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Abstract In this paper we illustrate the simplifications pro-
duced by FDR in NNLO computations. We show with an
explicit example that—due to its four-dimensionality—FDR
does not require an order-by-order renormalization and that,
unlike the one-loop case, FDR and dimensional regulariza-
tion generate intermediate two-loop results which are no
longer linked by a simple subtraction of the ultraviolet (UV)
poles in ε. Our case study is the two-loop amplitude for
H → γ γ , mediated by an infinitely heavy top loop, in the
presence of gluonic corrections. We use this to elucidate how
gauge invariance is preserved with no need of introducing
counterterms in the Lagrangian. In addition, we discuss a
possible four-dimensional approach to the infrared problem
compatible with the FDR treatment of the UV infinities.

1 Introduction

Computing radiative corrections has become of uppermost
importance in particle phenomenology [1]. The present lack
of unexpected signals at the LHC pulls the effects of New
Physics in a domain where small discrepancies have to be
searched via detailed comparisons between experimental
results and precise calculations of the Standard Model back-
ground. Due to the large QCD coupling constant, precise pre-
dictions at the LHC often require NNLO accuracy. On the
other hand, calculations based on two or more loops in the
complete Electroweak (EW) model will be mandatory at the
future International Linear Collider to meet the experimental
accuracy foreseen, for example, in Higgs Physics [2].

While NLO techniques are very well established [3–8],
[9–15], work is ongoing to solve the NNLO problem in
its full generality [16]. As for the virtual sector, progress
has been recently achieved by extending generalized uni-
tarity techniques at two loops [17–21], while the antenna
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subtraction [22,23] and sector decomposition [24–27] meth-
ods look promising tools to deal with IR divergences beyond
NLO [28].

In this paper we investigate the possibility of further sim-
plifying NNLO computations by abandoning dimensional
regularization [29]. Despite its known virtues, DR requires
a heavy analytic work aimed at subtracting powers of 1/ε

of UV or IR origin even before attacking the calculation of
the finite physical part. For instance, DR forces an order-
by-order iterative renormalization, which is especially cum-
bersome when computing loop corrections in the EW model
or in SUSY: the full set of one-loop counterterms has to be
determined and added in a two-loop computation, and so
on. Furthermore, loop functions used at a given perturba-
tive level must be further expanded in ε—when appearing at
higher orders—to include terms generating O(ε0) contribu-
tions when multiplied by the new poles. Such complications
arise in DR because constants needed to preserve the sym-
metries of the Lagrangian are often produced by εε terms,
which are kept under control by the iterative renormalization.

This has driven us to study the performances of FDR [30]
as a simpler four-dimensional approach beyond one loop.1

The key point of FDR is that the use of counterterms is
avoided by defining a four-dimensional and UV-free loop
integration in a way compatible with shift and gauge invari-
ance. Having done this, the correct results automatically
emerge once the theory is fixed in terms of physical observ-
ables by means of a finite renormalization relating the param-
eters of the Lagrangian to measured quantities. In addition,
IR infinities can be naturally accommodated within the same
four-dimensional framework used to cope with the UV diver-
gences. This is why we envisage in FDR a great potential to
reduce the complexity of the NNLO calculations, especially
when used together with numerical techniques.

In this paper we present, as the first example of a two-
loop FDR calculation, the QCD corrections to the top-

1 Other four-dimensional treatments are listed in [31–36].
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loop-mediated Higgs decay into two photons, in the limit
mtop → ∞. This computation gives the opportunity to fully
appreciate the simplifications due to the four-dimensionality
of the approach in a realistic two-loop case study.2 In the next
section we review the general FDR idea with special empha-
sis on the two-loop case. We discuss, in particular, the shift
and gauge invariance properties of the FDR integration, the
main differences with DR, and the IR problem. The two-loop
FDR calculation of H → γ γ is presented in Sect. 3 and the
technical details are collected in the final appendices.

2 FDR and the importance of working in four
dimensions

2.1 Definition of the FDR loop integral

FDR subtracts UV divergences at the integrand level. This
is obtained in two steps. Firstly, the propagators of the par-
ticles flowing in the loops are given a common additional
term −μ2, formally identified with the +i0 propagator pre-
scription. For example, vector-boson and fermion propaga-
tors with momentum (q + pi ) and mass Mi read,3 in the
unitary gauge,

gαβ − (q + pi )
α(q + pi )

β/M2
i

D̄pi

and
/q + /pi + Mi

D̄pi

,

(1)

respectively, with

D̄pi = (q + pi )
2 − M2

i − μ2 = q̄2 − di ,

q̄2 ≡ q2 − μ2, di ≡ M2
i − p2

i − 2(q · pi ). (2)

Secondly, UV infinities are isolated by a repeated use of
the identity

1

D̄pi

= 1

q̄2 + di

q̄2 D̄pi

. (3)

In fact—being di is at most linear in q—the second term
in the r.h.s. of Eq. (3) is less UV divergent than the original
denominator, so that UV divergences can be systematically
moved to terms such as 1/q̄2, which depend only on μ, and
directly subtracted from the integrand. Schematically, dub-
bing J the original integrand of an �-loop function, one has

J (q1, . . . , q�) = JINF(q1, . . . , q�) + JF,�(q1, . . . , q�), (4)

2 One-loop examples have been worked out in [37,38].
3 q denotes a generic integration momentum and pi and external
momentum.

where JINF collects the UV divergent integrands. Then the
FDR integral over J is defined as4

∫
[d4q1] . . . [d4q�] J (q1, . . . , q�)

≡ lim
μ→0

∫
d4q1 . . . d4q� JF,�(q1, . . . q�), (5)

where, due to the limit μ → 0, only a logarithmic depen-
dence on μ remains, which can be traded for a dependence
on the renormalization scale.5 Thus, FDR and normal inte-
gration coincide in a convergent integral, since no divergent
part JINF can be extracted from its integrand. Furthermore,
the space-time is kept strictly four-dimensional also in diver-
gent integrals—with gαβ = diag(1,−1,−1,−1)—because
μ2 is nothing but the infinitesimal deformation needed to
define the loop integrals6 and it is not generated by higher-
dimensional components of the integration momenta. This
allows one to perform, in particular, the Dirac gamma alge-
bra in four dimensions, with extra rules needed to keep gauge
invariance, as explained in Sect. 2.4.

