the mea-
sured occupation factor.

• Integrate according to
∫ d3 p

h p
aλa∗

p ελ∗
μ ( p)or

∫ d3 p
h p

aλa
p ελ

μ( p)

for each external line.
• Multiply by ελ∗

μ ( p) for the measured momentum.

Again, we stress that these rules represent in a convenient way
the perturbative solution to the classical equation of motion.

Thus, in view of calculating the diagonal term, let us begin
with the g2 contribution to δaλa

p due to both cubic and quartic
interactions. Recall that in the DA we need to keep only
the a∗aa term to satisfy energy conservation and, with the
notation we used in the scalar theory, we have

δaλa
p = 1

2h p

∫ ∏
i

d3 pi

h pi

(2π)3δ(3)(� p)

× ei(�E−iε)x0

i(�E − iε)
aλ1a1∗

p1
aλ2a2

p2
aλ3a3

p3
Mλ2λ3a2a3

λλ1aa1

×(p2 p3; pp1), (3.14)

where a summation over repeated color and spin indices is
understood. In Eq. (3.14) we have defined the total amplitude
for 2 → 2 scattering Mλ2λ3a2a3

λλ1aa1
(p2 p3; pp1). This is the sum

of contributions involving three-gluon and four-gluon inter-
actions which are given by

Mλ2λ3a2a3
λλ1aa1

(p2 p3; pp1)
∣∣
3g =ελ∗

μ ( p)ελ1∗
μ1

( p1)ε
λ2
μ2

( p2)ε
λ3
μ3

( p3)

×[
V μ2μ3ν

a2a3b (p2, p3,−ks) GR
νρ(ks)V μμ1ρ

aa1b (−p,−p1, ks)

+ V μ3μ1ν
a3a1b (p3,−p1,−kt ) GR

νρ(kt )V μ2μρ
a2ab (p2,−p, kt )

+ V μ2μ1ν
a2a1b (p2,−p1,−ku) GR

νρ(ku)V μμ3ρ
aa3b (p3,−p, ku)

]
,

(3.15)

Mλ2λ3a2a3
λλ1aa1

(p2 p3; pp1)
∣∣
4g

= ελ∗
μ ( p)ελ1∗

μ1
( p1)ε

λ2
μ2

( p2)ε
λ3
μ3

( p3)V μμ1μ2μ3
aa1a2a3

,

(3.16)

where in Eq. (3.15) we have defined the four-momenta ks =
p2 + p3, kt = p3 − p1, and ku = p2 − p1, and the three
terms in the square bracket clearly correspond to the s, t , and
u diagrams. The four diagrams contributing to Eq. (3.14) are
shown in Fig. 6.

From the (DA) in Eq. (3.14) we easily build its time deriva-
tive and the CCA. Denoting all momenta in the CCA with
a prime, we form the diagonal term in Eq. (3.11) and we
assume the ensemble average (cf. the analogous Eq. (2.19)
in the scalar theory)

〈
aλ1a1∗

p1
aλ2a2

p2
aλ3a3

p3
a

λ′
1a′

1
p′

1
a

λ′
2a2∗

p′
2

a
λ′

3a′
3∗

p′
3

〉

→ 2
〈
aλ1a1∗

p1
a

λ′
1a′

1
p′

1

〉〈
aλ2a2∗

p2
a

λ′
2a′

2
p′

2

〉〈
aλ3a3∗

p3
a

λ′
3a′

3
p′

3

〉

= 2δλ1λ
′
1δλ2λ

′
2δλ3λ

′
3δa1a′

1δa2a′
2

× δa3a′
3δ

(3)

p1 p′
1
δ
(3)

p2 p′
2
δ
(3)

p3 p′
3

f p1
f p2

f p3
. (3.17)

The factor of 2 in the above comes about because there are two
possible contractions when performing the ensemble aver-
age, {1′ = 1, 2′ = 2, 3′ = 3} and {1′ = 1, 2′ = 3, 3′ = 2},
which give the same result since one is integrating over the
external momenta and summing over the color and polariza-
tion indices. Then we encounter the product of the amplitudes
in the DA and the CCA which becomes

Mλ2λ3a2a3
λλ1aa1

(p2 p3; pp1)
[
Mλ2λ3a2a3

λ′λ1a′a1
(p2 p3; pp1)

]∗

= δλλ′

2

δaa′

N 2
c − 1

|M|2YM. (3.18)
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(a) (b)

Fig. 7 The contributions to δa p leading to a the loss terms and b the
second gain term in the Boltzmann equation in Yang–Mills theory. The
gray blob stands for the total amplitude for 2 → 2 scattering stripped

off its polarization vectors (denoted by M̃ in the text). In a the momen-
tum k is flowing to the right and the propagator is retarded while in b
the momentum is flowing to the left and the propagator is advanced

In the above, |M|2YM is the scattering amplitude squared,
summed over all initial and final colors and polarizations, at
order g4 in the Yang–Mills theory and it reads4

|M|2YM = 16N 2
c (N 2

c − 1)g4

×
[

s2 − tu

s2 + t2 − us

t2 + u2 − st

u2

]
. (3.19)

