
Eur. Phys. J. C (2014) 74:2871
DOI 10.1140/epjc/s10052-014-2871-x

Regular Article - Theoretical Physics

Large N approach to Kaon decays and mixing 28 years later:
�I = 1/2 rule, B̂K , and �MK

Andrzej J. Buras1,2,a, Jean-Marc Gérard3, William A. Bardeen4

1 TUM Institute for Advanced Study, Lichtenbergstr. 2a, 85747 Garching, Germany
2 Physik Department, Technische Universität München, James-Franck-Straße, 85747 Garching, Germany
3 Centre for Cosmology, Particle Physics and Phenomenology (CP3), Université catholique de Louvain, Chemin du Cyclotron 2,

1348 Louvain-la-Neuve, Belgium
4 Fermilab, P.O. Box 500, Batavia, IL 60510, USA

Received: 10 February 2014 / Accepted: 24 April 2014 / Published online: 20 May 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract We review and update our results for K → ππ

decays and K 0–K̄ 0 mixing obtained by us in the 1980s
within an analytic approximate approach based on the dual
representation of QCD as a theory of weakly interacting
mesons for large N , where N is the number of colors. In
our analytic approach the Standard Model dynamics behind
the enhancement of ReA0 and suppression of ReA2, the so-
called �I = 1/2 rule for K → ππ decays, has a simple
structure: the usual octet enhancement through the long but
slow quark–gluon renormalization group evolution down to
the scales O(1 GeV) is continued as a short but fast meson
evolution down to zero momentum scales at which the factor-
ization of hadronic matrix elements is at work. The inclusion
of lowest-lying vector meson contributions in addition to the
pseudoscalar ones and of Wilson coefficients in a momentum
scheme improves significantly the matching between quark–
gluon and meson evolutions. In particular, the anomalous
dimension matrix governing the meson evolution exhibits
the structure of the known anomalous dimension matrix in
the quark–gluon evolution. While this physical picture did
not yet emerge from lattice simulations, the recent results
on ReA2 and ReA0 from the RBC-UKQCD collaboration
give support for its correctness. In particular, the signs of the
two main contractions found numerically by these authors
follow uniquely from our analytic approach. Though the
current–current operators dominate the �I = 1/2 rule,
working with matching scales O(1 GeV) we find that the
presence of QCD-penguin operator Q6 is required to obtain
satisfactory result for ReA0. At NLO in 1/N we obtain
R = ReA0/ReA2 = 16.0 ± 1.5 which amounts to an order
of magnitude enhancement over the strict large N limit value√

2. We also update our results for the parameter B̂K , finding

a e-mail: aburas@ph.tum.de

B̂K = 0.73 ± 0.02. The smallness of 1/N corrections to the
large N value B̂K = 3/4 results within our approach from
an approximate cancelation between pseudoscalar and vector
meson one-loop contributions. We also summarize the status
of �MK in this approach.

1 Introduction

Flavor violating transitions involving K mesons have played
a very important role since their discovery in 1950s, both
in the construction of the Standard Model (SM) and more
recently in the tests of its possible extensions. Unfortunately,
due to non-perturbative uncertainties only rare K decays like
K + → π+νν̄ and KL → π0νν̄ can be considered as the-
oretically clean, that is, not suffering from hadronic uncer-
tainties. But here we still have to wait for sufficiently precise
experimental results in order to see whether the SM agrees
with experimental data or not.

On the other hand a number of observables in K → ππ

decays and K 0–K̄ 0 mixing have been measured very pre-
cisely already for quite some times. In quoting their values
we follow the conventions and normalizations of [1]. In par-
ticular, we have the following.

• The real parts of the amplitudes AI for a Kaon to decay
into two pions with isospin I are measured to be [2]

ReA0 = 27.04(1) × 10−8 GeV,

ReA2 = 1.210(2) × 10−8 GeV, (1)

and they express the so-called �I = 1/2 rule [3,4]

R = ReA0

ReA2
= 22.35. (2)
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• The experimental value for the KL − KS mass difference
is

(�MK )exp = 3.484(6)10−15 GeV. (3)

• The parameter εK , a measure of indirect CP-violation in
KL → ππ decays, is found to be

εK = 2.228(11) × 10−3eiφε , (4)

where φε = 43.51(5)◦.
• The ratio of the direct CP-violation and indirect CP-

violation in KL → ππ decays is measured to be [2,5–7]

Re(ε′/ε) = 1.65(26) × 10−3. (5)

In the second half of the 1980s we have developed an
approach to K 0–K̄ 0 mixing and non-leptonic K -meson
decays [8–12] based on the dual representation of QCD as
a theory of weakly interacting mesons for large N , where
N is the number of colors [13–16]. Reviews of our work
can be found in [17–23]. This approach provided, in partic-
ular, first results within QCD for the amplitudes ReA0 and
ReA2 in the ballpark of experimental values. In this manner,
for the first time, the SM dynamics behind the �I = 1/2
rule has been identified. In particular, it has been empha-
sized that at scales O(1 GeV) long-distance dynamics in
hadronic matrix elements of current–current operators and
not QCD-penguin operators, as proposed in [24], are domi-
nantly responsible for this rule. Moreover, it has been demon-
strated analytically why ReA0 is enhanced and why ReA2 is
suppressed relative to the vacuum insertion approximation
(VIA) estimates. In this context, we have emphasized that
the so-called Fierz terms in the latter approach totally mis-
represent 1/N corrections to the strict large N limit for these
amplitudes.

Our approach allowed us also to calculate, for the first time
within QCD, the non-perturbative parameters B̂K , B(1/2)

6 ,

and B(3/2)
8 governing the corresponding matrix elements of

�S = 2 SM current–current operator and K → ππ matrix
elements of the dominant QCD-penguin (Q6) and the dom-
inant electroweak penguin (Q8) operators. Both parameters
are crucial for the evaluation of ε′/ε within the SM and its var-
ious extensions. Also the K → πππ decays have been ana-
lyzed in [25] and the KL − KS mass difference �MK includ-
ing long-distance contributions has been calculated [21,26]
within this approach. During the last two decades some of
these calculations have been improved and extended. Other
applications of large N ideas to K → ππ and B̂K , but in
a different spirit from our original approach, are reviewed
in [1]. We refer in particular to [27–35]. Recent review of
SU (N ) gauge theories at large N can be found in [36].

In view of the recent advances by lattice QCD on sev-
eral of these parameters [37–43], we think it is useful to
improve and update our old results and confront them with
the latter. We hope that our analytic approach will shed
light on the dynamics behind the numerical lattice compu-
tations which appear to indicate a pattern of long-distance
QCD effects in K → ππ amplitudes and K 0–K̄ 0 mixing
that is very similar to the one identified by us long time
ago.

In fact, as we will discuss in more detail in the context of
our presentation, the recent lattice results show the following.

• The parameter B̂K is close to its large N limit, B̂K ≈
0.75, as found by us in [12].

• The amplitude ReA2 is suppressed through two contribu-
tions (contractions) having opposite sign and the data are
reproduced within 15 %. This pattern has been identified
already in [11] and we will demonstrate analytically that
these signs follow directly from our approach.

• Both in the case of ReA2 and B̂K our findings of 1980s
that VIA misrepresents QCD have been recently con-
firmed not only for ReA2 in [37] but in the case of B̂K

also in [44]. This is an important confirmation as in 1988
lattice results provided B̂K ≈ 1 [45] in contradiction
with the negative correction to the large N limit for B̂K

found by us [12]. See also [46] were the upper bound
B̂K ≤ 0.75 has been derived.

• The amplitude for ReA0 is enhanced through the contrac-
tions encountered in ReA2 entering this time the ampli-
tude with the same sign. In this manner another of our
findings of 1980s has been confirmed. Unfortunately,
as ReA0 from lattice QCD is presently only available
for non-physical kinematics, the size of this enhance-
ment is not precisely known. Consequently a comparison
between our and lattice results in this case is difficult at
present.

While according to these findings it appears that an under-
standing of the �I = 1/2 rule is emerging from lattice QCD
[37,47], we would like to emphasize that the suppression of
ReA2, while important, is in fact a subleading fraction of this
rule. It is the enhancement of ReA0 that is responsible domi-
nantly for the �I = 1/2 rule. Indeed, without short-distance
and long-distance QCD effects R → √

2 and

ReA0 → 3.59 × 10−8 GeV,

ReA2 → 2.54 × 10−8 GeV, (in large N limit) (6)

in plain disagreement with the data in (1) and (2). The
explanation of the missing enhancement factor of 15.8 in R
through QCD dynamics must simultaneously give the correct
values for ReA0 and ReA2. This means that this dynamics
should suppress ReA2 by a factor of 2.1, not more, and it
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should enhance ReA0 by a factor of 7.5. In our view, the
understanding of this large enhancement of ReA0 did not yet
emerge from lattice QCD but has been identified at a reduced
level (5 ± 1) in our approach in 1986. We will demonstrate
this in explicit terms below, improving significantly on our
original estimates.

Our paper is organized as follows. In Sect. 2 we make a
brief historical review of applications of our large N frame-
work to weak decays of mesons. We think this is necessary
as many of the useful and important results obtained in this
framework in the last 30 years appear to be unknown to
younger generations, in particular in the lattice community.
Indeed several of the results obtained in our papers have been
confirmed in the last years by lattice calculations numerically
with higher control over uncertainties than it was possible in
the 1980s, partly due to the fact that the value of αs was
not precisely known at that time. In Sect. 3 we recall the
basic ingredients of the large N approach to weak decays
formulated in [8–12] that is based on the dual description
of QCD at large distance scales as a truncated meson theory
in which only pseudoscalar meson contributions were taken
into account. In Sect. 4 we generalize this approach to include
the effects of vector meson contributions [21,48]. This sec-
tion is important as it gives further support to our approach.
Indeed the inclusion of vector meson contributions improves
significantly the matching between quark–gluon and meson
pictures at scales O(1 GeV). This matching is then discussed
in more detail in Sect. 5. Calculating the Wilson coeffi-
cients at NLO in a momentum scheme clarifies the relation
between the relevant scales M and μ in the effective and full
theories.

It is strategically useful to illustrate our approach by dis-
cussing first the B̂K parameter. This we do in Sect. 6 includ-
ing first pseudoscalar meson contributions and subsequently
vector meson contributions. Armed with this technology we
discuss in Sect. 7 the ReA0 and ReA2 amplitudes, concen-
trating on current–current operators and summarizing briefly
the status of the parameters B(1/2)

6 and B(3/2)
8 associated with

penguin operators. With this information at hand we describe
in Sect. 8 the understanding of the �I = 1/2 rule within our
approach. We also improve and update the numerical anal-
ysis of ReA0 and ReA2, including both current–current and
penguin contributions. Again, the inclusion of vector meson
contributions turns out to be important for our final results.
In Sect. 9 we compare our results from dual QCD to those
available from lattice QCD. In particular the signs of various
contributions found numerically by the RBC-UKQCD lattice
collaboration provide the confirmation of our analytic results
of 1980s. Moreover, our approach allows an understanding
of the origin of these signs, which is difficult in the lattice
approach. In Sect. 10 we focus on the KL − KS mass differ-
ence and briefly mention other applications. We conclude in
Sect. 11.

2 Historical review of large N applications to weak
decays

The first attempts to apply 1/N expansion to weak decays can
be found in [49–51]. However, the first big step forward in the
phenomenological applications of this expansion has been
made in [52] in the context of non-leptonic charm decays,
where it was realized that removing the 1/N Fierz terms
from the usual vacuum insertion approximation softened the
disagreement of the theory with both exclusive and inclusive
data1 This simple philosophy of using the 1/N expansion
has been subsequently applied to K → ππ decays, �MK ,
and εK in [8]. The first leading order results for the matrix
elements of operators relevant for these observables can be
found in this paper. Probably the most important results in
this paper are B̂K = 3/42 and the realization that the removal
of 1/N Fierz terms from vacuum insertion calculations of
current–current matrix elements suppresses ReA2, moving
the theory in the direction of the data. In this paper also the
first large N result for the matrix elements of the dominant
QCD-penguin operator Q6 can be found. These leading order
results have been subsequently confirmed in [9,10] by using
an effective Lagrangian describing the weak and strong inter-
actions of mesons in the large N limit. In particular, it has
been emphasized in [10] that a consistent evaluation of the
K → ππ amplitudes should include two contributions:

• The evolution from MW down to μ ≈ O(1 GeV), termed
quark–gluon evolution, by means of the usual renormal-
ization group equations. The result of this evolution are
the values of the Wilson coefficients of local operators at
μ ≈ O(1 GeV).

• The continuation of this evolution down to μ = O(mπ )

within a meson theory dual to QCD, termed meson evolu-
tion. The result of this evolution are factorizable hadronic
matrix elements.

In [10] details of quark–gluon evolution in the 1/N
approach have been presented. In particular, it has been
shown how the usual very complicated renormalization
group analysis simplifies for large N , still reproducing well
the exact results. In this paper an additional (with respect
to previous estimates) enhancement of the QCD-penguin
contribution to ReA0 has been identified. It comes from an
incomplete GIM cancelation above the charm quark mass.
In lattice calculations that work at scales μ = (2–3) GeV,
which are well above that mass, GIM is still rather power-
ful and the bulk of this contribution should be present in the

1 This procedure has been motivated by the analysis in [53]. However,
these authors did not attach it with a consistent application of the 1/N
expansion.
2 See also [54].
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matrix elements of current–current operators. Strategies for
including charm quark contributions in lattice calculations
in the context of the �I = 1/2 rule and the KL − KS mass
difference have been presented in [55,56] and [57], respec-
tively.

Our studies of the 1980s culminated in the formulation of
the meson evolution in [11,12] and evaluation in this frame-
work of 1/N corrections to K → ππ amplitudes and the
parameter B̂K . These papers represent the first attempt at a
consistent calculation of the weak matrix elements in the con-
tinuum field theory. Pedagogical summary of this work has
been presented by the authors in various reviews and lectures
[17–23].

3 Large N approach to weak decays of mesons

3.1 General structure

Let us begin our presentation with the general formula for
the K → ππ decay amplitudes in the Standard Model [58]

A(K → ππ) = G F√
2

Vud V ∗
us

10∑

i=1

(zi (μ)

+ τ yi (μ))〈ππ |Qi (μ)|K 〉 (7)

where

τ = − Vtd V ∗
ts

Vud V ∗
us

. (8)

The coefficients zi (μ) and yi (μ) are the Wilson coefficients
of local four-quark operators. The complete set of these oper-
ators listed in [58] consists of current–current operators Q1,2,
QCD-penguin operators Q3–Q6 and electroweak penguin
operators Q7–Q10. In our presentation only five of them will
be relevant, namely Q1, Q2, Q4, Q6, and Q8. For our dis-
cussion it is useful to write them in the Fierz transformed
form relative to the ones in [58]. They are constructed from
the light fields only q = (u, d, s) and are given as products
of color-singlet densities, as follows:

Q1 = 4(s̄LγμdL)(ūLγμuL),

Q2 = 4(s̄LγμuL)(ūLγμdL), (9)

Q6 = −8(s̄LqR)(q̄RdL),

Q8 = −12eq(s̄LqR)(q̄RdL), (10)

Q4 = 4(s̄LγμqL)(q̄LγμdL) (11)

where qR(L) = (1/2)(1 ± γ5)q and sums over color indices
and q in Q4, Q6 in Q8 are understood. Evidently, Q1,2 are
current–current operators, whereas Q6 and Q8 are the domi-
nant density–density QCD-penguin and electroweak penguin
operators, respectively. The subleading QCD-penguin opera-
tor Q4 will only play a role in our discussion of the matching

of meson and quark–gluon evolutions. Finally, the operator
relevant for K 0–K̄ 0 mixing will be given in Sect. 6, but the
approach below applies in this case as well.