An explicit example of integrand FDR expansion7 at one
loop is given by

qαqβ

D̄p0 D̄p1

=
[

qαqβ

q̄4

]
+ (d0 + M2

1 − p2
1)

[
qαqβ

q̄6

]
− 2p1γ

×
[

qαqβqγ

q̄6

]
+4p1γp1δ

[
qαqβqγqδ

q̄8

]
+ Jαβ

F,1(q),

Jαβ
F,1(q) = qαqβ

(
4(q · p1)

2d1

q̄8 D̄p1

+(M2
1 − p2

1)
d0 + d1 − 2(q · p1)

q̄6 D̄p1

−2d0
(q · p1)

q̄6 D̄p1

+ d2
0

q̄4 D̄p0 D̄p1

)
, (6)

where p0 = 0 and the terms in square brackets are propor-
tional to UV divergent integrands. A two-loop example with

D̄1 = q̄2
1 − m2

1, D̄2 = q̄2
2 − m2

2, D̄12 = q̄2
12 − m2

12,

q12 = q1 + q2 (7)

4 Throughout the paper FDR integration is denoted by the symbol
[d4qi ].
5 see Sect. 2.3.
6 Unlike in DR, the limit μ → 0 is taken outside integration [see
Eq. (5)].
7 We denote the expansion of an integrand J needed to bring it in the
form of Eq. (4) as its FDR defining expansion.
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reads

1

D̄1 D̄2 D̄12
=

[
1

q̄2
1 q̄2

2 q̄2
12

]
+ m2

1

[
1

q̄4
1 q̄2

2 q̄2
12

]

+m2
2

[
1

q̄2
1 q̄4

2 q̄2
12

]
+ m2

12

[
1

q̄2
1 q̄2

2 q̄4
12

]

+ m4
1

(D̄1q̄4
1 )

[
1

q̄4
2

]
+ m4

2

(D̄2q̄4
2 )

[
1

q̄4
1

]

+ m4
12

(D̄12q̄4
12)

[
1

q̄4
1

]
+ JF,2(q1, q2), (8)

where

JF,2(q1, q2) = −m4
1

q2
1 + 2(q1 · q2)

(D̄1q̄4
1 )q̄4

2 q̄2
12

− m4
2

q2
2 + 2(q1 · q2)

q̄4
1 (D̄2q̄4

2 )q̄2
12

−m4
12

q2
12 − 2(q1 · q12)

q̄4
1 q̄2

2 (D̄12q̄4
12)

+ m2
1m2

2

(D̄1q̄2
1 )(D̄2q̄2

2 )q̄2
12

+ m2
1m2

12

(D̄1q̄2
1 )q̄2

2 (D̄12q̄2
12)

+ m2
2m2

12

q̄2
1 (D̄2q̄2

2 )(D̄12q̄2
12)

+ m2
1m2

2m2
12

(D̄1q̄2
1 )(D̄2q̄2

2 )(D̄12q̄2
12)

. (9)

Note that identities such as

1

q̄2
12

= 1

q̄2
2

− q2
1 + 2(q1 · q2)

q̄2
2 q̄2

12

,

1

q̄2
2

= 1

q̄2
1

− q2
12 − 2(q1 · q12)

q̄2
1 q̄2

2

(10)

are needed to extract the sub-divergences. Then the one- and
two-loop FDR integrals over the integrands in Eqs. (6) and
(8) read

∫
[d4q] qαqβ

D̄p0 D̄p1

= lim
μ→0

∫
d4q Jαβ

F,1(q),

∫
[d4q1][d4q2] 1

D̄1 D̄2 D̄12
= lim

μ→0

∫
d4q1d4q2 JF,2(q1, q2).

(11)

It is important to realize that divergent tensor structures
are fully subtracted from the original integrand, as in Eq. (6).8

Owing to the Lorentz invariance and four-dimensionality
of this definition, irreducible tensors can be decomposed in
terms of scalars. For example9

8 It can be shown that FDR tensors are equivalent to DR tensors at one
loop, but differences start at two loops and beyond [39].
9 The FDR defining expansion of

qα
1 qβ

1
D̄3

1 D̄2 D̄12
is given in Appendix C.

∫
[d4q1][d4q2] qα

1 qβ
1

D̄3
1 D̄2 D̄12

= lim
μ→0

∫
d4q1d4q2 qα

1 qβ
1 JD(q1, q2),

where JD(q1, q2) =
{(

1

q̄6
1

− 1

D̄3
1

)
q2

1 + 2(q1 · q2)

q̄4
2 q̄2

12

+ 1

D̄3
1 q̄2

2 D̄12

(
m2

2

D̄2
+ m2

12

q̄2
12

)}
, (12)

can be rewritten as
∫

[d4q1][d4q2] qα
1 qβ

1

D̄3
1 D̄2 D̄12

= gαβ

4

∫
[d4q1][d4q2] q2

1

D̄3
1 D̄2 D̄12

, (13)

with
∫

[d4q1][d4q2] q2
1

D̄3
1 D̄2 D̄12

= lim
μ→0

∫
d4q1d4q2 q2

1 JD(q1, q2). (14)

Finally, polynomials in the integration variables represent
a limiting case of Eq. (4), in which

JF,�(q1, . . . , q�) = 0. (15)

As a consequence∫
[d4q]

(
q̄2

)α = 0, (16)

for any integer α ≥ 0.

2.2 Shift invariance and uniqueness

FDR integrals are invariant under the shift of any integration
variable. This can easily be proven by using the fact that
they can be thought of as finite differences of shift-invariant
dimensionally regulated10 divergent integrals [see Eq. (4)]∫

[d4q1] . . . [d4q�] J (q1, . . . , q�)

= lim
μ→0

μ−�ε
R

(∫
dnq1 . . . dnq� J (q1, . . . , q�)

−
∫

dnq1 . . . dnq� JINF(q1, . . . , q�)

)
. (17)

The explicit demonstration is given in Appendix A. A
corollary to this theorem is the uniqueness of the definition in
Eq. (5). In fact, the subtracted integrands in JINF(q1, . . . , q�)

10 Here and in the following n = 4 + ε and μR is the renormalization
scale.

123



2864 Page 4 of 19 Eur. Phys. J. C (2014) 74:2864

are unambiguously determined by the UV content of the orig-
inal integrand, the only possible ambiguity being shifts of the
loop momenta in J (q1, . . . , q�), which, however, produce the
same FDR integral.

Equation (17) also demonstrates that whenever DR loop
integrals are known, their FDR counterparts can also be com-
puted.

2.3 Independence of the cutoff

As a result of the subtraction of the divergent integrands, non
integrable powers of 1/q̄2 are developed in JF,�(q1, . . . , q�).
Such IR poles get regulated by the μ2 propagator prescrip-
tion, which gives a meaning to the r.h.s. of Eq. (5). Thus, the
original UV cutoff is traded for an IR one: μ. Here we show
that FDR integrals depend at most logarithmically on μ. Fur-
thermore, μ can be traded for the renormalization scale μR,
rendering the definition of the FDR integration independent
of any cutoff.

We start from Eq. (17). Since the first term in its r.h.s. is
the original DR regulated integral it does not depend on μ, in
the limit μ → 0.11 On the other hand, polynomially diver-
gent integrands in JINF cannot contribute either, because they
generate polynomials in μ. Therefore, the μ dependence in
the l.h.s. is entirely due to powers of ln(μ/μR) created by
the subtraction of the logarithmically divergent integrals. If
one redefines FDR integrals without subtracting such loga-
rithms, no dependence on μ is produced. This is equivalent
to the operation of adding back all ln(μ/μR)s to the l.h.s. of
Eq. (17). Then the limit μ → 0 can be taken, μ becomes μR,
and no cutoff is left. The identification μ = μR after limμ→0

is understood in all FDR integrals appearing in this paper.

2.4 Keeping gauge invariance

Now we discuss how gauge invariance is preserved in FDR.
Our starting point is the existence of graphical proofs of the
Ward–Slavnov–Taylor identities [40], in which the correct
relations among Green’s functions are demonstrated—at any
loop order—directly at the level of Feynman diagrams. Such
proofs are valid under two circumstances:

– divergent loop integrals should be defined in a way that
shifting the integration momenta is possible as if they were
convergent ones [41];

11 This is true in the absence of IR divergences. However, UV and IR
infinities simultaneously occur only in scale-less integrals, which vanish
in FDR [see Sect. 2.7].

