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Abstract In this work, we have studied the accretion of
dark energies onto a Morris—Thorne wormhole. Previously,
inref. (Gonzalez-Diaz, arXiv:hep-th/0607137), it was shown
that for quintessence like dark energy, the mass of the worm-
hole decreases, and for phantom like dark energy, the mass of
the wormhole increases. We have assumed two types of dark
energy: the variable modified Chaplygin gas and the general-
ized cosmic Chaplygin gas. We have found the expression of
the wormhole mass in both cases. We have found the mass of
the wormhole at late universe and this is finite. For our choices
of the parameters and the function B(a), these models gener-
ate only quintessence dark energy (not phantom) and so the
wormhole mass decreases during the evolution of the uni-
verse. Next we have assumed the five kinds of parametriza-
tions of well-known dark-energy models. These models gen-
erate both quintessence and phantom scenarios i.e., phantom
crossing models. So if these dark energies accrete onto the
wormhole, then for the quintessence stage, the wormhole
mass decreases up to a certain value (a finite value) and then
again increases to an infinite value for the phantom stage
during whole evolution of the universe. That means that if
the five kinds of DE accrete onto a wormhole, the mass of
the wormhole decreases up to a certain finite value and then
increases in the late stage of the evolution of the universe.
We have also shown these results graphically.

1 Introduction

Due to recent observations it is strongly believed that the uni-
verse is experiencing an accelerated expansion. The type Ia
supernovae and cosmic microwave background (CMB) [1,2]
observations have shown evidence to support cosmic acceler-
ation. This acceleration is caused by some unknown matter,
which has the property of having positive energy density and
negative pressure satisfying p + 3p < 0, dubbed as ‘dark
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energy’ (DE) [3-6]. If p + p < 0, it is dubbed ‘phantom
energy’. The combined astrophysical observations suggest
that the universe is spatially flat and the dark energy occupies
about 70 % of the total energy of the universe; the contribu-
tion of dark matter is ~ 26 %; the baryon contribution is 4 %,
and we have negligible radiation. A cosmological property in
which there is an infinite expansion in scale factor in a finite
time is termed a ‘big rip’. In phantom cosmology, the big rip
is a kind of future singularity in which the energy density
of phantom energy will become infinite in a finite time. To
realize the big rip scenario the condition p 4+ p < 0 alone
is not sufficient [7]. Distinct data on supernovas showed that
the presence of phantom energy with —1.2 < w < —1 inthe
universe is highly likely [8]. In this case the cosmological
phantom energy density grows at large times and disrupts
finally all bounded objects up to subnuclear scale.

A wormhole is a feature of space that is essentially a
‘shortcut’ from one point in the universe to another point
in the universe, allowing travel between them that is faster
than it would take light to make the journey through normal
space. So the wormholes are tunnels in spacetime geom-
etry that connect two or more regions of the same space-
time or two different spacetimes [9]. Wormholes may be
classified into two categories—Euclidean wormholes and
Lorentzian wormholes. The Euclidean wormbholes arise in
Euclidean quantum gravity; the Lorentzian wormholes [10]
are static spherically symmetric solutions of Einstein’s gen-
eral relativistic field equations [11]. In order to support such
exotic wormhole geometries, the matter should violate the
energy conditions (null, weak and strong), but the average
null energy condition is satisfied in wormhole geometries
[12—14]. For small intervals of time, the weak energy con-
dition (WEC) can be satisfied [15]. Also the traversable
wormhole solutions of the field equations are obtained [16].
Recently evolving wormhole solutions and their implications
have been discussed by several authors [17-24].