Since the operators Qi in (9)–(11) are constructed from the
light quark fields only, the full information about the heavy
quark fields (c, b, t) is contained in the Wilson coefficients
zi and yi . Correspondingly, the normalization scale μ in (7)
is not completely arbitrary in our approach but must be cho-
sen below the charm quark mass. The values of zi (μ) and
yi (μ) have been calculated in 1993 at the NLO level in the
renormalization group improved perturbation theory includ-
ing both QCD and QED corrections [58,59]. Also some ele-
ments of NNLO corrections can be found in the literature
[60,61].

In the large N approach of [8–12] the structure of differ-
ent contributions to physical amplitudes is as follows. The
physics contributions from scales above μ are fully contained
in the coefficients zi (μ) and yi (μ), whereas the remaining
contributions from the low-energy physics below μ (i.e. from
μ to the factorization scale expected around mπ ) are con-
tained in the matrix elements 〈ππ |Qi (μ)|K 〉. It follows that
for μ = O(1 GeV), the coefficients zi (μ) and yi (μ) can
be calculated within a perturbative quark–gluon picture by
means of renormalization group methods [62].

As far as the meson matrix elements are concerned, the
ultimate goal is to compute them in a non-perturbative quark–
gluon picture where mesons occur as bound states. This route
is followed by lattice computations and in fact since our work
appeared in 1986 impressive progress has been made in this
manner [41–43]. Yet this numerical route is very demanding
as even after more than a quarter of a century of hard work
by lattice community the present results for K → ππ ampli-
tudes are still not fully satisfactory and the matrix element
〈ππ |Q6(μ)|K 〉 from lattice QCD is presently unknown.
Moreover, it is much harder to understand the underlying
physics than by means of an analytic approach.

Our proposal, summarized most explicitly, in [11] was to
apply instead the ideas of ’t Hooft [13,14] and subsequently
Witten [15,16] to non-leptonic K decays and K 0–K̄ 0 mixing.
They conjectured that QCD (the theory of quarks and gluons)
is for large N equivalent to a theory of weakly interacting
mesons with a quartic meson coupling being O(1/N ). This
allows us to formulate a dual representation of the strong
dynamics in terms of hadronic degrees of freedom. In the
large N limit, this representation becomes exact and a full
description of the physics can be achieved using an infinite
set of interacting meson fields.

The fact that QCD can be formulated both as theory of
quarks and gluons on the one hand and as the theory of
mesons on the other hand can now be used for Kaon mix-
ing and non-leptonic decays K → ππ as follows. The main
point is that the matrix elements of four-fermion operators
governing these transitions can be written at leading order in
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large N as products of matrix elements of color-singlet cur-
rents in the case of current–current operators and as products
of matrix elements of quark densities in the case of penguin
operators. At the next-to-leading order one has two classes
of contributions:

• 1/N corrections to the matrix elements of factorized
operators.

• Low-energy, non-factorized matrix elements of two cur-
rents or two quark densities.

The latter contributions can be written as an integral over
the momentum flowing through the currents (densities) in the
connected planar amplitude. One can then use knowledge
of both the high- and the low-energy behavior of the inte-
grand. At high momentum, these are just the short-distance
contributions to the coefficient functions of the operator
product expansion which can be computed perturbatively in
the quark–gluon picture. While in principle this could also
be done in the meson picture, such an analysis would be
very complex requiring many meson states and complicated
interactions. However, the long-distance analysis is corre-
spondingly simple as only lowest-lying meson states may
be required and the interactions are largely dictated by the
chiral symmetry structure of the effective Lagrangian.3 Our
proposal in [11] was to use the meson theory to interpolate
to the point where one can match the behavior of the inte-
grand of the short-distance theory. If the amplitude is smooth
enough then it may be sufficient to match the meson ampli-
tude to the quark amplitude at an appropriate scale. In this
manner one can achieve a consistent unified description of
the physics by using the quark–gluon picture at short dis-
tances matched to the meson picture at long distances. The
accuracy of the method depends on the interpolation of the
integrand between short and long distance.

A full AdS/QCD description [64,65] should be able to
interpolate the meson amplitudes to arbitrarily short distance
and first attempts in this direction have been made in [66,67].
In our approach the matching scale must presently be cho-
sen around 1 GeV implying approximate treatments in both
pictures. In particular, the scheme dependence of the long-
distance part comes when one subtracts the short-distance
part of the integral using a particular scheme. This scheme
dependence can be treated exactly if needed. In this context,
calculating Wilson coefficients and the hadronic matrix ele-
ments in a momentum scheme we have made in the present
paper a significant progress relative to our previous papers.
We will discuss this important issue in Sects. 5 and 8.

3 Moreover, the spontaneous breakdown of chiral symmetry SU (3)L ×
SU (3)R → SU (3)V can be proven to be true in QCD in its large N
limit [63].

In spite of not being exact, this approach has several
virtues. Indeed, the simplicity of this formulation lies in the
fact that in the strict large N limit QCD becomes a free theory
of mesons and consequently the leading order contributions
to any quantity are obtained by calculating tree diagrams with
the propagated objects being mesons, not quarks or gluons. In
this strict limit, also the factorization of hadronic matrix ele-
ments of four-quark operators into the product of matrix ele-
ments of quark currents or quark densities follows. Beyond
this limit, one obtains 1/N expansion represented by a loop
expansion in the meson theory. Even if naively these correc-
tions could be expected to be small, one should notice that
one-loop contributions in the meson theory represent in fact
the leading term in the 1/N expansion for observables like the
π+ − π− electromagnetic mass difference or the K 0 decay
into two neutral pions. In particular, they have to be sizable if
one wants to explain why the subleading K 0 → π0π0 decay
amplitude turns out to be almost equal to the K 0 → π+π−
leading one, namely the so-called �I = 1/2 rule.

We close this section by discussing briefly the issue of
matching between the quark–gluon and meson theories. We
will discuss this crucial issue more explicitly in Sects. 5 and 8.
In the quark–gluon picture, the scale μ enters naturally as the
normalization scale in the renormalization group improved
perturbative QCD calculations

μ2 d

dμ2 Qi (μ
2) = −1

2
γi j Q j (μ

2) (12)

with γ , the anomalous dimension matrix for the Qi opera-
tors. In our formulation, it serves as an infrared cutoff below
which one should switch to the meson picture unless one
wants to perform lattice computations. Now the truncated
meson theory, involving a finite set of light pseudoscalar and
vector mesons only, appears non-renormalizable. In partic-
ular, if only lowest-lying pseudoscalar mesons are included
without ultraviolet QCD completion, it exhibits a quadratic
dependence on the cutoff, which we will denote by M . This
physical cutoff must be introduced in order to restrict the
truncated meson theory to the long-distance domain or, in
other words, to cut off the high mass and high momentum
contributions in the meson loops. Therefore, the physical cut-
off introduced here should be distinguished from the usual
cutoff regularization procedure in which M could be sent to
arbitrarily large values, to disappear from observables after
renormalization.

On the other hand we know that QCD being renormaliz-
able has a logarithmic dependence on the ultraviolet cutoff.
While this difference from the quadratic dependence on M
in the truncated meson theory has been in the 1980s a sub-
ject of criticism of our approach, one should emphasize that
these two dependences are not inconsistent with each other.
Indeed, the strict logarithmic cutoff dependence of QCD is
valid only at short distances whereas power counting supple-
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mented with chiral symmetry requires quadratic dependence
on the cutoff for the long-distance behavior of QCD. For
high values of M , after the inclusion of vector mesons and
heavier meson states, this quadratic dependence on M should
smoothly turn into a logarithmic dependence as expected in
the full meson theory. In fact, as demonstrated in Sect. 4,
already the inclusion of vector mesons shows that this expec-
tation is correct.

In the evaluation of the matrix elements 〈ππ |Qi (μ)|K 〉
the simplest choice one can make is μ = M . This identifica-
tion of μ with M is certainly an idealization in the approx-
imate treatment used in our papers, but it can be improved
with a complete description of quark–gluon and meson pic-
tures used for short- and long-distance physics, respectively.
In particular, in order to relate μ to M , one should go beyond
the Fermi limit for the W-propagator and calculate at NLO
the Wilson coefficients not in the usual NDR-MS scheme but
in a momentum scheme. We will discuss this issue in Sect. 5.
Moreover, one should go beyond the octet approximation for
the light pseudoscalars by including at least the lowest-lying
vector mesons. We will do it in Sect. 4.

3.2 Basic Lagrangian of the truncated meson theory

In order to calculate the hadronic matrix elements of
local operators in our approach we use a truncated chiral
Lagrangian describing the low-energy interactions of the
lightest mesons [9,10,68]

Ltr = f 2
π

4

[
Tr(DμU DμU+) + rT r(m(U + U+))

− r


2
χ

Tr(m(D2U + D2U+))

]
(13)

where

U = exp

(
i
�

fπ

)
, � =

8∑

a=1

λaπa (14)

is the unitary chiral matrix describing the octet of pseu-
doscalars. The singlet pseudoscalar meson η0 decouples due
to a large mass generated by the axial anomaly. In (13), DμU
is the usual weak covariant derivative acting on the U field
and m is the real and diagonal quark mass matrix. At O(p2)

and in the isospin limit mu = md = mud ,

m2
π = rmud , m2

K = r

2
(ms + mud), m2

8 = 4

3
m2

K − 1

3
m2

π .

(15)

We would like to emphasize that the chiral Lagrangian in
(13) must not be viewed as a normal effective tree Lagrangian
but instead must be used as a fully interacting field the-
ory including loop effects. In this sense we are providing

a bosonization of the fundamental quark theory where all the
quark currents and densities, presented below, have a valid
representation in terms of the meson fields. But in the trun-
cated version, the meson representation is valid only for a
proper description of long-distance physics.

The parameter 
χ in (13) sets the scale of higher order
terms which are always expected in a truncated theory. It
should be emphasized that this scale is a hadronic scale dif-
ferent from 
QC D . As shown in [11,68] its value can be
determined from the physical pseudoscalar masses and decay
constants:


2
χ = Fπ

m2
K − m2

π

FK − Fπ

+ O
(

1

N

)
⇒ 
χ ≈ 1.1 GeV, (16)

where we used the most recent lattice value for the ratio
FK /Fπ ≈ 1.20. The 1/N correction, calculated in [11], is
positive and in the ballpark of 5–10 % for the range of M
considered. As this correction is only logarithmically depen-
dent on this scale, 
χ is practically independent of M with
variation in the range 0.6 GeV ≤ M ≤ 0.8 GeV of less than
2 %.

As stressed in [11] this cutoff independence of 
χ results
only if the cutoff dependence of fπ (M2) following from our
Lagrangian is taken into account. Explicitly one finds [11]:
[

f 2
π (M2)

]P = F2
π + 2I2

(
m2

π

)
+ I2

(
m2

K

)
(17)

where

I2(m
2
i ) = i

(2π)4

∫
d4q

q2 − m2
i

= 1

16π2

×
[

M2 − m2
i ln

(
1 + M2

m2
i

)]
(18)

results from the calculation of one-loop diagrams in Fig. 1
of [11], as signaled by the 1/16π2 factor, with M denoting
the euclidean cutoff of the truncated meson theory. In this
manner 1/ f 2

π (M2) is the meson picture analog of the QCD
running coupling in the quark picture. In fact it is amusing to
note that 1/ f 2

π (M2) decreases with increasing M implying
some kind of precocious asymptotic freedom behavior:

∂

∂ M2

(
1

f 2
π (M2)

)
< 0. (19)

With the superscript P in (17), we indicate that only pseu-
doscalar mesons have been included. The corresponding val-
ues of fπ (M2) are given in the first row of Table 2.

The chiral Lagrangian (13) contains only terms with a
single trace over flavor indices which reflects the large N
structure of QCD. The leading N contributions to any quan-
tity are simply obtained from the tree diagrams whereas the
leading 1/N corrections are found by calculating the one-
loop contributions. More generally, the 1/N expansion cor-
responds to the loop expansion characterized by inverse pow-
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ers of (4π fπ )2( f 2
π ∼ N ) with the strong interaction vertices

given by the truncated Lagrangian in (13). It is similar to an
expansion in inverse powers of M2

p (G N = 1/M2
p) if one

treats general relativity as an effective field theory for grav-
ity which is modified above the Planck scale by new degrees
of freedom.4 Other details on the Lagrangian in (13) can be
found in [11] and in the lecture notes [20,21].

3.3 The structure of hadronic matrix elements

The resulting matrix elements of current–current operators
in this approach have then the structure (i = 1, 2)

〈ππ |Qi (μ)|K 〉 = Ai
√

N

[
1 + Bi (μ)

N
+ O

(
1

N 2

)]
(20)

where Ai and Bi are N -independent numerical expansion
coefficients which, in our approach, are given in terms of
the parameters of the truncated Lagrangian. Note that the μ

dependence in the matrix elements of Q1,2 appears as a 1/N
correction. This is consistent with the μ dependence of the
Wilson coefficients z1,2(μ) and reflects the simple fact that
the anomalous dimensions of Q1,2 vanish in the large N limit.

On the other hand, for penguin operators Q6 and Q8 the
matrix elements have the structure (i = 6, 8)

〈ππ |Qi (μ)|K 〉 = Ãi (μ)
√

N

[
1 + B̃i (μ)

N
+ O

(
1

N 2

)]
.

(21)

The important difference relative to (20) is the appearance of
the μ dependence already in the leading term. Again, this is
consistent with the μ dependence of z6,8(μ) and y6,8(μ) and
reflects the fact that the anomalous dimensions of density–
density operators do not vanish in the large N limit but are
twice the anomalous dimension of the mass operator. This
fact allows a better matching of the truncated meson theory
with the short-distance contributions than is possible for the
current–current operators in the case of K → ππ ampli-
tudes.

In order to calculate the matrix elements of the local oper-
ators in question we need meson representation of the quark
currents and the quark densities. They are directly obtained
from the effective Lagrangian in (13) and are given, respec-
tively, as follows:

q̄ j
Lγμqi

L = i
f 2
π

4

{
(∂μU )U+ − U (∂μU+)

− r


2
χ

[
m(∂μU+) − (∂μU )m

]
}

i j

≡ (Jμ)i j , (22)

4 We thank John Donoghue for pointing out this analogy.

q̄ j
Rqi

L = − f 2
π

4
r

[
U − 1


2
χ

∂2U

]

i j

. (23)

We close the summary of our dual approach by stress-
ing two major differences from the usual chiral perturbative
calculations [1,69].

• First, the large N structure of the basic truncated low-
energy Lagrangian provides a simplification over those
effective Lagrangians used by chiral perturbation prac-
titioners. In particular, within our ultraviolet quark–
gluon completion, no O(p4) counter-terms are needed
to absorb divergences generated by a dimensional regu-
larization.