– cancelations between numerators and denominators
should be preserved.12

Since the first property has been already proven, we con-
centrate here on the second requirement, which we study by
means of a two-loop example.

Consider the scalar integral
∫

[d4q1][d4q2] 1

D̄2
1 D̄2 D̄12

. (18)

To define it in FDR, it is necessary to make explicit the
μ2 dependence in its denominators,13 which amounts to the
replacement

q2
i → q2

i − μ2. (19)

However, this change should be performed without alter-
ing the cancelations which ensure that the same result is
obtained both by simplifying the reducible numerators before
computing the integrals and by working out the integrals
without simplifying the numerators.

That happens only if

1. any q2
i generated by Feynman rules in the numerator of

a diagram14 is also changed as in Eq. (19);
2. simplifications at the integrand level are possible, such

as

∫
[d4q1][d4q2]q2

1 − m2
1 − μ2

D̄3
1 D̄2 D̄12

=
∫

[d4q1][d4q2] 1

D̄2
1 D̄2 D̄12

. (20)

Either way, integrals with μ in the numerator appear—
which we dub extra integrals—that need to be properly
defined. For instance, since an explicit computation gives

∫
[d4q1][d4q2] q2

1 − m2
1

D̄3
1 D̄2 D̄12

�=
∫

[d4q1][d4q2] 1

D̄2
1 D̄2 D̄12

,

(21)

one deduces that15

12 Quoting Martinus Veltman [42]: Gauge invariance implies a tight
interplay between the numerator of an integrand and its denominator.
Changing either of the two will generally destroy gage invariance . . .

13 See Eq. (7).
14 Such q2 terms are created, for instance, when (q+ pi )

α(q+ pi )
β/M2

i
and /q + /p1 + Mi in Eq. (1) are multiplied by gαβ and /q, respectively,
before tensor reduction.
15 The r.h.s. of Eq. (22) vanishes because FDR integrals are at most
logarithmic in μ.
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∫
[d4q1][d4q2] μ2

D̄3
1 D̄2 D̄12

�= lim
μ→0

μ2
∫

[d4q1][d4q2] 1

D̄3
1 D̄2 D̄12

= 0. (22)

In fact, a non-zero contribution must be added to the l.h.s.
of Eq. (21) to produce the r.h.s. of Eq. (20). The right cance-
lation occurs if the denominators 1/D̄3

1 D̄2 D̄12 are expanded
in front of μ2 as if it was a q2

1 , namely as in Eq. (12)16:
∫

[d4q1][d4q2] μ2|1
D̄3

1 D̄2 D̄12

= lim
μ→0

∫
d4q1d4q2 μ2 JD(q1, q2). (23)

By using this definition, Eq. (20) directly follows from the
FDR defining expansion of its two sides. Note that the index

1 in μ2|1 only denotes the expansion to be used: although
only one kind of μ2 exists
∫

[d4q1][d4q2] μ2|1
D̄3

1 D̄2 D̄12
,

∫
[d4q1][d4q2] μ2|2

D̄3
1 D̄2 D̄12

and
∫

[d4q1][d4q2] μ2|12

D̄3
1 D̄2 D̄12

(24)

are in general different, because they are defined by expand-
ing
∫

[d4q1][d4q2] q2
1

D̄3
1 D̄2 D̄12

,

∫
[d4q1][d4q2] q2

2

D̄3
1 D̄2 D̄12

and
∫

[d4q1][d4q2] q2
12

D̄3
1 D̄2 D̄12

, (25)

respectively.
The described procedure is completely general: the extra

integrals are defined by the FDR expansion of the integrals
obtained by replacing μ|i → qi . As a consequence, the μ|i
in the numerator are sensitive to changes of variables. For
example, if q1 → q1 − q2 and q2 → −q2,
∫

[d4q1][d4q2] μ2|12

D̄3
1 D̄2 D̄12

→
∫

[d4q1][d4q2] μ2|1
D̄1 D̄2 D̄3

12

. (26)

16 It is interesting to study how a finite contribution is generated by the
definition in Eq. (23). In JD(q1, q2)

∫
d4q1d4q2

q2
1 + 2(q1 · q2)

q̄6
1 q̄4

2 q̄2
12

∼ 1

μ2 ,

thus
∫

[d4q1][d4q2] μ2|1
D̄3

1 D̄2 D̄12
= lim

μ→0
μ2

∫
d4q1d4q2

q2
1 + 2(q1 · q2)

q̄6
1 q̄4

2 q̄2
12

produces a finite constant when μ → 0. The value of this integral is
given in Sect. 3.1.

Fig. 1 Graphical representation of the Feynman identity in Eq. (29).
The dashed line represents a scalar photon

Extra integrals can be computed either directly, by consid-
ering the finite part JD(q1, q2) of the relevant denominator
expansion—as done in Eq. (23)—or indirectly, by rewriting
JD(q1, q2) as a difference between the original integrand and
its subtracted pieces. This second way is usually more con-
venient, because the original integral does not contribute in
the limit μ → 0. For example, Eq. (125) gives

∫
[d4q1][d4q2] μ2|1

D̄3
1 D̄2 D̄12

= − lim
μ→0

μ2
∫

d4q1d4q2

(
1

q̄6
1 q̄2

2 q̄2
12

− 1

q̄6
1

1

q̄4
2

)
, (27)

which coincides with the result in footnote 16.
Finally, extra integrals give the possibility to rewrite ten-

sors in terms of scalars plus constants. For instance, Eq. (13)
produces

∫
[d4q1][d4q2] qα

1 qβ
1

D̄3
1 D̄2 D̄12

= gαβ

4

{∫
[d4q1][d4q2] 1

D̄2
1 D̄2 D̄12

+ m2
1

∫
[d4q1][d4q2] 1

D̄3
1 D̄2 D̄12

+
∫

[d4q1][d4q2] μ2|1
D̄3

1 D̄2 D̄12

}
. (28)

Decompositions like this will be extensively used in the
calculation presented in Sect. 3.

Having studied the general mechanism of the gauge can-
celations in FDR, we further elucidate it by means of the pro-
cess investigated in this paper, namely H → γ γ mediated by
a fermion with mass m. In this case the proof of gauge invari-
ance relies on the graphical equivalence depicted in Fig. 1,
which, in turn, is realized by the Feynman identity

/q + m

D
/p

/q + /p + m

Dp
= /q + m

D
− /q + /p + m

Dp
, (29)

where

D = q2 − m2 and Dp = (q + p)2 − m2. (30)

Consider now the generic �-loop amplitude in Fig. 2.
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Fig. 2 Generic �-loop amplitude with an external photon with momen-
tum p. The blob stands for the rest of the amplitude and q is an integra-
tion momentum.