The remaining parts of the calculation are identical to those
in the scalar theory (cf., for example, Sect. 2.1) and putting
everything together we find the first gain term in the Boltz-
mann equation in the Yang–Mills theory, that is,

ḟ p
∣∣A = 1

4E p

∫
d̃ p1 d̃ p2 d̃ p3 (2π)4δ(4)(�p)

× |M|2YM

2(N 2
c − 1)

f p1
f p2

f p3
. (3.20)

3.2 Loss and gain from the crossed term

In order to derive the loss terms and the second gain term from
the crossed contribution in Eq. (3.11) we need to calculate the
g4 contribution to δaλa

p . Regarding the loss term, and given
the discussion below Eq. (2.52) at the end of Sect. 2, it is not
hard to understand that the sum of all possible contributing
diagrams is given by

δaλa
p = − 1

2h p

∫ ∏
i

d3 pi

h pi

(2π)3δ(3)(� p)

× ei(�E−iε)x0

i(�E − iε)
aλ1a1∗

p1
aλ2a2

p2
aλ4a4∗

p4
aλ5a5

p5
aλ6a6

p6

× ελ∗
μ ( p)ελ1∗

μ1
( p1)ε

λ2
μ2

( p2)

4 For example, see Chapter 81 in [30] and in particular Eq. (81.44).

× ελ4∗
μ4

( p4)ε
λ5
μ5

( p5)ε
λ6
μ6

( p6)

× M̃ba4a5a6
νμ4μ5μ6

(kp4; p5 p6) Gνρ
R (k)M̃ba2aa1∗

ρμ2μμ1
(kp2; pp1),

(3.21)

with k = p5 + p6 − p4 and where M̃ is the total amplitude
M given by the sum of Eqs. (3.15) and (3.16) but stripped
off of its polarization vectors. Because M̃ is imaginary, in
the last factor we have let M̃ → −M̃∗ and this is the origin
of the minus sign in Eq. (3.21). In Fig. 7.a we show the
diagrammatic representation of Eq. (3.21).

The steps to be followed now are of course almost iden-
tical to those in the scalar theory. A notable difference is the
Lorentz structure of the propagator in Eq. (3.9), which, since
the propagator is eventually put on-shell, can be expressed
as a sum over polarization vectors. More precisely one can
write

− gνρ + nνkρ + nρkν

n · k
= εν∗

λ′′ (k) ε
ρ

λ′′(k), (3.22)

where, as always, a summation over λ′′ is understood. In
total we now have eight polarization vectors in Eq. (3.21)
and they exactly combine with the M̃’s there to give the
corresponding standard amplitudes M. Then by closely fol-
lowing the calculation of the scalar theory, employing the
ensemble average

〈
aλ1a1∗

p1
aλ2a2

p2
aλ4a4∗

p4
aλ5a5

p5
aλ6a6

p6
aλ′a′∗

p′
〉→2δλ1λ5δλ2λ4

× δλ6λ
′
δa1a5δa2a4δa6a′

δ(3)
p1 p5

δ(3)
p2 p4

δ
(3)

p6 p′ f p′ f p1
f p2

, (3.23)

and using Eq. (3.18), we arrive at the loss term

ḟ p
∣∣B = − 1

4E p

∫
d̃ p1 d̃ p2 d̃ p3 (2π)4δ(4)(�p)

× |M|2YM
2(N 2

c −1)

[
f p f p1

f p2
+ f p f p1

f p3

]
. (3.24)

It is more than obvious that if we choose the combination
a1a2a∗

4a∗
5a6, instead of a∗

1a2a∗
4a5a6, we shall arrive at the

second gain term and the respective diagram is shown in
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Fig. 7.b. Putting everything together we find the Boltzmann
equation in classical Yang–Mills theory, that is,

ḟ p = 1

4E p

∫
d̃ p1 d̃ p2 d̃ p3 (2π)4δ(4)(�p)

|M|2YM

2(N 2
c − 1)

×[
f p2

f p3

(
f p1

+ f p
) − f p f p1

(
f p2

+ f p3

)]
,

(3.25)

with |M|2YM given earlier in Eq. (3.19). Notice that the com-
bination which appears in the integrand is really the ampli-
tude squared averaged over the color and polarization of the
measured gluon and summed over the colors and polariza-
tions of the remaining three gluons. As in the scalar field
theory, a factor 1/2 in front of the integral is a symmetry
factor due to the fact that particles 2 and 3 are identical.

Before closing let us repeat here an observation made
in [21]. At the level of the classical approximation, since
f p � 1, we can assume a modified definition of the occu-
pation number by replacing f p in the r.h.s. of Eq. (3.5) with
f p + 1/2. Then such a replacement is carried over to all
occupation numbers appearing in the collision integral of
the Boltzmann equation and one sees that the cubic in f
terms remain unaltered as they should. Interestingly enough,
the generated quadratic in f terms are exactly those present
in the more general Boltzmann equation which is valid for
all values of f p and is given in Eq. (1.1). However, such a
replacement also gives rise to terms linear in f , which are
absent from Eq. (1.1).
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