• More importantly, our loop calculations employ a cut-
off regularization and consequently our results exhibit
a quadratic dependence on the physical cutoff M . This
quadratic dependence is lost in the usual chiral per-
turbative calculations, which are based on the dimen-
sional regularization. In effect, dimensional regulariza-
tion makes extra infrared subtractions of quadratically
divergent terms. These subtractions are not permitted in
the full integration of the loop contributions in the trun-
cated theory. As this quadratic dependence on the phys-
ical cutoff is usually a subject of criticism, we want to
emphasize that it is an essential ingredient in the match-
ing of the meson and quark–gluon pictures. Once again,
it is required by power counting and chiral symmetry.
Moreover, it stabilizes the 1/N expansion as exemplified
through the cutoff independence of the hadronic scale

χ . Last but not least, it is at the source of the �I = 1/2
rule in our dual approach for QCD.

It is evident from these comments and from the review
in [1] that in contrast to our 1/N approach, the chiral per-
turbation theory framework, while being very powerful in
the determination of low-energy constants from experiment,
cannot by itself address the issue of the dynamics behind
the �I = 1/2 rule and the evaluation of B̂K , B(1/2)

6 , and

B(3/2)
8 .
With this brief formulation of our approach at hand, we

are ready to summarize the most important results obtained
by us in [8–12] as well as to improve them through the inclu-
sion of vector meson contributions (Sect. 4) and the calcula-
tion of Wilson coefficients in a momentum scheme (Sect. 5)
that allows a proper matching between meson and quark–
gluon evolutions. Due to these improvements and the fact
that several input parameters (see Table 1) are now much
better known, our results are more precise than in the 1980s.
We will also confront our findings with most recent lattice
calculations in Sect. 9.
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Table 1 Values of various quantities in units of MeV discussed in the
text

mπ mK m8 mV Fπ FK ms(0.8 GeV)

135.0 497.6 569.3 800.0 91.8 110.4 155.0

4 Inclusion of vector mesons

4.1 Preliminaries

We will now include vector meson contributions following
[21,48]. As discussed in Sect. 3.1, the matrix elements of
currents and densities are described by meson tree ampli-
tudes to leading order in the 1/N expansion. We have
argued that the pion chiral Lagrangian can be used to com-
pute the correct infrared behavior of these amplitudes. The
vector mesons, being the next lightest states in the meson
spectrum, are expected to play an important role in deter-
mining how the amplitudes evolve to higher energies. As
in deep inelastic scattering and in QCD sum rules, we
expect some form of local duality to determine the inter-
play between neighboring states and eventually generat-
ing the smooth behavior of the perturbative short-distance
expansion. By constructing an effective field theory that
includes smoothly the vector meson contributions we will
see how this duality begins to emerge as the amplitudes
evolve in energy. In the meson picture, additional heavy
states will have to be added to continue this evolution and
improve the matching further. We will return to this point
below.

In the chiral limit, the effective Lagrangian for strongly
interacting pseudoscalar Goldstone bosons

L(π) = f 2
π

4
Tr ∂μU∂μU † (24)

is invariant under the global SU (3)L × SU (3)R chiral sym-
metry with

U → gLUg†
R . (25)

If we define

U ≡ ξξ (26)

then

ξ → gLξh†(x) = h(x)ξg†
R, (27)

with h(x) any 3 × 3 unitary transformation, turns out to be a
local symmetry of this Lagrangian. We may thus introduce
the low-lying nonet V of vector mesons as the gauge bosons
of this hidden U (3) symmetry [70] by imposing the following
transformation law:

V → i

g
h∂μh† + hV h†. (28)

In this manner, the effective Lagrangian becomes

L(π, V ) = L(π) − 1

4
Tr VμνV μν

−a
f 2
π

4
Tr {∂μξ†ξ + ∂μξξ† − 2igVμ}2. (29)

In the absence of the standard non-abelian field-strength Vμν ,
the vector mesons would not propagate but just be auxiliary
fields such that L(π, V ) consistently reduces to L(π) what-
ever the value of the free parameter a associated with the
averaged VμV μ mass term. In the presence of a kinetic term
for the vector mesons, they become dynamical and their low-
energy properties are nicely reproduced if a ∼= 2.

At this point it is useful to stress the difference between
the treatment of vector bosons in our approach and in the
usual chiral perturbation theory. It is well known that in
the latter approach the introduction of massive spin-1 par-
ticles (such as vector mesons) in an effective Lagrangian
carries some model dependence. But in the context of esti-
mating the O(p4) chiral low-energy constants these ambi-
guities can be removed provided all the models of spin-
1 resonances respect certain QCD asymptotic constraints
[71].

In our dual approach, as already stressed in the previ-
ous section, we do not have to worry about O(p4) chiral
low-energy constants as they are part of the quark–gluon
evolution which satisfies the QCD asymptotic constraints.
For illustration, in [72], we have explicitly shown that the
“hidden-symmetry” approach and the “massive Yang–Mills”
approach are equivalent, leading both to (33) for the π+−π0

mass difference discussed below.
We will now demonstrate how the matching between the

meson evolution and the quark–gluon evolution is signifi-
cantly improved through the inclusion of the nonet of light
vectors in our truncated meson theory [21]. In the chiral limit,
they all have a mass mV around 0.8 GeV and their one-loop
contributions tend to transmute the quadratic cutoff depen-
dence of weak hadronic matrix elements into logarithmic
one.

In this matching context, when performing the quark–
gluon evolution down to μ = (0.8–1.0) GeV we should con-
sider all the qq̄ resonances around this scale. In this spirit,
the 1−− vector nonet (ω − φ, ρ, K ∗) with masses in the
range (0.77–1.02) GeV has to be included. The next, well-
identified 1+− axial-vector nonet ( f1, a1, K1) has masses
in the ballpark of (1.23–1.43) GeV, that is, well above the
matching scales we consider. It plays a non-negligible role in
the estimate of the π+ −π0 mass difference discussed below
as indicated in (33). On the other hand as demonstrated in
[21,48] it is by far less important for B̂K . While it would
be interesting to include these higher resonances in order
to see the quadratic behavior in the physical cutoff M turn-
ing into a logarithmic one, from the present perspective the
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increased number of parameters in the corresponding effec-
tive Lagrangian relative to the one in (29) does not allow us
to expect an improved precision of our approach through the
inclusion of these resonances. These parameters are asso-
ciated with the averaged VμV μ vector mass term, Aμ Aμ

axial-vector mass term and Aμ∂μπ mixing term. Future lat-
tice simulations, if performed at O(1 GeV) scale, should be
able to shed more light at this issue.

4.2 fπ (M2)

In the chiral model defined by (29), the lowest-lying pseu-
doscalars are massless and the tree-level pion decay constant
is modified by one-loop meson corrections in the following
way [21]:

f 2
π (M2) = F2

π + 3

16π2

{(
1 − 9a

16

)
M2

+9a

16
m2

V ln

(
1 + M2

m2
V

)}
. (30)

In the decoupling limit mV � M , we consistently recover
the quadratic M-dependence in (17), whatever the value of
a. But for a = 16/9, this quadratic dependence on the cutoff
would totally disappear in favor of the logarithmic one.

Combining then (17) and (30) with the realistic values
m2

π,K �= 0 and a = 2, respectively, we arrive at the expres-
sion
[

f 2
π (M2)

]P+V =
[

f 2
π (M2)

]P + �
[

f 2
π (M2)

]V
(31)

where

�
[

f 2
π (M2)

]V = −27

8
I2(m

2
V ) (32)

with the function I2 defined in (18).
As seen in Table 2 the dependence of fπ on M is now

much weaker since the logarithmic terms dominate now the
meson evolution of fπ (M2).

Although expected from the dual representation of the
strong dynamics for large N , such transmutation of the
quadratic cutoff dependence in favor of a logarithmic one
reminds us of the π+ − π0 (squared) mass splitting where
a similar one-loop calculation including both the vector and
the axial-vector mesons gives

Table 2 The anatomy of fπ (M2). P and V indicate that pseudoscalar
and vector mesons have been included or left out

M = μ (GeV) 0.6 0.7 0.8 0.9 1.0 Comments

fπ (M2) (MeV) 114.7 123.5 133.3 143.7 154.8 (P)

fπ (M2) (MeV) 107.6 112.1 116.4 120.6 124.3 (P + V)

�m2(0−+, 1−−, 1++)

=
(

3

4π

)
αQED

M2∫

0

dq2 (mV m A)2

(q2 + m2
V )(q2 + m2

A)
(33)

in agreement with the quark–gluon contribution for large q2

(i.e., q2 � m2
V,A) [21,72]:

�m2(quark − gluon) =
(

3

4π

)
αQED F2

π (αsr2)

∞∫

M2

dq2

q4 ,

(34)

where r is the parameter in (13).
In this one-loop calculation, the identification of the

momentum for the virtual quarks and gluons with the
momentum for the virtual mesons is straightforward since
they are the same as the one carried by the color-singlet pho-
ton. So, we are able to keep track of the momentum flow
and work in the chiral SU(2) limit for both the quark–gluon
and the meson evolutions. But here, again, we record that the
meson theory truncated to the massless pseudoscalars leads
to a pure quadratic dependence on the physical cutoff:

�m2(0−+) =
(

3

4π

)
αQED M2 (35)

for small q2 (i.e., q2 � m2
V,A). In other words, if the ultravi-

olet completion for the truncated π -meson theory was not yet
known, the observed π+−π0 electromagnetic mass splitting
would then be explained by the existence of new degrees of
freedom around the cutoff M ≈ 0.85 GeV.

4.3 Jμ ⊗ Jμ(M2)

A similar though not so striking transmutation occurs for
the left-handed current–current operators in the chiral model
defined in (29):

{(Jμ)i j (Jμ)kl}(M2) = {( J̄μ)i j ( J̄μ)kl}(0)

−c(M2){(Jμ)il(Jμ)k j

−1

2
[δil(Jμ Jμ)k j + δk j (Jμ Jμ)il ]}(0) (36)

with (Jμ)i j defined in (22) and

J̄μ = i
Fπ,K

2
∂μπ + i

4
[(∂μπ)π − π(∂μπ)] + · · · (37)

being the relevant �S = 0,±1 physical hadronic current.
Moreover

c(M2) = 1

16π2

[
2M2

f 2

]
+ 3a

16 f 2

×
{
(a − 5)I2

(
m2

V

)
+ am2

V I3

(
m2

V

)}
,

(38)
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where the function I3(m2
i ) is just the derivative of I2(m2

i )

with respect to m2
i

I3(m
2
i ) ≡ d I2(m2

i )

dm2
i

= 1

16π2

×
[

M2

M2 + m2
i

− ln

(
1 + M2

m2
i

)]
. (39)

For (mV → ∞, a arbitrary) and (a → 0, mV arbitrary) only
the first term on the r.h.s. of (38) survives, corresponding
precisely to the pseudoscalar contribution in the chiral limit.

5 Matching of meson and quark–gluon evolutions

The identification of M and μ has been the subject of criti-
cism in the past. Therefore we would like to discuss this point
and present an improved treatment that goes beyond our work
of 1980s. First, as discussed in particular in [18,22,23] and
[73], in the large N expansion the non-factorized amplitudes
responsible for both meson and quark–gluon evolutions are
given by a convolution of the W -boson propagator Dμν

W (q)

with a tree amplitude Aμν as follows:

A(p1, ..pn) = i
∫

d4q

(2π)4 Dμν
W (q)Aμν(q, p1, ..pn). (40)

The short- and long-distance contributions to this amplitude
are controlled by the explicit momentum flowing through the
W -boson propagator. These contributions can be separated
by a suitable regularization of this integration. An explicit
example is provided by the analytic regularization

Dμν
W (q) → Dμν

W (q)

[
q2

q2 − M2 + −M2

q2 − M2

]
, (41)

which we will use in what follows. The first term con-
tributes at short distances but is suppressed at low momen-
tum. The second term contributes at long distances but the
high momentum components are suppressed. This separa-
tion can be exploited to use the quark–gluon representation
for the first term and a truncated meson Lagrangian for the
second term.

Now, it is well known that the Wilson coefficients depend
on renormalization scheme and are usually computed using
dimensional regularization for UV and various schemes for
γ5 in D dimensions like NDR or HV schemes [74]. In order
to be able to make the identification

(M2)mesons = (μ2)quark−gluon, (42)

we have to relate the Wilson coefficients calculated in these
schemes to the ones in which the integral in (40) is calculated
in D = 4 with an UV momentum cutoff. We call this scheme
MOM scheme. The bar indicates that this scheme should not

be confused with momentum schemes used in the past for
short-distance calculations.

This shift in Wilson coefficients can be found as usual by
calculating perturbatively in the quark–gluon picture one-
loop matrix elements of operators in different schemes for
UV but using the same IR regulator and comparing the finite
non-logarithmic pieces. In the case at hand, retaining only
the first term in (41) and setting the external momenta to be
zero corresponds effectively to regulating IR divergences by
giving the mass M to the gluon. Proceeding in this manner
the coefficients z1 and z2 in the MOM scheme to be combined
with the meson evolution can be obtained from the known
coefficients calculated in the NDR-MS scheme. Details can
be found in [23], where the same results for the MOM scheme
have been obtained calculating the shift relative to the HV
scheme. One finds then

z1(MOM) = z1(NDR) + αs

4π

11

2N
z1(NDR)

− αs

4π

11

2
z2(NDR), (43)

z2(MOM) = z2(NDR) − αs

4π

11

2
z1(NDR)

+ αs

4π

11

2N
z2(NDR). (44)

These results have been confirmed in the present paper.
As the matrix elements of Q6 operator are presently

known only in the large N limit, it is sufficient to use for
z6 coefficient only its LO result that is in any case O(1/N )

and, moreover, GIM suppressed. To this end we will use αs

given in the MS scheme and the known leading order anoma-
lous dimensions.

The results for z1, z2 in MOM and NDR schemes for dif-
ferent μ are given in Table 3. We observe large enhancement
of |z1,2| in the momentum scheme over the values in the NDR
scheme. We have checked that for the same value of the cou-
pling constant the leading order values of z1,2 are between
those obtained in MOM and NDR schemes.

In order to complete the matching we have to calculate
the relevant loop diagrams in the meson theory, including in

Table 3 Values of the Wilson coefficients zi as functions of μ for the
MOM and NDR-MS schemes

μ (GeV) 0.6 0.7 0.8 0.9 1.0 Comments

αs(μ) 0.812 0.658 0.564 0.502 0.457 MS

z1(μ) −1.228 −1.029 −0.900 −0.809 −0.740 MOM

z2(μ) 1.777 1.625 1.530 1.463 1.415 MOM

z6(μ) −0.069 −0.049 −0.037 −0.029 −0.023 LO

z1(μ) −0.660 −0.590 −0.537 −0.495 −0.461 NDR-MS

z2(μ) 1.379 1.328 1.291 1.262 1.240 NDR-MS

z6(μ) −0.097 −0.065 −0.047 −0.035 −0.027 NDR-MS
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the integrands the second term in (41). We find then a simple
rule for transforming the results of our previous papers into
the ones obtained using an analytic regularization that can be
properly combined with the coefficients zi in MOM scheme.
One just has to replace the function I2(m2

i ) in (18) by5

Î2(m
2
i ) = i

(2π)4

∫
d4q

q2 − m2
i

[ −M2

q2 − M2

]

= 1

16π2

M2

M2−m2
i

[
ln(2)M2−m2

i ln

(
1+ M2

m2
i

)]
(45)

with the limiting value for M2 = m2
V

Î2(m
2
V ) = 1

16π2 m2
V

[
ln(2) − 1

2

]
. (46)

Similarly, the function I3(m2
i ) in (39) should be replaced

by the derivative of Î2(m2
i ) in (45). We find then

Î3(m
2
i ) = 1

16π2

M4

(M2 − m2
i )

2

×
[

ln(2) + M2 − m2
i

M2 + m2
i

− ln

(
1 + M2

m2
i

)]
(47)

and the limiting value for M2 = m2
V

Î3(m
2
V ) = − 1

16π2

[
1

8

]
. (48)

It should be noted that the presence of ln(2) multiplying
M2 will in turn decrease in the MOM scheme the matrix
elements relative to our previous results, while as we have
seen above in the MOM scheme |z1,2| become consistently
larger than in the LO.