The equations of motion for steady-state spherical sym-
metric flow of matter into or out of a condensed object
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(e.g. neutron stars, ‘black holes’, etc.) are discussed by
Michel [25] and also he obtained an analytic relativistic
accretion solution onto the static Schwarzschild black hole.
The accretion of phantom dark energy onto a Schwarzschild
black hole was first modeled by Babichev et al. [26,27]. They
established that the black hole mass will gradually decrease
due to a strong negative pressure of the phantom energy and
finally all the masses tend to zero near the big rip, where it
will disappear. Accretion of a phantom like variable modi-
fied Chaplygin gas onto Schwarzschild black hole was stud-
ied by Jamil [28] who showed that the mass of the black
hole will decrease when accreting fluid violates the dom-
inant energy condition and otherwise will increase. Also
the accretion of dark energy onto the more general Kerr—
Newman black hole was studied by Madrid et al. [29] and
Bhadra et al. [30]. Till now, several authors [31-45] have dis-
cussed the accretion of various components of dark energy
onto black holes. Recently, there has been a great interest in
the study of dark-energy accretion onto a static wormhole
[46-48]. The phantom energy accretion onto a wormhole is
discussed by Gonzdlez-Diaz [49]. Madrid et al. [50] studied
the dark-energy accretion onto black holes and worm holes
phenomena could lead to unexpected consequences, allow-
ing even the avoidance of the considered singularities. Also
Martin-Moruno et al. [51] have considered a general for-
malism for the accretion of dark energy onto astronomical
objects, black holes, and wormholes. It has been shown that
in models with four dimensions or more, any singularity with
a divergence in the Hubble parameter may be avoided by a
big trip, if it is assumed that there is no coupling between
the bulk and this accreting object. If this is not the case in
more than four dimensions, the evolution of the cosmologi-
cal object depends on the particular model. The dark-energy
accretion onto a wormhole in an accelerating universe has
also been discussed [52,53] recently.

In the following section, we assume the Morris—Thorne
static wormhole in the presence of a dark-energy filled uni-
verse. If dark energy accretes onto the wormhole, the rate
of change of mass of the wormhole is expressed in terms
of the density and pressure of the dark energy and we
also find the expression of the wormhole mass in terms of
the density. Our main motivation of the work is to exam-
ine the nature of the mass of the wormhole during the
expansion of the universe if several kinds of dark ener-
gies accrete around the wormhole. The candidates of dark
energy are assumed to be the variable modified Chaply-
gin gas (VMCG) and the generalized cosmic Chaplygin gas
(GCCQG). Also we have assumed some kinds of parametriza-
tions of dark-energy candidates. The mass of the wormhole
has been calculated for all types of dark energies and its
nature has been analyzed during the expansion of the uni-
verse. Finally, we give some concluding remarks of the whole
work.

@ Springer

2 Accretion phenomena of dark energy onto wormhole

Let us consider spherically symmetrical accretion of the dark
energy onto the wormhole. We consider a non-static spheri-
cally symmetric Morris—Thorne wormhole metric [9] given
by

ds? = —e®0di? + —— 412 <d92 + sin? 9d¢2) (1
1- X0

where the functions K (r) and ®(r) are the shape function
and redshift function, respectively, of the radial co-ordinate
r.If K(rg) = ro, the radius rg is called the wormhole throat
radius. So we want to consider the outward region such that
ro <r < oo.

A proper dark-energy accretion model for wormholes
should be obtained by generalizing the Michel theory [25]
to the case of wormholes. Such a generalization has been
already performed by Babichev et al. [26,27] for the case
of dark-energy accretion onto Schwarzschild black holes.
We shall follow now the procedure used by Babichev et al.
[26,27], adapting it to the case of a Morris—Thorne wormhole
[52]. For this purpose, we consider the energy-momentum
tensor for the dark energy (DE) in the form of a perfect fluid
having the EoS p = p(p), which is

Ty = (o + pluyuy + pguy (2)

where p and p are the energy density and pressure of the
dark energy, respectively, and u”* = % is the fluid four-
velocity satisfying u*u,, = —1. We assume that the in-falling
dark energy fluid does not disturb the spherical symmetry of
the wormhole. Now we assume ®(r) = 0. The relativistic
Bernoulli equation after the time component of the energy-
momentum conservation law 7" = 0 provides the first
integral of motion for static, sphérically symmetric accretion

onto a wormhole which yields [52]

-1 1
M= u(p+ p) (1 - —K(’)) (u2+@ - 1>2=c1
r

;
3

where M is the exotic mass of the wormhole, u = % (>
0) is the radial component of the velocity four-vector and
the integration constant C; has the dimension of the energy
density.