Its integrand reads

εα(p)Jα(q, . . . , q�) = εα(p)
∑

i

1

DDp

×T r
[
(/q + m)γ α(/q + /p + m)

(
�i

o + �i
e

)]
, (31)

where the sum is over all contributing Feynman diagrams,
and �i

o (�i
e) is proportional to a product of an odd (even)

number of gamma matrices. Gauge invariance requires that

pα

∫
[d4q] · · · [d4q�] J̄α(q, . . . , q�) = 0, (32)

where J̄α is the integrand in Eq. (31) regulated à la FDR by
replacing q2

i → q2
i − μ2 in both numerators and denomi-

nators. Equation (32) can be directly proven at the integrand
level. With this aim, we first concentrate on the replacements
responsible for the conservation of the specific current in
Fig. 2:

Jα → J ′α =
∑

i

1

D̄ D̄p

(
T r

[
/̄qγ α/̄q�i

o

]
+ T r

[
/qγ α/p�i

o

]

+m2T r
[
γ α�i

o

]
+ mT r

[
γ α(/q + /p)�i

e

]

+mT r
[
/qγ α�i

e

] )
, (33)

where the loop denominators in �i
o,e are also barred. In the

previous equation

/̄q = /q ± μ (34)

has the effect of changing q2 to q̄2 in the first trace. Thus,
when contracting with p, it is possible to reconstruct and
cancel denominators

pα J ′α =
∑

i

1

D̄

(
T r

[
/q�i

o

]
+ mT r

[
�i

e

] )

− 1

D̄p

(
T r

[
(/q + /p)�i

o

]
+ mT r

[
�i

e

] )
, (35)

in agreement with the Feynman identity in Eq. (29). After
that

pα

∫
[d4q] · · · [d4q�]J ′α(q, . . . , q�) = 0 (36)

directly follows from the shift invariance properties of the
loop integrals, as in DR. We explicitly tested Eq. (36) up to
two loops in H → γ γ .

With more photons, replacements as in Eq. (34) have to
be performed for all integration momenta appearing in the
trace.17 The one-loop prescription is that defined in [38]:
given a fermionic string, one chooses arbitrarily the sign of
μ within the first /̄q; the sign of the subsequent one is opposite,
if an even number of γ -matrices occur between the two /̄qs,
and it is the same otherwise.18 This rule is sufficient in the
presence of one fermion line only, as in the calculation at
hand. With two or more lines, and no summation indices
among them, each fermion string can be separately treated as
described. If sums occur, after applying the above algorithm,
extra μ2 terms need to be extracted according to the following
procedure:

T r
[
... /q�(n)γα

]
T r

[
... /q�(m)γ α

]

→ T r
[
... /q�(n)γα

]
T r

[
... /q�(m)γ α

]

−(−1)(n+m)μ2T r
[
... �(n)

]
T r

[
... �(m)

]
,

(37)

where �(k) represents a string of k gamma matrices. Equa-
tion (37) is proven by noting that n (m) anticommutations
are needed to bring /q close to γα (γ α) and can easily be
checked by taking the traces and substituting q2 → q2 −μ2.
As an example of such rules, the integrand of the one-loop
H → γ (p1)γ (−p2) amplitude is proportional to

Jαβ(q) = 1

DDp1 Dp2

T r
[
(/q + m)γ α(/q + /p1 + m)

× (/q + /p2 + m)γ β
]
, (38)

and its FDR regulated version reads

J̄αβ(q) = 1

D̄ D̄p1 D̄p2

(
T r

[
(/q + m)γ α(/q + /p1 + m)

× (/q + /p2 + m)γ β
] + mμ2T r

[
γ αγ β

] )
, (39)

which satisfies the Ward identities

p1α

∫
[d4q] J̄αβ(q) = p2β

∫
[d4q] J̄αβ(q) = 0. (40)

We emphasize that there is nothing mysterious in Eq. (39):
the same result is obtained by computing the trace in Eq. (38)
and replacing q2 → q̄2. The advantage of Eq. (39) is that it
permits a trivial proof of the Ward identities at the integrand
level.

17 Sums over internal indices first have to be worked out.
18 If chirality matrices are involved, a gauge invariant treatment requires
their anticommutation at the beginning (or the end) of open strings
before replacing /q → /̄q . In the case of closed loops, γ5 should be put
next to the vertex corresponding to a potential non-conserved current.
This reproduces the correct coefficient of the triangular anomaly [30].
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The corresponding procedure at two loops is better
explained with an example. Consider the trace

T αβ = T r
[
/q1γ

α/q1/q2γ
β/q2

]
, (41)

which contributes to the second diagram of Fig. 5. Its FDR
counterpart reads

T̄ αβ = T αβ + μ2|1 T r
[
γ α/q2γ

β/q2
] + μ2|2 T r

[
γ α/q1γ

β/q1
]

+μ2|1μ2|2T r
[
γ αγ β

] − 16μ̃2
12qα

1 qβ
2 , (42)

with

μ̃2
12 = 1

2

(
μ2|12 − μ2|1 − μ2|2

)
. (43)

Equation (42) is obtained from Eq. (41) by using—one
after the other—the one-loop replacements /q1 → /̄q1 and
/q2 → /̄q2, which generate the terms proportional to μ2|1
and μ2|2. The μ̃2

12 contribution originates, instead, from the
substitution

(q1 · q2) = 1

2

(
q2

12 − q2
1 − q2

2

)
→ 1

2

(
q̄2

12 − q̄2
1 − q̄2

2

)
,

(44)

and is obtained by simultaneously barring /q1 and /q2 in
Eq. (41) (with the same rule used at one loop to determine
the sign of μ|i inside each /qi , without distinguishing between
/q1 and /q2) and subtracting the μ2|i terms already calculated.
What is left is, by construction, proportional to powers of
μ|1μ|2 ≡ μ̃2

12 and gives the last term in Eq. (42). Once

again, T̄ αβ is equivalent to the replacements

q2
1 → q̄2

1 , q2
2 → q̄2

2 , (q1 · q2) → 1

2

(
q̄2

12 − q̄2
1 − q̄2

2

)
,

(45)

in the original trace T αβ . Thus, the μ2|i ensure the right
cancelations leading to the fulfillment of the Ward identities.
We explicitly checked that the two-loop H → γ (p1)γ (−p2)

integrand J̄αβ(q1, q2), constructed as described, satisfies

p1α

∫
[d4q1]

∫
[d4q2] J̄αβ(q1, q2)

= p2β

∫
[d4q1]

∫
[d4q2] J̄αβ(q1, q2) = 0. (46)

In practical cases it is often convenient to simplify
reducible numerators before computing the loop integrals. In
that way, only irreducible tensors appear and extra integrals
are just produced by tensor decomposition, as in Eq. (28).
This is the strategy of the calculation presented in Sect. 3.

2.5 FDR versus DR

The proof that DR preserves gauge invariance and unitarity
relies on the possibility of introducing order-by-order local
counterterms in the Lagrangian L. On the contrary, FDR
makes no reference to L. In this subsection we use the simple
two-loop QED example of [43] to comment on the conceptual
differences between the two approaches.

Consider a DR calculation of the one-loop photon self-
energy

with

	(p2) = 1

ε
	−1 + 	0 + ε 	1,

	0 = e2

2π2

1∫

0

dx x(1 − x) ln
m2 − p2x(1 − x)

μ2
R

. (47)

Then, at two loops and up to terms O(ε),

Simply removing the poles from the last expression gives
	2

0 + 2	−1	1, which is not the right result because it vio-
lates unitarity. As is well known, the correct procedure to
undertake in DR is to renormalize order by order, i.e. to add
one-loop counterterms in L such that

Thus

In FDR, the divergences are subtracted at the level of the
definition of the loop integration, so that the product of two
one-loop diagrams is simply the product of the two finite
parts, with no need of introducing extra interactions in L.
Thus, one directly obtains
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with 	FDR(p2) = 	0. This difference can also be under-
stood from the DR ↔ FDR naive correspondence

ε ↔ μ
1

ε
↔ ln μ,

(48)

which gives limε→0 ε/ε = 1, while limμ→0 μ ln μ = 0.
From all that it is manifest that spurious ε/ε terms such as

	−1	1—which need to be kept under control in DR by the
order-by-order renormalization—never appear in FDR. The
result of an FDR calculation typically depends on the param-
eters contained in L, and a (finite) global renormalization
is needed only to link them to experimental measurements
at the desired perturbative accuracy. In particular —and in
contrast with DR—no renormalization is necessary when no
parameter appears in the final result. This is the case of the
calculation presented in Sect. 3.