6 The parameter B̂K

6.1 Preliminaries

As the physics behind the �I = 1/2 rule is more involved
than the one in K 0–K̄ 0 mixing, it is strategically useful to
apply first our approach to the calculation of the parameter
B̂K . We will first only include pseudoscalar meson contri-
butions, but subsequently also vector meson contributions
will be taken into account. This will demonstrate explicitly
that the inclusion of vector mesons significantly improves
the matching between the meson and quark–gluon pictures.

5 Needless to say this replacement should not be made in the calculation
of fπ , where no meson evolution is involved.

The renormalization group invariant parameter is given as
follows [75]:

B̂K = BK (μ)
[
α(3)

s (μ)
]−b

[
1 + α

(3)
s (μ)

4π
J3

]
,

b = 9(N − 1)

N (11N − 6)
, (49)

where we have shown the N -dependence of the exponent b in
the leading term to signal that b vanishes in the large N limit.
The coefficient J3 is renormalization scheme dependent. It
has been calculated in the NDR-MS in [75]. However, as
discussed in the previous section, in our approach we have
to work in a MOM scheme.

As the operator �S = 2 and the �I = 3/2 operator
have the same anomalous dimension, relations in (43) and
(44) allow us to calculate the shift in J3 entering B̂K in (49).
From the O(αs) term in the sum z1 + z2 we obtain

J3(MOM) = J3(NDR) − 11

2

(
1 − 1

N

)
. (50)

Using the known NDR result from [75] and setting N = 3
we find

J3 = 1.895 (NDR), J3 = −1.772 (MOM). (51)

The scale dependent parameters BK (μ) is related to the
relevant hadronic matrix element of the �S = 2 operator

Q(�S = 2) = 4(s̄Lγ μdL)(s̄LγμdL) (52)

as follows:

〈K̄ 0|Q(μ)|K 0〉 = BK (μ)
16

3
F2

K m2
K . (53)

The normalization of BK is such that in the vacuum inser-
tion approximation BK is unity. Indeed

BK (μ) = 3

4

(
1 + 1

N

)
= 1, (in VIA) (54)

where the 1/N represents again the Fierz term. As already
stressed in [12], this term completely misrepresents the
full 1/N correction to the leading term. Its positive sign
as opposed to the negative sign required for the matching
with 1/N corrections in the quark–gluon evolution and the
absence of any μ dependence in this result show that it is
incompatible with the quark–gluon picture of QCD. This has
been recently confirmed in lattice QCD [44].

On the other hand, the leading term of BK = 3/4 [8,
54] is the correct prediction of truncated meson theory in
the strict large N limit. Indeed, at this stage the following
important point should be made. As in the strict large N limit
the exponent in (49) and the NLO term involving J3 vanish,
we find that independently of any renormalization scale or
renormalization scheme for the operator Q(�S = 2) in the
large N limit
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B̂K → 0.75, (in large N limit). (55)

The question then arises whether after the inclusion of
1/N corrections B̂K is larger or smaller than its leading value.
In the 1980s the values of B̂K varied from 1/3 obtained using
PCAC-SU(3) [76], 0.40 obtained through hadronic sum rules
[77] to values close to unity, obtained in particular within
the lattice approach [45]. On the other hand, using the trun-
cated meson theory outlined in Sect. 3 and thereby including
only pseudoscalar meson contributions we have found 1/N
corrections to be small and negative. However, the left-over
albeit weak μ dependence of B̂K and the inaccurate value of
αs at that time lead us to a rather conservative error on B̂K

[12]

B̂K = 0.66 ± 0.07, (in dual QCD, 1987). (56)

Shortly after, it has been shown that the inclusion of vector
mesons in this calculations [21,48] moved B̂K much closer
to its leading order value in (55). Since then several semi-
analytic calculations by other authors have been performed.
They are reviewed in [1].

On the other hand, a quarter of century after our first result
the world lattice average for B̂K based on the calculations of
various groups [78–83] reads for N f = 2 + 1 calculations
(recent FLAG update of [81])

B̂K = 0.766 ± 0.010, (in lattice QCD, 2013). (57)

See also the very recent analyses in [84–86]. The following
remarks are in order

• The precision of lattice result is truly impressive, though
on the verge of being challenged by isospin breaking
effects.

• The value in (57) is consistent with our estimate in (56)
which we will update below. Moreover, it is very close
to the leading N result in (55).

• The sign of the correction to leading N result obtained
presently in the lattice calculations appears to be posi-
tive and not negative as favored in our framework and
discussed below.

After recalling the analytic expressions for B̂K in the trun-
cated meson theory and including vector meson contribu-
tions, we will give arguments in favor of a negative correction
to the leading large N result so that in QCD we expect:

B̂K ≤ 0.75, (in 1/N expansion). (58)

Therefore we believe that the lattice error in (57) is under-
estimated and the improved lattice calculations will satisfy
the bound in (58) giving values for B̂K a bit lower than the
present world lattice average. In fact, a number of lattice
groups among [78–83] published results with central values

satisfying the bound in (58) but the errors did not allow for
a clear cut conclusion.

6.2 Calculating B̂K in the truncated meson theory

Including one-loop contributions in the meson theory trun-
cated to pseudoscalar mesons as done in [12] and performing
the replacements (45) and (47), we find

B P
K (M) = 3

4

{
1 − 1

4F2
K

[
3

(
1 + m2

8

m2
K

)
Î2

(
m2

8

)

+
(

1 + m2
π

m2
K

)
Î2

(
m2

π

)
+ 4m2

K Î3

(
m2

K

)]}
. (59)

With the superscript P we indicate that only pseudoscalar
mesons have been included.

In Table 4 we give BK (μ) and B̂K obtained using (49)
and (59) with μ = M . We confirm that while BK (μ) depends
strongly on μ, this μ dependence is canceled significantly by
the μ dependent factor coming from the QCD analysis in the
quark–gluon picture. On a semi-quantitative level this reduc-
tion of μ dependence shows that the quark–gluon and the
meson pictures of strong interactions match well as required
for the consistency of our calculation. Yet, for M = (0.6–
0.7) GeV the accuracy of the μ dependent factor coming
from the quark–gluon picture cannot be trusted as in this
range αs(μ) ≥ 0.65. On the other hand, for M ≥ 0.8 GeV,
B̂K shows a significant M dependence signaling that the
meson evolution described by means of pseudoscalars only
ceases to be a good approximation. Therefore in order to
decrease the gap between the validity of both pictures, the
inclusion of vector mesons is necessary. Yet, already at this
stage we note two facts

• B P
K (M) given here in the MOM scheme differs signifi-

cantly from the values quoted by lattice groups that use
the NDR-MS scheme. In the latter scheme the values of
this parameter are much lower.

• However, this difference is compensated by the QCD fac-
tor in (49) being significantly above unity in the NDR-MS
scheme, while it is close to unity in the MOM scheme.
Indeed the LO enhancement of this factor present in
any scheme is significantly compensated by the negative
NLO correction in the MOM scheme as seen in (51).

Table 4 The anatomy of BK as a function of the scale M

M (GeV) 0.6 0.7 0.8 0.9 1.0 Comments

B P
K (M) 0.698 0.665 0.622 0.568 0.502 (P)

B̂ P
K 0.647 0.662 0.650 0.615 0.559

BK (M) 0.728 0.716 0.700 0.679 0.653 (P + V)

B̂K 0.676 0.713 0.731 0.735 0.728
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It should be noted that in the chiral limit, m2
π,K → 0, the

result in (59) implies

BK (M) = 3

4

(
1 − 2M2

(4π FK )2

)
, (60)

so that for M = 0.7 GeV one finds BK (M) = 0.37. As seen
in Table 4 this strong suppression is significantly softened for
m2

π,K �= 0, see also [29], but on the whole the resulting value

of B̂K is visibly below the lattice value in (57). As we will
now demonstrate, after the inclusion of vector contributions,
the final result for B̂K will turn out to be very close to the
lattice result.

6.3 Inclusion of vector meson contributions in B̂K

From the generic formula (36), one easily infers how the
inclusion of the lowest-lying vector mesons modifies the cut-
off dependence of the BK parameter. In the chiral limit and
for a = 2 one has [21,48]

BK (M) = 3

4

{
1 − 1

(4π FK )2

[
7

8
M2

+3

8
m2

V ln

(
1 + M2

m2
V

)
+ 3

4

m2
V M2

(M2 + m2
V )

]}
. (61)

In the decoupling limit mV � M , we consistently recover
the result in (60). But for M > mV , we observe a reduction
by more than 50 % of the quadratic dependence on the cutoff.
Once again, this transmutation of the quadratic cutoff depen-
dence in favor of a logarithmic one with the same sign is
clearly linked to the introduction of a new intrinsic scale mV

which changes the power counting in a way still consistent
with chiral symmetry.

Again, as in the case of pseudoscalar contributions, we
have to adjust the result in (61) to the MOM scheme by means
of the procedure summarized in Sect. 5. Combining then (59)
and (61) properly modified by this procedure and taking into
account that the contribution (60) is already present in (59),
we arrive at the expression

Btot
K (M) = B P

K (M) + �BV
K (M) (62)

where

�BV
K (M) = 3

(4FK )2

[
9

2
Î2(m

2
V ) − 3m2

V Î3(m
2
V )

]
(63)

with the functions Î2 and Î3 defined in (45) and (47), respec-
tively.

In Table 4 we show the results obtained using (62). The
effect of the reduction of μ dependence in B̂K is very sig-
nificant when compared with the pseudoscalar case, again
demonstrating that our evolution picture is correct. This is in
particular the case in the range M = (0.7–0.9) GeV where

we expect our truncated meson theory after the inclusion of
vector mesons to give reliable results.

We note that the effect of inclusion of vector meson
has only a small impact at M = 0.6 GeV but this impact
increases quickly with increasing M . In particular, the value
of B̂K is increased and turns out to be close to its leading
value as the vector meson contributions enter with the oppo-
site sign to the pseudoscalar meson contributions. On the
basis of these results we quote our final result

B̂K = 0.73 ± 0.02, (64)

where the error should not be considered as a standard devia-
tion. Rather, this result represents the range for B̂K we expect
in our approach. The lower value corresponds to the value at
M = 0.7 GeV which should be sufficiently large so that our
calculation is reliable and the upper bound is just the bound
in (58) to which we will return below. We consider this range
as conservative as the M dependence of B̂K displayed in
Table 4 amounts for M = (0.8–1.0) GeV to only 1 %.

This result is in an excellent agreement with the lattice
QCD value in (57) although we are aware of the fact that
while lattice calculations have good control over their errors,
this is not quite the case here. Still it is encouraging that such a
simple analytic approach could provide the explanation why
the lattice results turn out to be so close to the strict large N
limit value of B̂K .

In summary, we observe that within our approach the
smallness of 1/N corrections to the leading result for B̂K fol-
lows from an approximate cancelation between pseudoscalar
and vector meson one-loop contributions. Moreover, this can-
celation is consistent with the small anomalous dimension of
the �S = 2 operator and consequently allows a good match-
ing of meson and quark–gluon evolutions.

Finally, we would like to refer to the analysis in [29] which
was done in the spirit of our approach except that for the
low-energy meson contributions an extended Nambu–Jona-
Lasinio model has been used. Moreover, a sharper matching
between long-distance and short-distance contributions has
been performed at the LO level in αs . The result 0.60 ≤
B̂K ≤ 0.80, even if less precise, is fully consistent with the
values obtained in our approach.

6.4 An upper bound on B̂K

Let us next discuss the sign of 1/N corrections to the leading
result in (55). In fact, the existence of the upper bound on the
B̂K parameter in (58) has been demonstrated in [46] and we
recall briefly the main arguments here. To derive this bound,
let us exchange a fictitious color-singlet boson between the
two left-handed currents of the �S = 2 operator in (52). In
the 1/N expansion, the full leading and next-to-leading con-
tributions to BK can then be viewed as two-bubble and one-
bubble topologies, respectively (see Fig. 2 of [46]). In this
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simple pictorial approach, the 1/N Fierz term is clearly part
of the second disconnected topology. For each closed quark
loop (wherein the sum over all planar gluons is understood),
we take indeed the trace over colors. But for each closed
fermion loop, we also have to multiply by the spin-statistics
factor (−1). This results in a negative 1/N correction to the
leading value of the BK parameter.

As seen in Table 4 our results for B̂K satisfy the upper
bound in question. On the other hand, the central value of
B̂K from lattice simulations in (57) violates this bound but is
consistent within 2σ . We expect therefore that improved lat-
tice calculations will satisfy our bound one day and in a few
years from now lattice researchers will quote B̂K ≈ 0.74. In
fact, the most recent update from staggered quarks [84,86]
quotes precisely B̂K = 0.738±0.005 but additional system-
atic error of 0.037 does not allow for definite conclusions.

7 ReA0 and ReA2 amplitudes

7.1 Preliminaries

The amplitudes for K → ππ , neglecting the �I = 5/2 con-
tributions, can be parametrized in terms of isospin amplitudes
AI through [1]

A(K + → π+π0) = 3

2
A2eiδ2 (65)

A(K 0 → π+π−) = A0eiδ0 +
√

1

2
A2eiδ2 (66)

A(K 0 → π0π0) = A0eiδ0 − √
2A2eiδ2 . (67)

Here the subscript I = 0, 2 denotes states with isospin 0, 2
equivalent to �I = 1/2 and �I = 3/2 transitions, respec-
tively, and δ0,2 are the corresponding strong phases. The weak
CKM phases are contained in A0 and A2. The experimen-
tal values of these amplitudes are given in the isospin limit
in (1). The strong phases δ0,2 cannot be calculated in our
framework since the ππ elastic rescattering has no ultravio-
let completion. Their difference is measured to be [2]

δ0 − δ2 = (47.5 ± 0.9)◦. (68)

Equivalently, we have

A0eiδ0 = 1

3

[
2A(K 0 → π+π−)+ A(K 0 → π0π0)

]
, (69)

A2eiδ2 =
√

2

3

[
A(K 0 → π+π−)− A(K 0 → π0π0)

]
, (70)

where we use the following isospin relation:

A(K 0 → π+π−) − A(K 0 → π0π0)

= √
2A(K + → π+π0) (71)

which provides a consistency check when extracting all non-
vanishing hadronic matrix elements.