Moreover, the second integration of motion is obtained
from the projection of the conservation law for the energy-
momentum tensor onto the fluid four-velocity, u,, T} = 0,
which gives [52]
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where C> (> 0) is a dimensionless integration constant, pso
is the dark-energy density at infinity. Further the value of
the constant C» can be evaluated for different dark energy
models. The critical point for this accretion process has been
found in [54].

The rate of change of the mass M of the exotic worm-
hole is computed by integrating the flux of the dark energy
over the entire two-dimensional surface of the wormhole, i.e.,
M = § T/ dS, where T, represents the radial component of
the energy-momentum densities and dS = /—gdfd¢ =
rZsin 0dode¢ [26,55] is the element of the wormhole sur-
face. Using the above equations we obtain the rate of change
of mass as [52]

- (. K\
M= —47 QM (“T) 0+ p) )

where Q is a positive constant. For the relevant asymptotic
regime r — 00, the above equation reduces to

M = —47QM?(p + p). (©6)

We see that the rate for the wormhole exotic mass due to
the accretion of dark energy becomes exactly the negative of
the similar rate in the case of a Schwarzschild black hole,
asymptotically. Since the Morris—Thorne wormhole is static,
the mass of the wormhole depends on r only. When some
fluid accretes outside the wormhole, the mass function M of
the wormbhole is considered as a dynamical mass function
and hence it should be a function of time also. So M of Eq.
(6) is time dependent and the increasing or decreasing of the
wormhole mass M sensitively depends on the nature of the
fluid which accretes upon the wormhole. If p + p < 0, i.e.,
for phantom dark-energy accretion, the mass of the wormhole
increases butif p+ p > 0, i.e., for non-phantom dark-energy
accretion, the mass of the wormhole decreases [52]. In the
following, we shall assume different types of dark-energy
models, such as variable modified Chaplygin gas, generalized
cosmic Chaplygin gas and parametrizations of some kinds
of well-known dark energy models. The nature of the mass
function of the wormhole will be analyzed for present and
future stages of expansion of the universe when the above
types of dark energies are accreting upon the wormhole.

2.1 Variable modified Chaplygin gas as dark-energy model
We consider the background spacetime to be spatially flat,

represented by the homogeneous and isotropic FRW model
of the universe which is given by

ds? = —dr® + a*(t) [dﬂ +r2(d6? + sin29d¢2)] )

where a(¢) is the scale factor. We assume that the universe is
filled with a VMCG and the EoS is [56] given by

B(a) . .
p:A,o——a with 0 <o <1, Ais constant > 0. (8)
0

Here B(a) is the function of scale factor a and for simplicity
we choose B(a) = Bpa™", where By > 0 and n > 0 are
constants.

The Einstein equations for the FRW universe are (choos-
ing8nG=c=1)

1

30 ©))

. 1
H=—=(p+)p).
> (p+p)

H* =
(10)

The conservation equation satisfied by the dark-energy
model VMCQG is

p+3H(p+p)=0 (1)

where H = g is the Hubble parameter. Using Eqgs. (7) and
(10), we have the solution of p:

_ 3(1 4 a)By 1l c T+
CLBA+a) 1+ A) —n} ar  @30FA0)
(12

where C > 0 is an arbitrary integration constant and 3(1 +
A)(1 + ) > n, for positivity of the first term.
Using Egs. (6), (9), and (11), we have [51,57]

=T omo (13)
=—=0M"p~2p,

NG
which integrates to yield

o )

where My and pg are the present values of the wormhole mass
and density of the dark energy, respectively. Using Eq. (9),
we get the mass function in terms of the Hubble parameter
H in the form [51,57]

1 —81 QMo (H — Hp)

(14)