2.6 FDR versus FDH

In this subsection we discuss the differences between FDR
and the Four-Dimensional Helicity scheme (FDH) of [44],
which is equivalent to dimensional reduction [45] at one loop.
FDH is a variant of DR, in which gauge cancelations are kept
by integrating all momentum integrals over n-component
momenta and considering any gαβ resulting from the integra-
tion as n-dimensional. Observed external states are treated
in four dimensions (preserving supersymmetry) and unob-
served internal ones are defined in such a way that the con-
traction qαqβ gαβ = q2 gives rise to an n-dimensional object
when q is an integration momentum. If q2 is split into four-
dimensional (q2

4 ) and ε-dimensional (q̃2) components,

q2 = q2
4 + q̃2, (49)

and q̃2 is identified with −μ2, there is a formal equivalence—
at the integrand level—between the procedures used by FDR
and FDH to determine theμ2 pieces [46,47]. However, differ-
ences start when integrating. FDR integration is defined in a
way that non-local sub-divergences are subtracted right away,
as in the second line of Eq. (8), while in FDH sub-divergences
are compensated by counterterms added at a previous renor-
malization stage, as in any conventional subtraction scheme.
It is exactly this peculiarity that makes it possible to avoid an
order-by-order renormalization in FDR.

As a consequence of this dissimilarity, integrals containing
μ2 give different results, at two loops and beyond, when
computed in FDR and FDH. For example

Fig. 3 Examples of massless one-loop and two-loop scalar integrals.
Thin lines represent massless scalar propagators and p2

1 = p2
2 = 0

∫
[d4q1][d4q2] μ2|1

(q̄2
1 − m2)2(q̄2

1 − m2)2(q̄2
12 − m2)

= π4

(
2

3
f + 1

2
ln

m2

μ2
R

)
, (50)

with f defined in Eq. (130), while
∫

dnq1dnq2
−q̃2

1

(q2
1 − m2)2(q2

1 − m2)2(q2
12 − m2)

= π4

(
1

2ε
− 3

8
+ 1

2
ln

m2

μ2
R

+ γE + ln π

2

)
+ O(ε). (51)

Only at one loop, because no sub-divergences are present,
FDR and FDH coincide, as observed in [37]. For instance,
∫

[d4q] μ2

(q2 − M2)3 =
∫

dnq
−q̃2

(q2 − M2)3 = iπ2

2
.

(52)

2.7 Infrared divergences

Although the process H → γ γ is free of IR infinities,
we devote this subsection to an illustration of how soft and
collinear singularities can be treated compatibly with FDR.
We first discuss divergences in the virtual contribution, and
then show how they are matched by a particular treatment of
the real radiation.

As for the loop integration, the definition in Eq. (5) can
be maintained also in the presence of IR singularities. For
instance, the FDR versions of the massless one- and two-
loop scalar integrals in Fig. 3 read∫

[d4q] J (1)(q, μ2) = lim
μ→0

∫
d4q J (1)(q1, μ

2) and
∫

[d4q1][d4q2] J (2)(q1, q2, μ
2)

= lim
μ→0

∫
d4q1d4q2 J (2)(q1, q2, μ

2), (53)

respectively, with19

19 J (1) and J (2) are not UV subtracted since they produce UV conver-
gent integrals.
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J (1)(q, μ2) = 1

D̄0(q)D̄p1(q)D̄p2(q)
,

J (2)(q1, q2, μ
2) = J (1)(q1, μ

2)
1

D̄0(q2)D̄p1(q12)D̄p2(q12)
,

D̄pi (q j ) = q̄2
j + 2(q j · pi ). (54)

Note that the on-shell conditions p2
1 = p2

2 = 0 are used
at the integrand level. Thus, infrared virtual divergences get
regulated by the μ2-deformed propagators,20 which gener-
ates powers of logarithms of μ2, upon integration. A par-
ticularly interesting situation is when the integral is also UV
divergent. In this case it is easy to see that UV divergent scale-
less �-loop FDR integrals vanish, as in DR. In fact, the only
allowed external variable is a momentum p such that p2 = 0,
whose fate is to appear in the numerator of JF,�(q1, . . . , q�)

in Eq. (4) to improve the UV convergence of the original
integrand. Therefore, JF,�(q1, . . . , q�) is entirely made of
integrands proportional to positive powers of (qi · p), which
vanish, by Lorentz invariance, after integration. The simplest
case is the fully massless one-loop 2-point scalar function

BFDR(p2 = 0, 0, 0) =
∫

[d4q] 1

q̄2((q + p)2 − μ2)
. (55)

The FDR expansion of its integrand reads

1

q̄2 D̄p
=

[
1

q̄4

]
− 2

(q · p)

q̄4 D̄p
, (56)

so that

BFDR(p2 = 0, 0, 0) = −2 lim
μ→0

∫
d4q

(q · p)

q̄4 D̄p
= 0. (57)

The same result is obtained by a direct computation

BFDR(p2, 0, 0) = −iπ2 lim
μ→0

1∫

0

dx

×
(

ln(μ2 − p2x(1 − x)) − ln(μ2)
)

, (58)

from which it is manifest that, in the limit p2 → 0, a cance-
lation occurs between two logarithms of UV and IR origin,
respectively.21

20 A different μ2 can be used to regulate UV divergences (μ2
UV) and IR

ones (μ2
IR). However, a common μ2 simplifies the calculation, as will

be shown later. Since IR infinities are more easily understood in terms
of μ2

IR > 0, it is convenient to choose μ2
UV = μ2

IR = μ2 > 0.
21 It is instructive to study the same case in DR, where BDR(p2, 0, 0) =
μ−ε

R

∫
dnq 1

q2(q+p)2 . Now BDR(0, 0, 0) vanishes because IR and UV
poles in ε compensate. In fact, by introducing an arbitrary separation
scale M , the two divergences can be disentangled

1

(q + p)2 = 1

q2 − M2 −
(

1

q2 − M2 − 1

(q + p)2

)
= 1

q2 − M2

− M2 + 2(q · p)

(q2 − M2)(q + p)2 . (59)

(a) (b)

Fig. 4 Splitting regulated by massive (thick) unobserved particles. The
one-particle cut in (a) contributes to the virtual part, the two-particle cut
of (b) to the real radiation

In summary, IR divergent loop integrals are defined by tak-
ing the limit μ → 0 outside integration, after subtracting—
when necessary—UV divergent integrands. In order to pre-
serve the cancelation of the IR logarithms in physical quan-
tities, this definition should be accompanied by a consis-
tent treatment of the infinities appearing in the real emission,
which we discuss in the following.