7.2 Meson evolution of current–current operators

In the limit m2
π → 0, the four K → ππ one-loop diagrams

given in Fig. 2 of [11] can be viewed as a meson operator
evolution down to the factorization scale:

Q1(M2) = Q1(0) − c1(M2)Q2(0) (72)

Q2(M2) = Q2(0) − c1(M2)Q1(0)

+c2(M2)[Q2(0) − Q1(0)]. (73)

with positive coefficients

c1(M2) ≈ 1

(4π fπ )2

[
fπ
Fπ

]{
2M̂2 − m2

K

4
ln

(
1 + M2

m̃2

)}
,

(74)

c2(M2) ≈ 1

(4π fπ )2

[
fπ
Fπ

]{
M̂2 + m2

K ln

(
1 + M2

m̃2

)}
,

(75)

where the M2 dependence of the expansion parameter fπ ,
given in (17), has not been written explicitly. These evolution
equations, the positivity of the coefficients ci and the fact
that ci = O(1/N ) are fundamental for our explanation of
the �I = 1/2 rule. It originates in the continuation of the
usual quark–gluon evolution by means of meson evolution
below scales O(1) GeV down to factorization scale at which
QCD becomes a theory of free interacting mesons. In what
follows we want to have a closer look at these equations in
order to demonstrate that they have the structure of the known
renormalization group equations in (12).

The coefficients ci (M2) in (74) and (75) include only
pseudoscalar meson contributions. We will include vector
meson contributions soon. The replacement of the leading
M2 dependence by

M̂2 = ln(2)M2 (76)

in our previous papers follows from the replacement of I2,3

by Î2,3 in the chiral limit and allows us to combine within a
very good approximation these results with zi in the MOM
scheme. The argument of the logarithmic terms is only an
approximation since the mass scale m̃ replaces a rather com-
plicated dependence of the exact expressions on the meson
masses: mπ ≤ m̃ ≤ mK . As in our 1986 analysis we set

m̃ = 0.3 GeV, (77)

although our results are not very sensitive to this choice unless
m̃ is approaching mπ . In fact it turns out that the match-
ing between quark–gluon and meson evolutions is best for
this value. The numerical values of c1,2(M2) for M = (0.6–
1.0) GeV resulting from (74) and (75) are given in Table 5.
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Table 5 Values of c1,2 as functions of M . P and V indicate whether
pseudoscalar and vector mesons have been included or left out

M (GeV) 0.6 0.7 0.8 0.9 1.0 Comments

c1(M2) 0.240 0.315 0.392 0.471 0.549 (P)

c1(M2) 0.206 0.267 0.331 0.398 0.468 (P + V)

1 − c1(M2) 0.760 0.685 0.608 0.529 0.451 (P)

1 − c1(M2) 0.794 0.733 0.669 0.602 0.532 (P + V)

c2(M2) 0.390 0.447 0.498 0.543 0.584 (P)

c2(M2) 0.390 0.453 0.511 0.566 0.619 (P + V)

In (72) and (73), Q1,2(0) denote the hadronized �S = 1
operators at the factorization scale now defined by μ = 0.
As a consequence, the only non-vanishing hadronic matrix
elements of current–current operators for the K → ππ decay
amplitudes at μ = 0 are

〈π+π−|Q2(0)|K 0〉 = −〈π0π0|Q1(0)|K 0〉 = X F , (78)

〈π+π0|Q1(0)|K +〉 = 〈π+π0|Q2(0)|K +〉 = X F√
2
, (79)

where

X F = √
2Fπ

(
m2

K − m2
π

)
(80)

with the subscript F standing for factorization. Here we keep
mπ �= 0 as the limit mπ → 0 is used only for operator
evolution. Note that these leading hadronic matrix elements
do not include the usual Fierz terms that are a part of non-
factorizable loop corrections.

The inclusion of the O(1/N ) non-factorizable loop cor-
rections, represented by the non-vanishing coefficients ci ,
can be viewed as taking into account the physics contribu-
tions in the momentum range from μ = 0 to μ = M . This is
complementary to the usual renormalization group evolution
for the Wilson coefficients zi taking into account the physics
contributions from μ = M to μ = MW . In this manner, all
physics contributions to the amplitudes ReA0 and ReA2 from
the momentum range from μ = 0 to μ = MW are included.
The inferred pattern for the Q1,2 meson evolution has been
confirmed by a background field method [73] acting directly
at the operator level.

The numerical implications of these results for ReA0 and
ReA2 will be discussed in Sect. 8 but already now we can
verify that the structure of (72) and (73) allows a plausible
matching of the meson and quark–gluon evolutions. To this
end, we have to include in our discussion not only the QCD-
penguin operator Q6 but also Q4 defined in (11). Its hadronic
matrix element at the factorization scale is given by

〈π+π−|Q4(0)|K 0〉 = 〈π0π0|Q4(0)|K 0〉 = X F . (81)

Then the 4×4 anomalous dimension matrix in the Q1,2,4,6

basis, which through (12) governs the evolution of operators
in the quark–gluon (QG) picture, reads [10]:

γ QG = αs N

2π

⎛

⎜⎜⎝

0 3/N 0 0
3/N 0 1/3N 1/3N
0 0 0 0
0 0 0 −3

⎞

⎟⎟⎠

=

⎛

⎜⎜⎝

0 0.286 0 0
0.286 0 0.032 0.032

0 0 0 0
0 0 0 −0.859

⎞

⎟⎟⎠ (82)

in the large-N limit. Recall that αs N is N -independent to
preserve asymptotic freedom in large N QCD. The numer-
ical values above have been obtained for αs = 0.6, namely
around the scale 0.8 GeV (see Table 3). This will allow us a
comparison of the meson and quark–gluon evolutions.

Using the evolutions (72) and (73) and evaluating the
derivatives of Q1(M2) and Q2(M2) with respect to M2, we
find first

M2 d Q1(M2)

d M2 = −M2 d c1(M2)

d M2 Q2(0), (83)

M2 d Q2(M2)

d M2 = −M2 d c1(M2)

d M2 Q1(0)

+M2 d c2(M2)

d M2 [Q2(0) − Q1(0)]. (84)

But

Q4(0) = [Q2(0) − Q1(0)],
Q6(0) = −r2(μ)


2
χ

[Q2(0) − Q1(0)] (85)

in our octet approximation. Thus

Q4(0) + Q6(0) =
(

1 − r2(μ)


2
χ

)
[Q2(0) − Q1(0)]. (86)

Therefore, comparing (83) and (84) with (12) for μ =
M , we find the non-vanishing elements of the ”anomalous
dimension matrix” γ M governing the evolution of operators
in the meson (M) picture:

γ M
12 = γ M

21 = 2M2 ∂c1(M2)

∂ M2 > 0, (87)

γ M
24 = γ M

26 = 2M2 
2
χ

r2 − 
2
χ

∂c2(M2)

∂ M2 > 0. (88)

As c1,2(M2) = O(1/N ) the signs and the structure of 1/N
terms in γ M are precisely the same as in (82), but due to the
M2 dependence of γ M

i j the evolution of operators is faster in
the meson evolution when the meson theory includes only
the pseudoscalar octet. The diagonal term γ66 in (82) is O(1)

and originates in the μ-dependence of quark masses. As dis-
cussed at the end of this section, in this case there is a perfect
matching between quark–gluon and meson evolutions in the
large N limit.
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In order to complete the calculation of the anomalous
dimension matrix in the meson theory we still need the value
of r2/
2

χ . This value is known in our approach and given in
(102). Using this value we find at M = μ = 0.8 GeV

γ M
12 = γ M

21 = 0.624, γ M
24 = γ M

26 = 0.051, (P). (89)

We observe that the hierarchy of the elements of the quark–
gluon anomalous dimension matrix in (82) is also found in
the corresponding matrix in the meson theory. In particular
we find

γ M
12

γ M
26

= 12.2,
γ

QG
12

γ
QG

26

= 9 (P), (90)

which is a satisfactory result considering that we have
included only pseudoscalar mesons at this level.

We observe that already the inclusion of pseudoscalar
mesons allows a reasonable matching between the two
anomalous dimensions in question. On the other hand, as
emphasized in [11], while the vacuum insertion method gives
consistent results for the leading in N contributions, viewed
as a meson evolution, it completely misrepresents the next-
to-leading effects. Indeed in this case the usual 1/N Fierz
terms give

〈Q1(M2)〉VIA = 〈Q1(0)〉 + 1

N
〈Q2(0)〉, (91)

〈Q2(M2)〉VIA = 〈Q2(0)〉 + 1

N
〈Q1(0)〉 (92)

and consequently

c1 = −1

3
, c2 = 0, (in VIA), (93)

in total disagreement with the structure of quark–gluon evo-
lution.

In summary, the structure of meson evolution reviewed
above leads to a very simple physical picture [11]. The inclu-
sion of the next-to-leading corrections to hadronic matrix
elements can be viewed as the evolution of the operators
(meson evolution) from zero momentum to M . This short
but fast evolution is continued above M as a long but slower
evolution of Wilson coefficients (quark–gluon evolution) by
means of the usual QCD renormalization group equations
with respect to μ, with the identification (42).

7.3 Inclusion of vector mesons in c1(M2) and c2(M2)

In the same manner, as we did in the case of B̂K , we can
easily include vector meson contributions to the coefficients
c1,2(M2) and consequently into current–current contribu-
tions to the amplitudes ReA2 and ReA0. This is related to
the fact that in the chiral limit the meson evolutions of the
�S = 2 and �I = 3/2 operators are identical. Keeping
pseudoscalar masses in the pseudoscalar contributions but

calculating the vector contributions in the chiral limit we
simply find

c1(M2) = cP
1 (M2) − 1

4 f 2
π

[
fπ
Fπ

]

×
[

9

2
Î2(m

2
V ) − 3m2

V Î3(m
2
V )

]
, (94)

where the first term including only pseudoscalar contribu-
tions is given in (74). Yet, in evaluating this term we have to
use fπ (M2) in (31) which includes vector meson contribu-
tions. The functions Îi are given in (45) and (47).

We also find

c2(M2) = 1

2
c1(M2) + 9

8

m2
K

(4π fπ )2

[
fπ
Fπ

]
ln

(
1 + M2

m̃2

)

(95)

with c1(M2) given in (94).
The values for these coefficients with and without the

inclusion of vector meson contributions are given in Table 5.
Similar to the case of fπ (M2), we observe significant reduc-
tion of the scale dependence of 1−c1(M2) relevant for ReA2

relative to the pseudoscalar case which will have profound
implications for our numerical analysis of ReA2 in the next
section.

With these results at hand, we can now improve the cal-
culation of the anomalous dimension matrix in the meson
theory. Setting again M = μ = 0.8 GeV we find

γ M
12 =γ M

21 =0.524, γ M
24 =γ M

26 = 0.060 (P + V) (96)

and

γ M
12

γ M
26

= 8.7,
γ

QG
12

γ
QG

26

= 9, (P + V), (97)

which is a significant improvement over the result in (89).
This matching of anomalous dimensions is a remarkable

feature of our dual approach and might be traced to the exis-
tence of AdS/QCD models which do interpolate between the
quark and meson pictures—at least for the amplitudes we are
considering. They usually have extra states at higher mass
scales but the pseudoscalar and vector mesons are usually an
essential part of the duality.

What remains to be done is to analyze how these results
depend on M = μ. We show this in Table 6. We draw the
following conclusions from this table.

• In the full range of M considered γ M
12 is by an order of

magnitude larger than γ M
26 as is the case in the quark–

gluon matrix.
• If only pseudoscalar mesons are included the ratio

γ M
12 /γ M

26 is closest to 9 for M ≈ 0.7 GeV, while after
the inclusion of vector meson contributions this happens
slightly above M ≈ 0.8 GeV. Therefore we conclude
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Table 6 Values of γ M
12 and γ M

26
as functions of M . P and V
indicate whether pseudoscalar
and vector mesons have been
included or left out

M (GeV) 0.6 0.7 0.8 0.9 1.0 Comments

γ M
12 0.437 0.534 0.624 0.706 0.784 (P)

γ M
26 0.072 0.059 0.051 0.046 0.043 (P)

γ M
12 /γ M

26 6.0 9.0 12.2 15.3 18.3 (P)

γ M
12 0.356 0.438 0.524 0.615 0.714 (P + V)

γ M
26 0.076 0.066 0.060 0.058 0.057 (P + V)

γ M
12 /γ M

26 4.7 6.7 8.7 10.6 12.4 (P + V)

that most reliable results are obtained in our approach
for M = (0.8–0.9) GeV.

• Comparing the size of the matrix elements in Table 6
with those in (82) we indeed confirm that the short meson
evolution is faster than the long quark–gluon evolution.

7.4 Penguin operators: B(1/2)
6 and B(3/2)

8

For the matrix elements of QCD-penguin operator Q6 and
the electroweak penguin operator Q8 we find [10]

〈π+π−|Q6(0)|K 0〉 = −r2(μ)


2
χ

X F B(1/2)
6

= − 4
√

2

[
m2

K

ms(μ) + md(μ)

]2
Fπ

κ
B(1/2)

6 , (98)

with the same result for K 0 → π0π0 matrix element and
[87]

〈π+π0|Q8(0)|K +〉 = 3

[
m2

K

ms(μ) + md(μ)

]2

Fπ B(3/2)
8 ,

(99)

where

κ = 
2
χ

m2
K − m2

π

= Fπ

FK − Fπ

= 4.93. (100)

In (98) and (99) we have introduced the parameters B(1/2)
6

and B(3/2)
8 in order to compare with lattice results. But in the

large N limit in which factorization works we simply have
as seen from (78), (79) and (85)

B(1/2)
6 = B(3/2)

8 = 1. (101)

Finally, for our numerical studies we quote at μ = 0.8 GeV

r2(μ)


2
χ

= 8.46

(
160 MeV

ms(μ) + md(μ)

)2

, (102)

where we used the results from FLAG 2013 [88]

ms(2 GeV) = (93.8 ± 2.4) MeV,

md(2 GeV) = (4.68 ± 0.16) MeV. (103)

There is no contribution of Q6 to K + → π+π0 in the
isospin limit, but in the case of ε′/ε isospin breaking correc-
tions leading to a non-vanishing matrix element 〈Q6〉2 have
to be taken into account as implemented in [89] where the
full 0−+ nonet has been consistently included at O(p2). The
most recent discussion of this issue with the 0−+ octet at
O(p4) can be found in [90].

It should be stressed that generally the parameters B(1/2)
6

and B(3/2)
8 are very weakly dependent on the scale μ as

the dominant μ dependence of the matrix elements of pen-
guin operators comes from the running quark masses. This
dependence in the physical amplitudes is canceled by the μ

dependence of the corresponding Wilson coefficients, which
for large N can be demonstrated analytically. This cancela-
tion results from the fact that the anomalous dimensions of
these operators equal twice the anomalous dimension of the
mass operator. The effect of mixing with other operators (see
γ26 �= 0) spoils this exact cancelation but the effect is small
and is compensated by contributions from current–current
operator Q2. A detailed numerical analysis in [58] confirms
this.

The 1/N corrections to the result in (101) are not neces-
sary for the analysis of the �I = 1/2 rule, as the Wilson
coefficients of QCD-penguin Q6 are O(αs) and therefore
these contributions are O(1/N 2). In the case of Q8 such
corrections could possibly play a role in ε′/ε.

There is no reliable result on B(1/2)
6 from lattice QCD.