M (15)
where Hy is the present value of the Hubble parameter. In the
late stage of the universe i.e., when a is very large (z — —1),
the mass of the wormhole will be

_ My

- 87 OM, :
1+ % v Po

If we put the solution p from Eq. (12) in Eq. (14), the mass

of the wormhole M can be expressed in terms of the scale
factor a and then use the formula of the redshift z = % —1,

(16)
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Fig. 1 The variations of the wormhole mass M against the redshift z
for the VMCG models

M will be defined in terms of the redshift z. M vs. z is drawn
in Fig. 1. For our choice of the function B(a), the VMCG
gives only the quintessence dark energy, not the phantom
dark energy. So the mass of the wormhole always decreases
for our case. From the figure, we see that M decreases with
z decreasing. So the mass of the wormhole decreases if the
VMCG accretes onto the wormhole.

2.2 Generalized cosmic Chaplygin gas as the dark-energy
model

A new version of the Chaplygin gas which is known as GCCG
[58,59] obeys the equation of state

p=-p° [C + (p”“ - C)_w} a7

where C = (1-?-_/11}) — 1, A’ is either a positive or a negative
constant, —/ < w < 0,0 < «a < 1,and! > 1. The EOS
reduces to that of the current Chaplygin unified models for
dark matter and dark energy in the limit w — 0 and satisfies
the conditions: (i) it becomes a de Sitter fluid at late time
and when w = —1, (ii) it reduces to p = wp in the limit
that the Chaplygin parameter A’ — 0, (iii) it also reduces
to the EOS of current Chaplygin unified dark matter models
at high energy density, and (iv) the evolution of the density
perturbations derived from the chosen EOS becomes free
from the pathological behavior of the matter power spectrum
for physically reasonable values of the involved parameters
at late time. This EOS shows the dust era in the past and
ACDM in the future.

From the conservation equation (10), we have the expres-
sion for the energy density of GCCG in the form [58,59]

B 5™
p=|C+ (1 + _a3<1+a>(1+w>> : (18)
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Fig. 2 The variations of the wormhole mass M against the redshift z
for the GCCG models

In the late stage of the universe i.e., a is very large (z — —1),
and the mass of the wormhole will be
My
M= p—— ; . (19)
1— % ((1 + C)xH — \/%)

If we put the solution p from Eq. (18) in Eq. (14), the
mass of the wormhole M can be expressed in terms of the
scale factor a and hence M will be defined in terms of the
redshift z. M vs. z is drawn in Fig. 2. The GCCG gives only
the quintessence dark energy, not the phantom dark energy.
So the mass of the wormhole always decreases for our case.
From the figure, we see that M decreases with z decreasing.
So the mass of the wormhole decreases if the GCCG accretes
onto the wormhole.

2.3 Some parameterizations of dark-energy models

In an astrophysical sense, the dark energy is popular as it has
a redshift parametrization (i.e., taking the redshift z as the
variable parameter of the EoS only) of the EoS as p(z) =
w(z)p(z). The EoS parameter w is currently constrained by
distance measurements of type Ia supernovae and the current
observational data constrain the range of EoS as —1.38 <
w < —0.82 [60]. Recently, the combination of WMAP3 and
Supernova Legacy Survey data shows a significant constraint
on the EOS, w = —0.971“8:8; for the DE, in a flat universe
[61]. Two mainstream families of red shift parametrizations
are considered here, viz.,

n

IZ? . In this case, the
conservation equation (11) gives the solution

(1) Family I: w(z) = wo + w (

o= po(l + Z)3(1-0—w())e3(—1)*"111]{Beza[l-}—z,—n,1-}—11]-0—7'[ cosec rm}.
(20)
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(i1) Family IT: w(z) = wo+w (lJf—Z),l The solution becomes

3wy M71
o= 100(1 + Z)3(1+w0)e n(n—1) |:(1+z)" ]