Consider how the divergent 1 → 2 splitting is regulated in
the loop integrals. The situation is depicted in Fig. 4a, where
thick lines represent unobserved loop particles—whose prop-
agator is made massive by the addition of μ2—and the cut
line is an external observed massless particle. This is matched
by the real radiation pattern of Fig. 4b, where thick lines
are unobserved external particles merging into an internal
observed massless one. In both situations unobserved par-
ticles get a mass μ and unitarity relates the two cases as
follows:

1

q2 − μ2 ↔ δ(q2 − μ2) θ(q(0)). (61)

Therefore, would-be-massless external particles with
momenta pi should be given a mass μ. This is achieved by
trading the original massless m-body phase space d�m for a
massive one, denoted by d�̄m , in which

p2
i → p̄2

i = μ2. (62)

Footnote 21 continued
Then the integrals (
 = − 2

ε
− γE − ln π )

IUV = μ−ε
R

∫
dnq

1

q2(q2 − M2)
= iπ2

(

 − ln

M2

μ2
R

+ 1

)
,

IIR = μ−ε
R

∫
dnq

M2 + 2(q · p)

q2(q2 − M2)(q + p)2 = IUV (60)

cancel each other. However, this argument has a potential problem,
because it requires the cancelation of two analytic continuations, IUV
and IIR, originally defined in domains that do not overlap [48] (ε < 0
and ε > 0). Since no value of ε exists where they are defined simultane-
ously, it is not obvious whether their difference represents the original
function BDR(0, 0, 0). A possible mathematically consistent solution
can be formulated in terms of modified Gaussian integrals in the n-
dimensional Euclidean space [48]. In contrast, the FDR derivation in
Eq. (57) is straightforward.
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In this way, singular configurations produce logarithms
which cancel the IR dependence on μ2 of the virtual contri-
bution. However, this strategy should be carried out without
breaking gauge invariance. To illustrate the way to proceed
we consider m-jet production at NNLO in e+e− annihilation.
The building blocks of the calculation depend on the set of
invariants

{si1÷im } ≡ {si1i2 , si1i2i3 , . . . , si1···im }, si ··· j

= (pi + · · · + p j )
2, p2

i = 0. (63)

They are:

– the Born contribution dσ B
LO{si1÷im−1},

– the virtual and real NLO corrections, dσ V
NLO{si1÷im−1} and

dσ R
NLO{si1÷im },

– the NNLO two-loop part dσ
V,2
NNLO{si1÷im−1},

– the one-loop corrections to the NLO real radiation,
dσ

V,1
NNLO{si1÷im },

– the double radiation dσ R
NNLO{si1÷im+1}.

After αS renormalization, they give a m-jet cross section
accurate up to NNLO

dσ = dσLO + dσNLO + dσNNLO, (64)

where

dσLO =
∫

d�m

dσ B
LO{si1÷im−1},

dσNLO =
∫

d�m

dσ V
NLO{si1÷im−1} +

∫

d�m+1

dσ R
NLO{si1÷im },

dσNNLO =
∫

d�m

dσ
V,2
NNLO{si1÷im−1} +

∫

d�m+1

dσ
V,1
NNLO{si1÷im }

+
∫

d�m+2

dσ R
NNLO{si1÷im+1}. (65)

The integrands behave as

dσ {· · · } ∼ 1

si j
, if si j → 0 and dσ {· · · } ∼ 1

s2
i jk

,

if si jk → 0; (66)

therefore, the integrations over single- and double-unresolved
massless phase spaces (

∫
d�m+1

and
∫

d�m+2
, respectively)

generate logarithmic IR divergences which have to be reg-
ulated. In DR, the last two lines of Eq. (65) are interpreted
as a limit to ε → 0 of integrals computed in n = 4 + ε

dimensions. We instead define a mapping from massless to
massive invariants as follows:

si1···im → ŝi1···im ≡
m∑

k<l

ŝik il ,

ŝi j = s̄i j = ( p̄i + p̄ j )
2,

p̄2
i = μ2, (67)

and rewrite

dσNLO =
∫

d�m

dσ V
NLO{si1÷im−1}

+ lim
μ→0

∫

d�̄m+1

dσ R
NLO{ŝi1÷im },

dσNNLO =
∫

d�m

dσ
V,2
NNLO{si1÷im−1}

+ lim
μ→0

∫

d�̄m+1

dσ
V,1
NNLO{ŝi1÷im } + lim

μ→0

∫

d�̄m+2

×dσ R
NNLO{ŝi1÷im+1} WNNLO{ŝi1i2i3}m+1, (68)

where μ is the same regulator used in the IR divergent loop
integrals, and

WNNLO{ŝi1i2i3}m+1 =
m+1∏

i< j<k

(
ŝi jk

s̄i jk

)2

,

s̄i jk = ( p̄i + p̄ j + p̄k)
2. (69)

The proof that Eq. (68) converges to the right results is
simple. First note that the mapping in Eq. (67) preserves all
formal properties of massless kinematics. For instance

ŝ123 = ŝ12 + ŝ13 + ŝ23. (70)

Thus, dσ R
NLO, dσ

V,1
NNLO and dσ R

NNLO are gauge invariant
by construction. As for the NLO real emission, 1

s2
i jk

poles are

always screened by the requirement of observing m particles.
Therefore, the only possible singular behavior is

dσ R
NLO{ŝi1÷im } ∼ 1

ŝi j
= 1

s̄i j
= 1

( p̄i + p̄ j )2 , (71)

which, being the internal propagator massless, matches
the virtual IR poles, as in Fig. 4b. In the NNLO case,
dσ R

NNLO{ŝi1÷im+1} contains additional 1
ŝ2
i jk

poles, which no

longer have the form of massless propagators. In fact, a spu-
rious mass is generated by the gauge invariant mapping of
Eq. (67):

ŝi jk = s̄i jk + 3μ2 = ( p̄i + p̄ j + p̄k)
2 + 3μ2. (72)

To cure this, dσ R
NNLO is multiplied by the weight factor

in Eq. (69), which changes—in a gauge invariant way – any
pole 1

ŝ2
i jk

to the correct value 1
s̄2
i jk

. The additional integrals,

generated when each term in WNNLO does not meet its corre-
sponding pole, vanish in the limit μ → 0. This last property
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Fig. 5 Feynman diagrams
contributing to the QCD
corrections of the
top-loop-mediated Higgs decay
into two photons. The same
diagrams with the electric
charge flowing
counterclockwise also
contribute

follows from the fact that the integral is at most logarithmi-
cally divergent. The reason why a pole cannot be changed
by hand only in the terms where it appears is that the log-
arithmic behavior is reached only after gauge cancelations,
which should not be altered. This can be easily understood
with a toy model:

dσ R
NNLO

∣∣∣
toy

= 1

ŝ2
12

− (ŝ12 + ŝ13 + ŝ23)
2

ŝ2
12ŝ2

123

. (73)

The correct procedure gives

lim
μ→0

∫

d�̄m+2

dσ R
NNLO

∣∣∣
toy

WNNLO{ŝi1i2i3}m+1 = 0, (74)

while

lim
μ→0

∫

d�̄m+2

[
1

ŝ2
12

− (ŝ12 + ŝ13 + ŝ23)
2

ŝ2
12s̄2

123

]
�= 0. (75)

To summarize, IR infinities can be safely treated in four
dimensions. An explicit one-loop example, involving both
IR and UV infinities, can be found in [37]. Furthermore,
the outlined strategy opens the possibility of a numerical
treatment of NNLO calculations similar to the phase-space
slicing method at NLO [49]. The advantage is that all sin-
gularities are automatically expressed in terms of powers of
a logarithmic regulator—ln μ—with no need of subtracting
1/ε poles. An investigation of the numerical performance of
such a strategy is outside the scope of this work, although it
is currently under study. We think that it is a promising one
because, owing to the four-dimensionality of the calculation,
we envisage that the bulk of the cancelations can be easily
arranged to happen at the integrand level.