On the other hand one can extract the lattice value for B(3/2)
8

from ReA2 in [40]. We find

B(3/2)
8 (3 GeV) = 0.65 ± 0.05 (lattice). (104)

Even if B(3/2)
8 is scale independent in the large N limit, it

is useful to check its scale dependence in the short-distance
regime by means of renormalization group evolution, this
time for the matrix element of Q8, not for its Wilson coeffi-
cient. Such an exercise has been performed in [58] with the
result that this dependence is at the level of a few percent
for 1.0 GeV ≤ μ ≤ 3 GeV and even if B(3/2)

8 decreases
with increasing scale the difference between lattice result
and large N result cannot be explained by such effects. On
the other hand, the calculation of 1/N corrections to (101)
in the framework of truncated meson theory of Sect. 3 shows
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that while these corrections are small in the case of B(1/2)
6 ,

the effect is much larger in the case of B(3/2)
8 [31]. Typically

B(3/2)
8 is found in the ballpark of 0.6 ± 0.1. Consequently

also in this case the large N approach seems to give a result
similar to the lattice one. Yet, one has to admit that the pre-
cision of the calculation in [31] is insufficient for a useful
phenomenology of ε′/ε, where there is a strong cancelation
between QCD-penguin and electroweak penguin contribu-
tions. On the other hand, both lattice calculations and large N
approach indicate that B(3/2)

8 < 1, suppressing electroweak
penguin contributions to ε′/ε relative to strict large N limit.
This is a hint that ε′/ε in the Standard Model is larger than
previously expected. Yet, the future of ε′/ε depends on the
result for B(1/2)

6 in lattice QCD although it may still take some
time before an accurate result for this important quantity is
available [43].

8 �I = 1/2 rule in the dual QCD approach

8.1 Preliminaries

With all these results at hand, we will now make a closer
look at the dynamics of the �I = 1/2 rule which follows
from our approach. Even without entering the details of the
size of the amplitudes involved, we note that the amplitude
A(K 0 → π0π0) enters ReA0 and ReA2 in (69) and (70)
with the opposite sign. While this feature is at the basis of
the difference between A0 and A2 and consequently funda-
mental for the explanation of the �I = 1/2 rule, the main
dynamics behind the �I = 1/2 rule is that A(K 0 → π0π0)

has the same sign as A(K 0 → π+π−). That this is indeed
the case follows both from the explicit evaluation of these
amplitudes in our dual representation of QCD and also from
our simple picture of the slow quark–gluon evolution from
O(MW ) down to O(1 GeV) followed by the fast meson evo-
lution down to μ = O(mπ ). We will now discuss these issues
in explicit terms by updating our analysis of the amplitudes
ReA0 and ReA2 presented first in [11].

8.2 Hadronic matrix elements

The values for hadronic matrix elements of current–current
operators in (78) and (79) are simply the initial conditions
for the meson evolution, analogous to the initial conditions
for Wilson coefficients z1(M2

W ) and z2(M2
W ) in the case of

quark–gluon evolution that are usually evaluated perturba-
tively at the high-energy scale. Combining then the initial
conditions in (78) and (79) with the meson evolution for-
mulas in (72) and (73) allows us to evaluate the hadronic
matrix elements of current–current operators at μ = M
[11]:

〈π+π−|Q1(M2)|K 0〉 = −c1(M2)X F ,

〈π+π−|Q2(M2)|K 0〉 =
(

1 + c2(M2)
)

X F , (105)

〈π0π0|Q1(M2)|K 0〉 = −X F ,

〈π0π0|Q2(M2)|K 0〉 =
(

c1(M2) + c2(M2)
)

X F , (106)

〈π+π0|Q1,2(M2)|K +〉 =
(

1 − c1(M2)
) X F√

2
. (107)

where X F has been defined in (80).
Using (7), (69), (70), the matrix elements (105)–(107) and

(98) with B(1/2)
6 = 1 we find then

ReA0 = G F√
2

Vud V ∗
us

(
1

3

)

×
[
−z1(1 + 2c1)+z2(2 + c1+3c2)−3z6

r2


2
χ

]
X F

(108)

ReA2 = G F√
2

Vud V ∗
us

(
2

3

)
(1 − c1)(z1 + z2)

X F√
2

= 2.54 (1 − c1)(z1 + z2) 10−8 GeV, (109)

where in order to simplify the notations we did not show
the scale dependence of zi and ck , explicitly. They all are
evaluated at μ = M .

8.3 Diagrammatic understanding of signs

In order to get a better understanding of different signs in
(108) and (109) and eventually to compare with the results
of the RBC-UKQCD collaboration [37–40], we will use the
diagrammatic language developed by us in the context of
our first paper on large N approach to weak decays that we
applied for the decays D0 → K +π− and D0 → K̄ 0π0

[52]6. This diagrammatic language inspired by the work of ’t
Hooft [13,14] and subsequently Witten [15,16] is discussed
in detail for the case of non-leptonic K decays in [19–21].
See also [8].

It is clear from these papers, but it should be empha-
sized again, that the diagrams discussed by us should not
be considered as ordinary Feynman diagrams as each of the
closed loops stands for sum over all possible planar gluon
exchanges.

In Fig. 1 we show four basic current–current diagrams con-
tributing to K 0 → π+π− and K 0 → π0π0 amplitudes. The
four diagrams contributing to K + → π+π0 can be obtained
from these diagrams by replacing the spectator quark d by
the spectator quark u. The wiggly line represents the inser-
tion of the Q2 operator, while the dashed one the insertion of
Q1 operator. The crosses represent the external mesons. The

6 See Figs. 10–11 in [52]. Note that the indices of Q1 and Q2 are
interchanged in that paper.
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Fig. 1 Current–current
topologies in K → ππ

(a) (b)

(c) (d)

Fig. 2 Penguin topology in K → ππ

Feynman rule for them is the usual color normalization factor
1/

√
N but this universal rule does not interest us here. It is

more important that each loop brings a factor N so that the
diagrams (c) and (d) are suppressed relative to (a) and (b) by
a factor of N . In Fig. 2 we show penguin diagrams that con-
tribute only to K 0 → π+π− and K 0 → π0π0 amplitudes
in the isospin limit.

The results for the matrix elements in (105)–(107) can
be reproduced from these diagrams by using the following
Feynman-like rules:

Rule 1: Factor X F for diagrams (a) and (b) in Fig. 1.
Rule 2: Factor c1 X F for diagrams (c) and (d) in Fig. 1.
Rule 3: Factor c2 X F for penguin diagrams in Fig. 2.
Rule 4: Statistical factor −1 for each quark loop.
Rule 5: Factor −1 when the final neutral pion is created

through its d̄d component.
Rule 6: Factor −1 in the penguin diagrams due to the GIM

partial cancelation at work (Vcd V ∗
cs = −Vud V ∗

us).
As the factorizable contribution X F is positive, the dynam-

ics of the �I = 1/2 rule is governed by the non-factorizable
topologies in (c) and (d) represented by the coefficient
c1(M2) and it is essential that this coefficient is also posi-
tive. In our approach, this positive sign follows in two ways:

• From explicit calculation of loop diagrams in the meson
theory.

• From the matching of anomalous dimensions γ QG and
γ M .

This understanding of the sign of c1(M2) will allow us in
Sect. 9 to understand the signs of contractions in the recent
results on ReA0 on ReA2 from the RBC-UKQCD collab-
oration [37]. But first we present our own view on these
amplitudes.

8.4 The anatomy of the �I = 1/2 rule

We are now ready to have a closer look at the basic dynamics
behind this rule which in our approach is based on two pil-
lars of QCD: asymptotic freedom at short-distance scales and
confinement of quarks in mesons at long-distance scales. The
dual representation of QCD as a theory of weakly interacting
mesons allows one to unite these two properties in a frame-
work which enables us to see and calculate analytically the
observed enhancement of ReA0 and suppression of ReA2.

• In the strict large N limit, no evolution takes place:

z1 = 0, z2 = 1.0, z6 = 0, c1 = c2 = 0. (110)

Then only the operator Q2 contributes and its factorized
hadronic matrix elements imply a vanishing K 0 → π0π0

decay amplitude. Consequently

R = ReA0

ReA2
= √

2, (in large N limit) (111)

in plain disagreement with experiment. The same applies
for separate amplitudes as seen in (6).
In this starting point, hadronic matrix elements are eval-
uated in the free meson theory, which corresponds to the
factorization scale μ = O(mπ ), while the Wilson coeffi-
cients are calculated in a free (from the point of view of
strong interactions) theory of quarks, which corresponds
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to scales μ = O(MW ) and setting αs(MW ) = 0. In the
following steps the gap between these two vastly differ-
ent energy scales is filled with the QCD dynamics present
in quark–gluon and meson evolutions.

• The inclusion of a long but slow logarithmic quark–gluon
evolution from μ = MW down to μ = O(1 GeV),
termed in the past as octet enhancement [91,92], gen-
erates the operator Q1 and modifies z2 so that now

z1 < 0, z2 > 1.0, z6 = 0, c1 = c2 = 0, (112)

where we did not include yet QCD-penguin contribution.
Evaluating the Wilson coefficients of Q1 and Q2 at a scale
O(1 GeV) but keeping their hadronic matrix elements at
μ = 0, we find an enhancement of R by roughly a fac-
tor of two in the NDR-MS scheme, but more like three in
the MOM scheme. This difference is then canceled by the
scheme dependence of hadronic matrix elements but this
fact shows that the size of this enhancement attributed
to quark–gluon evolution (Wilson coefficients) and sep-
arately to meson evolution (hadronic matrix elements)
is both dependent on μ and the renormalization scheme
considered. As we use MOM scheme in our paper, we
quote using Table 3

Rcc(μ) = √
2

(
z2(μ) − z1(μ)/2

z2(μ) + z1(μ)

)

≈ 3.1
√

2 ≈ 4.4 (μ = 0.8 GeV), (113)

where with the index “cc” we indicate that only current–
current operator contributions have been taken into
account. In the NDR-MS scheme we find Rcc ≈ 3
instead. For the amplitudes at this stage we find in the
MOM scheme at μ = 0.8 GeV

ReA0 =7.1 × 10−8 GeV, ReA2 =1.6 × 10−8 GeV ,

(QG evolution). (114)

This means an enhancement of ReA0 by a factor of 2.0
and suppression of ReA2 by a factor of 1.6 relative to
the large N limit values in (6). While this result is very
encouraging, we should note that out of the missing factor
of 15.8 for R in the large N limit we have explained only
3.2. Therefore we have to include also QCD dynamics
below μ = 0.8 GeV.

• In our approach, switching next the short but fast
quadratic meson evolution from μ = 0 to μ =
O(1 GeV) in order to match the quark evolution provides
additional enhancement of ReA0 and additional suppres-
sion of ReA2 due to positive values of the coefficients c1

and c2:

Rcc = √
2

{
z2(1 + c1/2 + 3c2/2) − (z1/2)(1 + 2c1)

(z2 + z1)(1 − c1)

}

≈ 12.4, (115)

where we quoted the value obtained for μ = 0.8 GeV.
This is only 40 % below the experimental value in (2)
but does not yet include penguin contributions that will
enhance R in the direction of experimental value. Yet,
already with this dynamics we succeeded to explain the
factor 8.7 out of required factor of 15.8, that is, an order of
magnitude enhancement of Rcc of which 3.1 is attributed
to QG evolution and 2.8 to the M evolution.
For the amplitudes, at this stage we find in the MOM
scheme at μ = 0.8 GeV

ReA0 =13.3 × 10−8 GeV, ReA2 =1.07 × 10−8 GeV,

(QG + M evolution) (116)

We would also like to emphasize that for c2 = 0 the
amplitude ReA2 would remain unchanged but ReA0

would decrease relative to (116)

ReA0 = 9.1 × 10−8 GeV, Rcc = 8.5,

(QG + M evolution, c2 = 0). (117)

This tells us that the presence of mixing between Q2 and
Q6 operators represented by c2 in the meson theory plays
a larger role than c1 in enhancing ReA0 but has no impact
on ReA2.

• Finally the contribution from the penguin operators, in
particular from Q6, pointed out in [24], has to be taken
into account. This operator contributes only to ReA0 in
the isospin limit. Its Wilson coefficient z6 is negative and
GIM suppressed for μ significantly larger than mc. But
as shown in [24] if it is evaluated at μ as low as few
hundreds MeV, it then provides the dominant bulk of the
enhancement of ReA0. Even if perturbation theory breaks
down at such low scales, it is evident from our approach
that at such scales the meson evolution has only very
minor contribution to matrix elements of current–current
operators. In our case we have for μ = O(1 GeV)

Rp(μ) = 3
√

2

2

(
−r2(μ)


2
χ

)(
z6(μ)

z2(μ) + z1(μ)

)
. (118)

At these scales the QCD-penguin contribution to ReA0

gets smaller than in [24], but, as we will see below, it is
still significant.

In summary taking all effects into account we end up with

Rtot = Rcc + Rp

(1 − c1)
, (119)
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Fig. 3 Budgets for ReA2 (left)
and �ReA0 (right) summarizing
the size of different suppression
mechanisms of ReA2 and
enhancement mechanisms of
ReA0, denoted here by �ReA0,
for the matching scale
μ = M = 0.8 GeV. SD stands
for quark–gluon evolution and
LD for meson evolution. In the
case of �ReA0 we decompose
LD into contributions coming
from c1 and c2. QCDP stands
for Q6 contribution. See text for
detailed explanations

where Rp and Rcc are given in (118) and (115), respec-
tively. We emphasize again that the relative size of current–
current and QCD-penguin contributions to ReA0 depends
on the matching scale μ considered, and the QCD-penguin
contribution decreases with increasing μ. While in our case
the latter contribution will amount to more than 15 % of
ReA0, in lattice calculations that work at μ = (2–3) GeV,
current–current contributions dominate by far and the trace
of a significant QCD-penguin contributions found in our case
at lower μ should be found in the hadronic matrix element of
the current–current operator Q2. Clearly the final amplitudes
cannot depend on the chosen matching scale, but relative con-
tributions are μ-dependent.

With this insight, before presenting graphically the budget
of various contributions in Fig. 3, we will present the results
for ReA0 and ReA2 for other values of M with and without
vector meson contributions but always matching in the MOM
schemes as well as using the input of 2014.

8.5 Numerical analysis

In Table 1 we give the values of various quantities that
we kept fixed in our analysis. In particular the value of
ms relevant for QCD-penguin contribution has been eval-
uated at μ = 0.8 GeV. The values of c1,2(M2) includ-
ing and leaving out vector meson contributions are given
in Table 5.

Before presenting our results we would like to address the
following problems and state our solutions to them:

• Concerning meson evolution, in the case when only pseu-
doscalars are included, our results can only be trusted up
to the scale M = 0.6 GeV. When vector mesons are
included this range can be extended to scales M = (0.8–
0.9) GeV.

• Concerning quark–gluon evolution one would ideally
stop it around the scales explored by lattice calculations,
that is, μ = (2–3) GeV. But this is clearly impossible in
our approach and we have to evaluate the coefficients
at scales μ as low as 1 GeV and even 0.8 GeV. As
explained above we have evaluated the Wilson coeffi-
cients at NLO in the MOM scheme, which is the scheme
to be used to match with the meson evolution. The differ-
ences between MOM scheme and NDR-MS as shown in
Table 3 are sizable with the short-distance effects being
significantly larger in the MOM scheme. Therefore in
this scheme, as demonstrated already, the �I = 1/2
rule is more visible in the Wilson coefficients than in the
NDR-MS scheme used by lattice groups. This difference
must then be compensated by the corresponding values
of hadronic matrix elements.