2D
Here wo and w; are two unknown parameters, which can
be constrained by recent observations and n is a natural
number. For different values of n, we will get the follow-
ing three models of well-known parametrizations (Models
I, I, and IIT). We shall also assume two other parametriza-
tions (Models IV and V). The following models generate
both quintessence (w(z) > —1) and phantom (w(z) < —1)
dark energies for some suitable choices of the parame-
ters. So a phantom divide is possible at the ACDM stage
w(z) = —1. At the first stage, there occurs quintessence and
in the late stage there occurs phantom dark energy. So for the
quintessence stage, the mass of the wormhole decreases and
is decreasing up to a certain limit (of the mass) and then again
at the phantom stage, the mass of the wormhole increases.

e Model I (Linear): For n = 0, family II reduces to
the parametrization form w(z) = wo + wiz [62]. This
is known as the ‘Linear’ parametrization. For the linear
parametrization, the solution becomes

o= pO(l + Z)3(1+w0—w1)e3w11' (22)

The above model generates phantom energy if w(z) < —1
ie.,z < —1;’1"0 provided w; > 0 and w; — wo > 1. If
we drop this restriction, this model gives the quintessence-
type dark energy. Since this model is the phantom crossing
model, if this dark energy accretes onto a wormhole, for
the quintessence era, the wormhole mass decreases up to
a certain limit and after that, for the phantom era, the mass
of the wormhole increases. We have shown this scenario
in Fig. 3. We see that the wormhole mass M decreases

with redshift z decreasing up to certain stage of z (ACDM

1.8 , Model I (Linear) A

1.6

12F

-0.5 0.0 0.5 1.0 1.5 2.0

Fig. 3 The variations of the wormhole mass M against the redshift z
for Models I, respectively
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Fig. 4 The variations of the wormhole mass M against the redshift z
for Models II, respectively

stage) and then M increases (phantom era) as the universe
expands.

e Model II (CPL): For n = 1, both families I and II lead to
the parametrization w(z) = wo + w %ﬂ This is known
as ‘CPL’ parametrization [63,64]. The solution becomes

p = po(1 4 ) Hwotwn =T 23)

The above model generates phantom energy if w(z) < —1,

iiiﬂ’ provided w; > —1 and w; — wg > 0. If
we drop this restriction, this model gives the quintessence
type dark energy. This model is also the phantom crossing
model. From Fig. 4, we see that the wormhole mass M
decreases for redshift z decreasing up to certain stage of
z (ACDM stage) and then M increases (phantom era) as
the universe expands.

e Model III (JBP): For family /I, n = 2 gives the
parametrization w(z) = wo + w 1(1f—z)2. This is known

as ‘JBP’ parametrization [65]. The solution is

ie,z < —

3wy z2

p = po(l 9 H 21T 24)

The above model generates phantom energy if w(z) < —1,

. Va+wo)w +w? .
ie,z < —1+ W, provided wg > —1 and

w1 < —4(1 + wop). If we drop this restriction, this model
gives the quintessence type dark energy. This model is also
the phantom crossing model. From Fig. 5, we see that the
wormhole mass M decreases for redshift z decreasing up
to certain stage of z (ACDM stage) and then M increases
(phantom era) as the universe expands.

e Model I'V: Another type of parametrization can be consid-
e () = 1 R

and A, are constants [66,67]. This ansatz is exactly the one

of the cosmological constant w = —1 for A} = A, =0

and DE models with w = —2/3 for Ag = A> = 0 and

where Ag, A

@ Springer



2869 Page 6 of 8

Eur. Phys. J. C (2014) 74:2869
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Fig. 5 The variations of the wormhole mass M against the redshift z
for Models III, respectively
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Fig. 6 The variations of the wormhole mass M against the redshift z
for Models IV, respectively

w = —1/3 for A9 = A1 = 0. In this case, we get the
solution

_ polAo 4+ A1(142) + Ay(1 +2)%]
P= Ao+ A + A '

(25)