3 H → γ γ at two loops

The diagrams contributing to the QCD corrections of the top-
loop-mediated Higgs decay into two photons are depicted in
Fig. 5.

The amplitude reads

M = Mαβεα(p1)ε
∗
β(p2), (76)

where p1 and −p2 are the momenta of the outgoing photons.
One has

Mαβ = 1

(2π)2

α

π

T αβ

v

4

3
η F(η), (77)

with v being the vev of the Higgs boson and

η = 4m2

s
, m = mtop, s = (p1 − p2)

2 = M2
H ,

T αβ = pα
2 pβ

1 + s

2
gαβ. (78)

M is well defined in the limit m → ∞ we are interested in.
This means that, order by order, the form factor F(η) can be
written as

F(η) = F0 + F1

η
+ F2

η2 + · · · (79)

with

F0 = 0. (80)

By inserting Eq. (79) into the expansion in αS of F(η),
one obtains, up to two loops and neglecting O( 1

η2 ) terms,

F(η) = F (1)(η) − i
αS

3π3 F (2)(η)

≡
(

F (1)
0 + F (1)

1

η

)
− i

αS

3π3

(
F (2)

0 + F (2)
1

η

)
. (81)

At one loop F (1)
0 = 0 and (see, for example, [38])

F (1)
1 = 4iπ2

3
. (82)

In this section, we re-derive22—within the FDR
framework—the known result [50]

F (2)
0 = 0,

F (2)
1 = 4π4, (83)

which implies that the QCD corrections factorize the one-
loop amplitude

M = M(1)
(

1 − αS

π

)
+ O

(
α2

S

)
+ O

(
1

η

)
. (84)

22 We use the Feynman rules of Appendix B.
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3.1 The building blocks

Since we are working in the large top mass limit, denomina-
tors can be expanded as follows:

1

(qi + p j )2 − m2 = 1

q2
i − m2

(
1 − 2(qi · p j ) + p2

j

(qi + p j )2 − m2

)

= 1

q2
i − m2

(
1 − 2(qi · p j )

q2
i − m2

+ · · ·
)

,

(85)

where the on-shell condition p2
j = 0 for the photons has been

used. An expansion to the second order, as the one above, is
sufficient to the level of accuracy we are interested in, i.e.
O(1/η). All external momenta can then be neglected and the
top mass is the only relevant scale. As a consequence, we
only have to deal with vacuum integrals.

After canceling between numerator and denominator the
q̄2

1 , q̄2
2 , q̄2

12 terms generated by the Feynman rules,23 tensor
integrals up to rank 4 contribute to the amplitude. Because
there is no dependence on external momenta, odd rank inte-
grals vanish and the tensor reduction gives

qα
i qβ

j → (qi · q j )

4
gαβ,

qαqβqρqσ → q4

24
gαβρσ at one loop,

qα
a qβ

b qρ
r qσ

s → 1

72

(
Aαβρσ

abrs + Aαρβσ
arbs + Aασβρ

asbr

)
at two loops,

(86)

where gαβρσ = gαβgρσ + gαρgβσ + gασ gβρ , and

Aαβρσ
abrs =

(
5(qa · qb)(qr · qs) − (qa · qr )(qb · qs)

−(qa · qs)(qb · qr )
)

gαβgρσ . (87)

Denominators can then be reconstructed by rewriting

q2
1 = q̄2

1 + μ2|1, q2
2 = q̄2

2 + μ2|2,
2(q1 · q2) = q̄2

12 − q̄2
1 − q̄2

2 + μ2|12 − μ2|1 − μ2|2. (88)

During this tensor decomposition, the μ2|1, μ2|2, μ2|12

terms are kept only when they generate a non-zero contribu-
tion. This means that they should be power-counted as the
corresponding squared loop momenta, and contribute only if
the integral is divergent. The final result can then be com-
pletely expressed in terms of scalar two-loop integrals, prod-
ucts of two one-loop integrals and extra integrals containing

23 Remember the discussion at the beginning of Sect. 2.4.

μ2| j ( j = 1, 2, 12). For convenience, we introduce the nota-
tion

[
αm

] =
∫ [d4q]

(q̄2 − m2)α
, (89)

[
αm1 | βm2

] =
∫ [d4q1]

(q̄2
1 − m2

1)
α

×
∫ [d4q2]

(q̄2
2 − m2

2)
β
, (90)

[
αm1 | βm2 | 0

] =
∫ [d4q1][d4q2]

(q̄2
1 − m2

1)
α(q̄2

2 − m2
2)

β q̄2
12

, (91)

and

[
αm

]
(μ2) =

∫ [d4q] μ2

(q̄2 − m2)α
, (92)

[
αm1 | βm2

]
(μ2|1) =

∫ [d4q1] μ2|1
(q̄2

1 − m2
1)

α
×

∫ [d4q2]
(q̄2

2 − m2
2)

β
,

[
αm1 | βm2 | 0

]
(μ2| j ) =

∫ [d4q1][d4q2] μ2| j

(q̄2
1 − m2

1)
α(q̄2

2 − m2
2)

β q̄2
12

.

(93)

The one-loop and factorizable integrals of Eqs. (89)
and (90) can be computed as derivatives of the quadratically
divergent one-loop tadpole [30]
∫

[d4q] 1

(q̄2 − m2)α
= 1

�(α)

dα−1

d(m2)α−1

∫
[d4q] 1

(q̄2 − m2)
,

∫
[d4q] 1

(q̄2 − m2)
= −iπ2 m2

(
log

m2

μ2
R

− 1

)
, (94)

while those in Eq. (91) are obtained by deriving with respect
to the mass parameters the basic integral[
2m1 | m2 | 0

]
(95)

computed in Appendix D24

[
α m1 | β m2 | 0

] = 1

�(α)�(β)

dα−2

d(m2
1)

α−2

dβ−1

d(m2
2)

β−1

×[
2m1 | m2 | 0

]
. (96)

All extra integrals relevant for our calculation can be
expressed in terms of three fundamental objects

μ2
∫

d4q
1

q̄6 = − iπ2

2
,

μ2
∫

d4q1d4q2
q2

1 + 2(q1 · q2)

q̄6
1 q̄4

2 q̄2
12

= −π4
(

2

3
f + 1

2

)
,

μ2
∫

d4q1d4q2
1

q̄4
1 q̄4

2 q̄2
12

= −2 π4

3
f, (97)

24 This implies that for each of the diagrams in Fig. 5 the routing of
the momenta is chosen such that the gluon line gets the momentum
q12. This is allowed due to the shift invariance properties of the FDR
integration.
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with f given in Eq. (130). We need

[
3m | m | 0

]
(μ2|1), (98)

derived in footnote 16, and

∫
[d4q] μ2

(q̄2 − m2)α
= 1

�(α)

dα−1

d(m2)α−1

∫
[d4q] μ2

(q̄2 − m2)
,

[
α m1 | β m2 | 0

]
(μ2| j )

= 1

�(α)�(β)

dα−2

d(m2
1)

α−2

dβ−2

d(m2
2)

β−2

[
2m1 | 2m2 | 0

]
(μ2| j )