When vector meson contributions are taken into account,
but higher resonances are not included, it is plausible that
the optimal matching scale is M = μ = 0.8. Indeed at
this scale the evaluation of both the contributions from the
meson and the quark–gluon evolutions can be trusted, even if
we cannot claim precision. However, it will be instructive to
provide the results also for the full range of 0.6 GeV ≤ μ =
M ≤ 1.0 GeV with and without vector meson contributions
in order to see how good the matching is.

In Table 7 we show the results for ReA2 and ReA0 includ-
ing only current–current contributions and calculating Wil-
son coefficients in the MOM scheme. We indicate by P and V
which meson contributions have been included. We observe:

• For scales M ≈ 0.8 GeV ReA2 is typically suppressed
by a factor of 2.4 relative to the strict large N limit,
which is slightly more than required by the data. More-
over, in the absence of vector meson contributions ReA2
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Table 7 The anatomy of the
current–current contributions to
the �I = 1/2 rule as function
of the matching scale. P and V
indicate that pseudoscalar and
vector mesons have been
included

M = μ (GeV) 0.6 0.7 0.8 0.9 1.0 Comments Data

108ReA2 (GeV) 1.06 1.04 0.97 0.88 0.77 (P) 1.21

108ReA2 (GeV) 1.11 1.11 1.07 1.00 0.91 (P + V) 1.21

108ReA0 (GeV) (cc) 14.2 13.7 13.6 13.6 13.7 (P) 27.0

108ReA0 (GeV) (cc) 13.9 13.4 13.3 13.4 13.6 (P + V) 27.0

Rcc 13.4 13.2 14.0 15.5 17.8 (P) 22.4

Rcc 12.5 12.0 12.4 13.4 14.9 (P + V) 22.4

Table 8 The values of c1(M2) extracted from the data on ReA2 for
different values of the matching scale in MOM and NDR-MS scheme

M (GeV) 0.6 0.7 0.8 0.9 1.0 Scheme

c1 0.133 0.201 0.244 0.272 0.295 MOM

c1 0.338 0.355 0.369 0.379 0.389 NDR-MS scheme

drops quickly down with increasing M . The inclusion
of vector meson contributions softens significantly this
suppression. Even if at μ = 0.8 GeV the amplitude
ReA2 is found by 12 % below the experimental value, this
result should be considered as a success of our approach.
Indeed ReA2 is rather close to the data after the vec-
tor meson contributions have been included. This allows
us to expect that a more complete treatment including
heavier resonances could further improve the matching
conditions and agreement with experiment.

• The amplitude ReA0 turns out to be rather insensitive to
the inclusion of vector contributions. At M = 0.8 GeV
roughly 50 % of its experimental value is described by
current–current contributions. This could appear disap-
pointing but one should remember that in the case of
the K 0 → π0π0 amplitude only the first non-vanishing
term in 1/N expansion has been included. Still ReA0 is
enhanced by a factor of 3.7 over its leading term which
should be regarded as a significant achievement. More-
over, as we will see soon, QCD-penguin contributions
help bring ReA0 closer to the data.

Concerning ReA2 we may ask what are the values of
c1(M2) that would reproduce exactly the experimental value
of ReA2. Following (109), such values are given by

c1(M2) = 1 − 0.476

(z1(M) + z2(M))
. (120)

We show the result of this exercise in Table 8. We emphasize
the scheme dependence of this result.

In order to complete the analysis we have to include QCD-
penguin contributions which further enhance ReA0. In this
context, we would like to recall the analysis in [10] where the
effects of an incomplete GIM mechanism above mc on the
mixing between current–current operators and the value of

Table 9 ReA2, ReA0, and Rtot including QCD-penguin contribution
for different values of |z6|B(1/2)

6 and the matching scale M = 0.8 GeV.
Both P and V are included. MOM scheme for zi has been used

|z6|B(1/2)
6 0.04 0.06 0.08 0.10 0.12 0.14 0.20 Data

108ReA2
(GeV)

1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.21

108ReA0
(GeV) (tot)

15.1 16.0 17.0 17.9 18.8 19.7 22.4 27.0

Rtot 14.1 15.0 15.8 16.7 17.5 18.4 20.9 22.4

z6 have been estimated. It has been found that these effects
could, at scale μ = (0.8–1.0) GeV, enhance |z6| by a factor
of 2 − 3 relative to the leading order result in which GIM is
assumed to be exact for μ ≥ mc. In Table 9 we show our final
result at M = μ = 0.8 GeV, including vector meson contri-
butions for different values of the product |z6|B(1/2)

6 . Its value
0.04 corresponds to the exact GIM mechanism above mc and
B(1/2)

6 = 1.0. The remaining values 0.06–0.14 correspond to
the effect of the incomplete GIM mechanism above mc esti-
mated in [10] and/or values B(1/2)

6 above unity. However, as

seen in Table 9 even for |z6|B(1/2)
6 = 0.20 the experimental

value of ReA0 cannot be fully reproduced.
In summary, we observe that our approach provides an

order of magnitude enhancement of R relative to the strict
large N result R = √

2. This enhancement follows mainly
from the suppression of ReA2 by a factor of 2.4 and the
enhancement of ReA0 by a factor of 3.7 from current–current
contributions. In this manner we improve significantly on
the original work on octet enhancement [91,92] where only
quark–gluon evolution has been taken into account and the
result was scale and renormalization scheme dependent.
Including QCD-penguin contributions the latter enhance-
ment increases to 4 in the case of exact GIM above μ = mc

and could be even as high as 5 if the effects of incomplete
GIM are taken into account. In this manner the main bulk
(factor 10–12) of the observed enhancement of R relative to
R = √

2 by a factor of 15.8 can be explained.
On the other hand while ReA2 is found only 12 % below

the data, ReA0 is found to be 40 % smaller than its measured
value when strict GIM mechanism is assumed above the
charm scale. Our analysis shows therefore that at the scales
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we are working QCD-penguin dynamics in the amplitude
ReA0 is relevant. The missing 40 % in ReA0 can be attributed
to the effects of higher resonances in the meson evolution for
current–current operators, higher 1/N corrections and, as
stated above and seen in Table 9, to non-GIM effects above
the charm scale and increased value of B(1/2)

6 . As our calcu-
lation of vector meson contributions has been performed in
the chiral limit, also here some improvements are possible. A
full AdS/QCD description should be able to provide a more
complete picture of the long-distance terms and the matching
of the amplitudes to the expected short-distance behavior. It
would also constrain any purely non-perturbative contribu-
tion not directly accessible through current–current operator
evolution and matching, such as the one from the �I = 1/2
weak mass operator (mU † + h.c.)ds coupled to either the
gluonic term [93] or the quark mass term of the strong trace
anomaly [94].

For higher matching scales as μ = (2–3) GeV, used in
lattice calculations, the role of QCD-penguins in ReA0 will
be much smaller. The incomplete GIM effects above mc dis-
cussed here should then be found dominantly in the enhanced
hadronic matrix elements of current–current operators, in
particular Q2. The comparison with latest lattice analyses
is given in the next section.

Finally, in Fig. 3 we show budgets for ReA2 (left) and
ReA0 (right) that summarize the size of different suppres-
sion mechanisms of ReA2 and enhancement mechanisms of
ReA0

7. SD stands for quark–gluon evolution and LD for
meson evolution. In the case of ReA0 we decompose LD
into contributions coming from c1 and c2. QCDP stands for
Q6 contribution. We set the matching scale at μ = 0.8 GeV.

In the case of ReA2 the division into SD and LD con-
tributions is straightforward as seen in (109). We find then
that 52 % of suppression of ReA2 comes from SD (violet)
and 48 % from LD (red). The color coding expresses the
ultraviolet and infrared character of the two contributions,
respectively.

The case of ReA0 is more complicated in view of the
fact that penguin contributions are present, the LD contri-
butions involve the coefficients c1 and c2 and finally, as
we have seen, we are not able to explain fully the missing
�ReA0 = 23.4 × 10−8 GeV relative to the large N limit.
We will normalize different contributions in the budget to
this additive contribution required by the data. Following
[10] we will assume that due to incomplete GIM mecha-
nism above mc QCD-penguin contributions are enhanced at
μ = 0.8 GeV by a factor of two so that |z6|B(1/2)

6 = 0.08.
Using the results in Table 9 we find then that 42 % of the
missing shift in ReA0 remains presently unexplained and
we present it in white. In this normalization QCD-penguin
contribution amounts to 17 % and corresponds to the green

7 We thank Jennifer Girrbach for providing these plots.

area with the color chosen to express the character of this
particular contribution.

The division between SD and LD current–current contri-
butions to �ReA0 is complicated by the fact, as seen in (108),
that, in contrast to ReA2, the coefficients of z1 and z2 involve
different LD factors. Therefore just switching off the LD part
or the SD part can only teach us about the relative importance
of these two contributions but their sum will miss by a factor
of 1.4 the total contribution from octet enhancement that one
obtains when these two contributions are simultaneously at
work. Correcting for this factor we finally find that the 41 %
contribution from octet enhancement of �ReA0 is, like for
ReA2, almost equally distributed between these two contri-
butions: SD (21 %) and LD (20 %). In order to stress the
importance of the mixing of Q2 and Q6 operators we divide
the LD contribution into two parts so that the effect of c2 in
enhancing ReA0 is roughly twice as large as the one of c1.
The part of LD related to c1 is again in red but c2 area repre-
senting the mixing of Q2 and Q6 or equivalently mixing of
red and green is consequently yellow.

Finally, we would like to refer to the analysis in [30] which
was done in the spirit of our approach except that for the
low-energy meson contributions an extended Nambu–Jona-
Lasinio model has been used resulting in differences in the
matching between long-distance and short-distance contribu-
tions. Also these authors find sizable enhancement of ReA0

and suppression of ReA2 but various uncertainties in their
model allow them only to quote the range 15 ≤ R ≤ 40. The
large value of R originates in a small value of ReA2 which
is more strongly suppressed than required and is typically by
30 % below its experimental value.

9 Comparison with lattice results

We will now compare our results with the results on ReA0 and
ReA2 from the RBC-UKQCD collaboration [37–40]. As the
normalization of ReA0 and ReA2 in the latter papers differs
from ours, we first have to define

ReA0 =
√

2

3
(ReA0)L , ReA2 =

√
2

3
(ReA2)L , (121)

where subscript L refers to the amplitudes in [37]. The latter
are given in terms of contractions ➀ and ➁ in Fig. 1 of that
paper that correspond to the diagrams (a) and (b) in our Fig. 1,
respectively. One has to be careful in this comparison, as in
[37] the Fierz transformed form of Q1 relative to the one
in (9) is used. Basically, Q2 contributes to K 0 → π+π−
and K 0 → π0π0 through contractions ➀ and ➁, respec-
tively, while in the case of Q1 the role of contractions is
interchanged. With this information, the diagrams (c) and
(d) in Fig. 1 are automatically included in the results for the
amplitudes which read [37]:
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Table 10 The two contractions
in the NDR-MS scheme for
μ = 2.15 GeV and resulting
ReA0 and R for different values
of K defined in (126) assuming
ReA2 to agree with data

K 0.50 0.60 0.70 0.80 0.85 0.90

➀ (GeV3) 0.0237 0.0296 0.0395 0.0593 0.0791 0.119

➁ (GeV3) −0.0119 −0.0178 −0.0277 −0.0474 −0.0673 −0.107

108ReA0 (GeV) 6.9 9.0 12.6 19.8 27.0 41.3

R 5.7 7.5 10.4 16.4 22.3 34.2

(ReA0)L = G F√
2

Vud V ∗
us

(
1√
3

)

[
z1 (2 ➁ − ➀) + z2 (2 ➀ − ➁)

]
, (122)

(ReA2)L

= G F√
2

Vud V ∗
us

√
2

3
(z1 + z2) (➀ + ➁) . (123)

Before comparing with our results let us find what values
of ➀ and ➁ at μ = 2.15 GeV, used in [37], would simul-
taneously reproduce the data for both amplitudes. With the
NDR-MS values z1 = −0.287 and z2 = 1.133 at μ =
2.15 GeV, we find

➀ = 0.0791 GeV3, ➁ = −0.0673 GeV3,

➁ = −0.85 ➀. (124)

It should be emphasized that these results apply to the
NDR-MS scheme and, as the contractions represent the
matrix elements, they must be both scheme and scale depen-
dent.

Now in [37] ➁ ≈ −0.7 ➀ is found. However, it should
be stressed that this numerical result is not in the NDR-MS
scheme but in the lattice scheme used there.8 The relative
sign of these two contractions found in [37] is an important
result and agrees with the sign we would obtain using the
same language, as discussed in more detail below.

We note also that in our normalization the lattice result for
ReA2 in [40] reads

ReA2 = (1.13 ± 0.21) × 10−8 GeV. (125)

The error is dominated by systematics. This result is in agree-
ment with the data and, within uncertainties, with our results
for ReA2 in Tables 7 and 9. In fact, though obtained using
a different approach, we find it remarkable that the central
value in (125) differs from our central value in (116) by only
6 %. This is still another support for the dual picture of QCD.

Not having the Wilson coefficients z1 and z2 in the lat-
tice scheme, but expecting that in the future all lattice results
will be quoted in the NDR-MS scheme used by phenome-
nologists, we may nevertheless investigate how the result for
ReA0 depends on the ratio of these two contractions in the
latter scheme assuming the data for ReA2. Defining then the
K factor by

8 Chris Sachrajda, private communication.

➁ = −K ➀ (126)

we show in Table 10 the results for the two contractions,
ReA0 and R for different values of K . As we use z1,2 in the
NDR-MS scheme for μ = 2.15 GeV, these results apply
only to this scheme and this scale.

We observe that the final results for the quantities in
Table 10 strongly depend on the value of K and for K ≈ 0.7,
the ratio R is in the ballpark of the ratio found in [37], even if
a different scheme is used there. Yet, in view of the comments
made above and the fact that the lattice result for ReA0 cor-
responds to non-physical kinematics this comparison is only
on a qualitative level. Still the message is clear. If the ratio K
in the NDR-MS scheme will be found significantly smaller
than K = 0.85 and agreement with the data on ReA2 will be
imposed, a satisfactory description of the data on ReA0, even
at scales μ = 2–3 GeV, will not be possible with ➀ and ➁

only. The rescue could come then from other contractions that
involve QCD-penguin contributions. These contributions are
presently estimated in [37] to be very small. But the situation
may change when the calculations are performed at physical
kinematics.

Comparing the expressions (122) and (123) with our
results in (108) and (109) and taking into account different
normalization we can express the contractions ➀ and ➁ in
terms of X F and c1. To this end we have to set c2 = 0 and
drop penguin contributions. We find then

➀ = X F√
2
, ➁ = −c1

X F√
2
, K = c1. (127)

It should be remembered that contractions and also K = c1

are scheme and scale dependent and the ones given here are
in the MOM scheme. However, already this result offers the
explanation of the positive sign of ➀ and of negative sign
of ➁ found in [37]. In particular, the latter sign follows in
our approach from the proper matching of the anomalous
dimension matrices in the meson and quark–gluon pictures
of QCD.9 Therefore the result obtained in [37] is an impor-
tant support for our dual QCD approach to weak decays, in
particular as the lattice calculations will eventually provide
much more precise results than can be obtained in our ana-
lytic approach. Even if with X F = 0.0298 GeV3 the values
of the contractions in (127) appear at first sight to be much

9 As a side remark let us note that within VIA K = c1 = −1/3 which
is at variance not only with our results but also with the findings in [37].
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smaller than the ones collected in Table 10, it can be demon-
strated that they are fully compatible with the dynamics at
scales O(2 GeV).