The above model generates phantom energy if w(z) < —1,
e,z < —1— ﬁ—; provided Ag < 0, A1 > 0, Ay <0, and
Ao+ A1+ Az < 0. For this condition, p is still positive. If
we drop this restriction, this model gives the quintessence
type dark energy. This model is also the phantom cross-
ing model. From Fig. 6, we see that the wormhole mass
M decreases for redshift z decreasing up to certain stage
of z and then M increases (phantom era) as the universe
expands.

e Model V: Another type of parametrization can be assumed:
w(z) = wo + wilog(l 4 z) [68,69]. The solution is

obtained as

0= po(l 4 7)3(1+w0) 3w llog(142) (26)
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— T

Model V ]

Fig. 7 The variations of the wormhole mass M against the redshift z
for Models V, respectively

The above model generates phantom energy if w(z) < —1,
wo

ie,z < —1+ ¢ ¥ provided w; > 0. If we drop this
restriction, this model gives the quintessence type dark
energy. This model is also the phantom crossing model.
From Fig. 7, we see that the wormhole mass M decreases
for redshift z decreasing up to certain stage of z and then
M again increases (phantom era) as the universe expands.

3 Discussions

In this work, we have studied the accretion of the dark
energies onto the Morris—Thorne wormhole. A proper dark-
energy accretion model for wormholes has been obtained by
generalizing the Michel theory [25] to the case of worm-
holes. Such a generalization has already been performed by
Babichev et al. [26,27] for the case of dark-energy accre-
tion onto Schwarzschild black holes. We have followed the
procedure used by Babichev et al. [26,27], adapting it to the
case of a Morris—Thorne wormhole. Here we have assumed
the redshift function ®(r) = 0. Astrophysically, the mass
of the wormhole is a dynamical quantity, so the nature of
the mass function is important in our wormhole model for
different dark-energy filled universe models. The sign of the
time derivative of the wormhole mass depends on the signs
of p + p. Previously Babichev et al. [26] have shown that the
mass of black hole decreases due to phantom energy accre-
tion. In ref. [52], it was shown that for quintessence like dark
energy, the mass of the wormhole decreases; and for phan-
tom like dark energy, the mass of the wormhole increases,
which is the opposite of the behavior of the black hole mass.

We have assumed two recently proposed types of dark
energy: the VMCG and the GCCG. We have found the
expression of the wormhole mass in both cases. We have
found the mass of the wormhole for the late universe and
this is found to be finite. Our dark energy fluids violate the
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strong energy condition (p + 3p < 0 in the late epoch),
but do not violate the weak energy condition (p + p > 0).
So the models drive only the quintessence scenario in the
late epoch, but they do not generate the phantom epoch (in
our choice). So the wormhole mass decreases during the
evolution of the universe for these two dark-energy mod-
els. Since our considered dark-energy candidates do not vio-
late the weak energy condition, the dynamical mass of the
wormbhole is decaying by the accretion of our considered dark
energies, though the pressures of the dark energies are out-
side the wormhole. From Figs. 1 and 2, we observe that the
wormhole mass decreases as z increases for both VMCG and
GCCQG, which accrete onto the wormhole in our expanding
universe. Next we have assumed five kinds of parametriza-
tions (Models I-V) of well-known dark-energy models (some
of them are linear, CPL, JBP models). These models generate
both quintessence and phantom scenarios (phantom cross-
ing models) for some restrictions of the parameters. So if
these dark energies accrete onto the wormhole, then, for the
quintessence stage, the wormhole mass decreases up to a
certain value (a finite value) and then again increases to an
infinite value for the phantom stage during the whole evolu-
tion of the universe. That means that if the five kinds of DE
accrete onto a wormhole, the mass of the wormhole decreases
up to a certain finite value and then increases in the late stage
of the evolution of the universe. We also clearly shown these
results graphically. Figures 3, 4, 5, 6, and 7 show that the
mass of the wormhole first decreases to a finite value and
then increases to an infinite value. In future work, it will be
interesting to show the nature of the mass for various types of
wormhole models if different kinds of dark energies accrete
upon a wormbhole in an accelerating universe also.
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