Indeed, the authors of [37] work at μ = 2.15 GeV and
we at M ≈ 0.8 GeV. Therefore our K factor must be dif-
ferent from the one in lattice calculations. It must be smaller
and, as seen in Table 5, this is indeed the case. Therefore
the numerical comparison of the results of [37] with ours
must also involve the Wilson coefficients zi . The fact that
our approach and lattice approach predict similar values for
ReA2 implies the compatibility of both approaches as far as
�I = 3/2 transitions are concerned.

The comparison of both approaches in the case of ReA0

is more difficult because in our approach the QCD-penguin
contributions cannot be neglected. Moreover, in our approach
the mixing of Q2 operator with Q6 operator represented by c2

constitutes a significant part of the enhancement of ReA0 in
the current–current sector. We have emphasized it in previous
sections and in Fig. 3. On the basis of the formulas in (105)
and (106) we expect that the latter effects are present in the
hadronic matrix elements of the operator Q2 evaluated at the
lattice scales.

In this context it is interesting to note that in the strict large
N limit

➀ = 0.0210 GeV3, ➁ = 0, (μ ≈ 0) (128)

which drastically differs from the values of contractions in
Table 10 for K ≥ 0.6 that correspond to μ = 2.15 GeV. Yet
the fast meson evolution and the presence of significant QCD
penguin contributions, both through their diagonal evolution
and mixing with Q2 operator, allows us, as seen in Tables 9
and 10, to obtain values of ReA0 that with the contractions
considered in [37] can only be obtained for K as large as
K ≈ 0.75 within the NDR-MS scheme.

This discussion shows that, at least at a semi-quantitative
level, the recent lattice results can be interpreted within the
dual representation of QCD as a theory of weakly interact-
ing mesons for large N . A more detailed comparison will
only possible when lattice results for ReA0 with physical
kinematics will be available.

10 KL − KS mass difference

10.1 Preliminaries

We begin our discussion by summarizing the status of short-
distance contributions to �MK within the SM. For that pur-
pose we decompose it as follows:

�MK = (�MK )cc + (�MK )ct + (�MK )tt + (�MK )LD,

(129)

with the first three short-distance contributions obtained from
usual box diagrams and the last term standing for long-
distance contributions. The second and third term contribut-
ing at most 1 % to �MK [95,96] will be neglected in what
follows. For the dominant contribution we have

(�MK )cc = G2
F

3π2

(
Vud V ∗

us

)2
F2

K B̂K mK ηccm2
c(mc). (130)

The QCD factor ηcc including NLO [97] and NNLO [95]
QCD corrections is unfortunately subject to very large uncer-
tainties:

ηcc = 1.87(76), (131)

so that [95]

(�MK )cc = (3.1 ± 1.2)10−15 GeV

= (0.89 ± 0.34)(�MK )exp (132)

with the experimental value given in (3). We conclude there-
fore that extracting (�MK )LD from the data on the basis of
this calculation is impossible as this would imply the range
of values between 45 to −21 % of the measured value. As
we will demonstrate below, from our approach (�MK )LD

is known much better and this invited the authors of [96] to
use this result for the extraction of ηcc from (�MK )exp. In
this manner the uncertainty in the evaluation of εK could be
reduced.

10.2 (�MK )LD in the strict large N limit

We have seen that the large N value for B̂K is supported by
the latest lattice results. So, we feel rather confident about
calculating the KL − KS mass difference within the same
approximation [21,26].

In order to get some feeling for the size of effects, we
calculate first (�MK )cc in the strict large N limit. In this
case B̂K = 3/4 but in addition ηcc = 1 in (130). Yet for
the very low values of scales used for the evaluation on B̂K

we cannot use mc(mc) but rather its constituent mass mc =
1.5 ± 0.1 GeV. This rough estimate results in (66 ± 9) %
of the measured value attributed to short-distance part and
+(34±9) % to the LD contribution. The important message
from this simple exercise is the positivity of (�MK )LD. Yet,
we would like to provide a better estimate.

Applying this strategy but not using the constituent charm
quark mass, it is quite convenient to parametrize the full
�MK as follows (BK = 3/4):

�MK = G2
F

4π2

(
Vud V ∗

us

)2
F2

K mK M2
�

= (10−15 GeV−1)M2
�. (133)
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From the experimental value (3) of this mass splitting, we
easily extract

Mexp
� = 1.87 GeV. (134)

In the effective Fermi theory, such a scale has been associ-
ated with the mass of some new degree of freedom to appear
in the UV completion. First misidentified as the mass of a
hypothetical W weak boson, this �S = 2 scale has then been
eventually linked (with the help of the GIM mechanism) to
the mass of a yet-to-be-discovered charm quark [98]. Work-
ing again in the m2

π = 0 limit, let us estimate M� in the large
N limit.

A straightforward calculation of the standard box-diagram
involving only virtual charm or (and) up quarks gives then

M2
�(SD) = m2

c − M2 + m2
K ln

(
m2

c/M2
)

−(5/6)m2
K + O

(
m4

K /M2
)

, (135)

if M is the IR cutoff for the high W -momenta:

M2 < q2
W < m2

c . (136)

In (135), the relative sign between the first two quadratic
terms results from the GIM mechanism at work (mu = 0)

while the third logarithmic one arises when keeping the exter-
nal momentum for the strange quarks (md = 0).

At long distance, the K and π one-loops generated by
Q2 ⊗ Q2 give

M2
�(LD) = (7/4)M2 − (3/4)m2

K ln(M2/m2
K )

+(11/24)m2
K + O(m4

K /M2), (137)

if M is the UV cutoff for the low W -momenta:

0 < q2
W < M2. (138)

With this unambiguous identification of the momentum
across the SD–LD frontier, we can consistently impose the
M-independent condition

∂/∂ M2
[

M2
�(SD) + M2

�(LD)
]

= 0 (139)

to get an optimal matching scale remarkably close to the light
vector meson mass, namely

M =
√

7

3
mK ≈ mV ≈ 0.8 GeV. (140)

If we vary the cutoff around this natural matching scale (say,
0.5 GeV < M < 1.0 GeV), the LD contribution relative to the
measured �MK mass difference turns out to be (30 ± 15) %
in a remarkable agreement with our previous estimate. But
within our dual picture of QCD we always have to combine
the LD contribution with its complementary, namely the SD
one, to get any observable. Doing so with (135) and (137), we

now observe a remarkable stability with respect to variations
of M in the same energy range:

�MK (SD + LD) = (0.80 ± 0.10)(�MK )exp. (141)

In fact, the main uncertainty in this large N estimate of the
KL − KS mass difference arises from the charm quark (con-
stituent) mass taken here to be mc = (1.5 ± 0.1) GeV.

10.3 Non-leading corrections

In the 1/N expansion, leading and subleading contributions
to �MK correspond to the same topologies as for the BK ,
once the fictitious color-singlet boson is replaced by two
physical W ′s. Consequently, one might expect the 1/N cor-
rections to the KL − KS mass difference to be negative and
thereby modify our previous estimate. As we will show now
this is indeed the case for the LD (π , η, and η′) pole contribu-
tions generated this time by Q1 ⊗ Q1. However, we already
know from BK how a partial 1/N estimate can misrepresent
the physical world.

Our simple analytical approach can be extended to the
full nonet of pseudoscalars (η0 included) to disentangle the
QCD-penguin operator Q6 from Q2 − Q1:

Q6(0) = −
(

r2/
2
χ

)
(Q2 − Q1 + Q3)(0) (142)

with the new current–current operator

Q3 = 4(sLγ μdL)(qLγμqL) (143)

proportional to ∂μη0. As a result, it can easily be applied to
other observables somehow related to the empirical �I =
1/2 rule, such as radiative K -decay rates [99] or the O(G2

Fε′)
weakly induced strong θ parameter [100]. In the same manner
the 1/N -suppressed (π, η, η′) pole contribution to the �MK

are found to be [99]

�MK (pole) ≈ −0.3(�MK )exp, (144)

canceling significantly the leading order estimate. Our final
estimate of LD contributions to �MK within our approach
including estimates of leading and next to leading corrections
gives then

(�MK )LD ≈ (0.2 ± 0.1)(�MK )exp. (145)

This result is consistent with the analysis of (�MK )LD in the
context of the calculation of long-distance effects in εK [101].
Using it in (129) and (130) and assuming no new physics
contributions to �MK , one extracts ηcc from the data to be
[96]

ηcc = 1.7 ± 0.2 (146)

with an error almost four times smaller than the error in the
direct calculation in (131). It should be emphasized that this
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value should not be confused with ηcc = 1 used in our exer-
cise before as in this extraction mc(mc) = 1.28 GeV has
been used in order to compare with the result in (131). If
mc = 1.5 GeV was used instead, we would find ηcc =
1.23 ± 0.15, fully compatible with ηcc = 1. We note that
for the computation of charm contribution to εK only the
product ηccm2

c enters and if ηcc is extracted from experimen-
tal value of �MK it is immaterial which of these two values
of mc are used.

Needless to say, we are aware of the fact that our estimate
in (145) requires more detailed investigations and in partic-
ular future confirmation from lattice simulations. Presently,
no reliable result on (�MK )LD from lattice simulations is
available but important progress toward its evaluation has
been made in [57]. This first result seems to indicate that
(�MK )LD could be larger than expected by us. We are
therefore looking forward to more precise evaluation of this
important quantity from the lattice in order to see whether
also in this case large N approach passed another test or
not.

11 Conclusions

Motivated by the recent advances in the computation of non-
perturbative parameters in the Kaon system by several lat-
tice collaborations [41–43], in particular the RBC-UKQCD
collaboration, we have reviewed our results obtained in the
1980s within the dual representation of QCD as a theory of
weakly interacting mesons for large N . This includes in par-
ticular:

• The parameter B̂K ,
• The isospin amplitudes ReA0 and ReA2,
• KL − KS mass difference.

It is remarkable that the recent lattice QCD results using
dynamical fermions confirm our finding of 1980s that B̂K

is very close to its large N value. Relative to our first paper
on B̂K [12], where only pseudoscalar meson contributions
have been taken into account, the inclusion of vector meson
contributions, already advocated by one of us in [21,48],
decreased significantly the left-over scale dependence of B̂K

bringing it very close the its large N value of 3/4. The numer-
ical confirmation of this result by a number of lattice groups
gives support for our work of 1980s. The smallness of 1/N
corrections to the large N value B̂K = 3/4 results, within
our approach, from an approximate cancelation between the
pseudoscalar and vector meson one-loop contributions. This
is clearly demonstrated in Table 4.

Concerning �I = 1/2 rule our physical explanation,
stated already in the abstract and discussed in detail in Sect. 8,
is based on the evolution from high-energy scales down to

very low-energy scales at which factorization of the hadronic
matrix elements into products of current matrix elements in
the case of current–current operators and quark densities in
the case of QCD-penguin operators is recovered. As the long
but slow quark–gluon evolution and short but fast meson
evolution involve different degrees of freedom, the match-
ing around the O(1 GeV) scale is more challenging than
in lattice QCD which works with quarks and gluons only.
Yet, as we have shown, when vector meson contributions are
included and the Wilson coefficients are calculated in the
MOM scheme the matching is very good in the case of ReA0

but also satisfactory for ReA2 which is found close to its
experimental value and also to its lattice value. We expect
that the inclusion of heavier resonances and going beyond
the chiral limit estimate of vector meson contributions will
further bring the theory closer to the data.

As seen in Table 7, the current–current operators alone
can at scales considered by us explain roughly 60 % of the
�I = 1/2 rule. As pointed out by us in [11], this should
be considered as the dominant mechanism of the �I = 1/2
rule as it suppresses ReA2 amplitude and enhances ReA0. It
should be emphasized that the quark–gluon evolution with
the present value of αs is insufficient to suppress ReA2 in
order to reproduce the data. Additional suppression is nec-
essary from hadronic matrix elements. In our approach this
is achieved through fast meson evolution, which while sup-
pressing ReA2 enhances further ReA0. The recent findings
by the RBC-UKQCD lattice collaboration confirm this pic-
ture in a spectacular manner in the case of ReA2, but also the
enhancement of ReA0 in lattice simulations is very interest-
ing. While the latter approach obtains presently R ≈ 11, the
results for ReA0 are still obtained using non-physical kine-
matics and improving on this in the future should enhance R
toward its experimental value.

Yet, at the scales we are working, QCD-penguins provide
a significant contribution to ReA0, in particular as the value
of the strange quark mass decreased relative to our analysis
in 1986. We find then R ≈ 16.0±1.5 that depends on the size
of incomplete GIM mechanism that deserves further study
in the MOM scheme together with 1/N corrections to the
hadronic matrix elements of Q6. These effects and inclusion
of higher mass resonances could provide the explanation of
the missing 30 % in ReA0. The present budgets of different
mechanisms suppressing ReA2 and enhancing ReA0 in our
approach are summarized in Fig. 3.

In the case of lattice calculations normalized around
2 GeV, explicit QCD-penguin contributions to ReA0 are
much smaller as the GIM suppression is still rather effective
at these scales. The significant contribution of QCD-penguins
should then be found in the enhanced matrix elements of
current–current operators, in particular Q2 operator. In our
approach this corresponds to the increased value of the coef-
ficient c2, which, as seen in Table 5, increases with increased
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value of M . This increase, as seen in (108), enhances ReA0

in addition to the enhancement through c1.
From the point of view of our approach the RBC-UKQCD

lattice collaboration clearly identified the effects in both
amplitudes coming from the enhanced value of c1. The
next step would be to separate the enhancement of ReA0

through c1 from the one through c2. This would be sig-
naled by an enhanced matrix elements of the Q2 operator
in K 0 → π+π− and K 0 → π0π0 decays. It should also be
investigated whether the role of QCD-penguin operator Q6 at
these higher scales is indeed as small as presently implied by
lattice results. It would also be interesting to perform lattice
calculations of hadronic matrix elements at several values of
μ including those considered in our paper in order to verify
meson evolution of hadronic matrix elements more precisely
than can be done in our approach.

While our analytic approach allowed us to identify the
dynamics behind the observed �I = 1/2 rule, the precision
calculations of ReA0 and ReA2 can only be obtained from
lattice QCD although it will take some time before uncer-
tainties in these amplitudes will be reduced down to 10 %
level. Whether the lattice approach will be able, on its own,
to provide the physical explanation of the dynamics behind
the �I = 1/2 rule remains to be seen. It would also be
important to make further efforts in the context of realistic
AdS/QCD descriptions of the 1/N expansion as this should
allow more a precise interpolation of the meson amplitudes to
scales explored by the lattice community. In this manner, the
comparison of the 1/N expansion with the unquenched lat-
tice results could be made more explicit. It would also allow a
closer look at the upper bound on B̂K at these higher-energy
scales.

In summary, it is quite encouraging that our simple ana-
lytic framework improved by the inclusion of vector mesons
and proper matching to short-distance Wilson coefficients
yields consistent results in good agreement with the data.
Simultaneously, it provides a simple picture of the dynam-
ics behind the �I = 1/2 rule which as the basis has the
main property of QCD: asymptotic freedom and the related
evolutions of weak matrix elements which at long-distance
scales can be performed in the dual representation of QCD
as a theory of weakly interacting mesons for large N .
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