(99)

with

∫
[d4q] μ2

(q̄2 − m2)
= −m4 lim

μ→0
μ2

∫
d4q

1

q̄6 ,

[
2m1 | 2m2 | 0

]
(μ2|1) = − lim

μ→0
μ2

{∫
d4q1d4q2

q̄4
1 q̄4

2 q̄2
12

−iπ2 ln
m2

2

μ2

∫
d4q

q̄6

}
,

[
2m1 | 2m2 | 0

]
(μ2|2) = − lim

μ→0
μ2

{∫
d4q1d4q2

q̄4
1 q̄4

2 q̄2
12

−iπ2 ln
m2

1

μ2

∫
d4q

q̄6

}
,

[
2m1 | 2m2 | 0

]
(μ2|12) = − lim

μ→0
μ2

{∫
d4q1d4q2

q̄4
1 q̄4

2 q̄2
12

− iπ2

(
ln

m2
1

μ2 + ln
m2

2

μ2

)∫
d4q

q̄6

}
. (100)

The first of Eqs. (100) is computed indirectly from the
FDR expansion

qαqβ

(q̄2 − m2)
= qαqβ

{[
1

q̄2

]
+ m2

[
1

q̄4

]

+m4
[

1

q̄6

]
+ m6

[
1

q̄6(q̄2 − m2)

]}
, (101)

while Eqs. (127) and (128) give the other three equalities.

3.2 The result

By summing all Feynman diagrams and performing the ten-
sor reduction we end up with

F (2)
0 = −2

[
2 m | 2 m

] + 4
[
3 m | m

] − 4m2 [
3 m | 2 m

]
+12m2 [

4 m | m
] + 4

[
2 m | m | 0

]
+12m2

(
2

[
3 m | m | 0

] + [
2 m | 2 m | 0

])

+24m4
( [

4 m | m | 0
] + [

3 m | 2 m | 0
])

+4
[
3 m | 2 m

]
(μ2|1)

+8
[
3 m | m | 0

]
(μ2|1) + 4

[
2 m | 2 m | 0

]
(μ2|1)

−2
[
2 m | 2 m | 0

]
(μ2|12)

+8m2
( [

3 m | 2 m | 0
]
(μ2|2)

− [
3 m | 2 m | 0

]
(μ2|12)

)
, (102)

and

F (2)
1 = + 176

9 m2 [
3 m | 2 m

] − 56
3 m2 [

4 m | m
]

−4m4
(

10
9

[
3 m | 3 m

] − 10
3

[
4 m | 2 m

]

+ 16
3

[
5 m | m

]) + 4m6
(

10
3

[
4 m | 3 m

]

+ 4
[
5 m | 2 m

] − 20
3

[
6 m | m

])

− 320
9 m2 [

3 m | m | 0
] − 136

9 m2 [
2 m | 2 m | 0

]
− 176

3 m4
( [

4 m | m | 0
] + [

3 m | 2 m | 0
])

− 224
3 m6

( [
5 m | m | 0

] + [
4 m | 2 m | 0

]

+ 1
2

[
3 m | 3 m | 0

])

− 160
3 m8

( [
6 m | m | 0

] + [
5 m | 2 m | 0

]

+ [
4 m | 3 m | 0

])

−8m2 [
3 m | 3 m

]
(μ2|1) − 8m4 [

3 m | 4 m
]
(μ2|1)

+ 64
9 m2 [

3 m | 2 m | 0
]
(μ2|2)

+ 80
9 m2 [

3 m | 2 m | 0
]
(μ2|12)

− 16 m4
( [

4 m | 2 m | 0
]
(μ2|2)

− [
4 m | 2 m | 0

]
(μ2|12)

)

− 64
3 m6

( [
5 m | 2 m | 0

]
(μ2|2)

− [
5 m | 2 m | 0

]
(μ2|12)

)
. (103)

The final result in Eq. (83) follows by inserting the
expressions of the scalar and extra integrals computed in
Sect. 3.1.

A few remarks are in order. At two loops the one-to-
one correspondence between DR and FDR is lost and it
is no longer true that FDR integrals are obtained from DR
ones after subtracting poles (and universal constants). For

123



2864 Page 14 of 19 Eur. Phys. J. C (2014) 74:2864

example, if we were to interpret the integrals appearing
in Eq. (102) as dimensionally regulated ones, we would
not get zero and a 1/ε pole would even remain! Dif-
ferences already start at the level of the basic two-loop
scalar integral. The DR counterpart of Eq. (129) reads
[51]

μ−2ε
R

∫
dnq1dnq2

1

(q2
1 − m2

1)
2(q2

2 − m2
2)q

2
12

= π4

{
−Li2

(
1 − m2

2

m2
1

)
− ln2 μ2

R

m2
1

− ln
μ2

R

m2
1

+ constant

}
,

(104)

with a different coefficient in front of the ln2. This can be
understood because two different mechanisms to preserve
gauge invariance are used by DR and FDR, the latter avoid-
ing an order-by-order renormalization. Another advantage of
FDR is that the same formulas for the scalar one-loop func-
tions can be used also when they combine to form a factoriz-
able two-loop integral. Differently stated, Eq. (90) is simply
the product of two integrals of the kind given in Eq. (89). This
does not happen in DR, where terms of O(ε) must be added to
the one-loop functions appearing in a two-loop calculation.
Note also that there is no need of renormalizing F (2)

0 and

F (2)
1 . This directly follows from the discussion in Sect. 2.5.

FDR renormalization amounts to the mere operation of fixing
results in terms of physical quantities, and since the top mass
disappears due to the limit mtop → ∞, no fixing is needed.
This is not the case when using DR, where renormalization is
required in order to compensate spurious ε/ε constants gen-
erated in the limit n → 4. The situation is analyzed in the next
subsection.

3.3 Renormalization

Here we demonstrate that if we insist with an order-by-order
renormalization we obtain a vanishing contribution to F (2)

0

and F (2)
1 . At O(αS) the bare (m0) and physical (m) top

masses satisfy the relation

m0 = m + δm, δm = �(m), (105)

where �(/p) is the top self-energy depicted in Fig. 6 and

�(m) = m
αS

3π

(
3 ln

m2

μ2
R

− 5

)
. (106)

Fig. 6 Top self-energy at O(αS)

This gives the one-loop counterterms and diagrams of
Fig. 7, which generate a contribution to F (2)

0 and F (2)
1 pro-

portional to

F (2)
0,ct = i δm C0,ct and F (2)

1,ct = i δm C1,ct . (107)

One computes

C0,ct = 8m2 [
3 m

] + 12m4 [
4 m

] + 4
[
3 m

]
(μ2) = 0,

C1,ct = −16m2

3

( [
3 m

] + 4m2 [
4 m

] + 5m4 [
5 m

]

+5m6 [
6 m

]) = 0. (108)

Therefore renormalization does not have any effect.
It is worth mentioning that in DR

C0,ct
∣∣
DR = 0 and C1,ct

∣∣
DR = O(ε), (109)

so that C1,ct
∣∣
DR contributes to the amplitude when multiplied

against the 1/ε pole contained in δm
∣∣
DR (the DR counterpart

of δm25), and renormalization is necessary.

4 Conclusions

We have presented the first two-loop calculation ever per-
formed in FDR. The O(αS) corrections to the H → γ γ

amplitude—mediated by an infinitely heavy top loop—have
been computed in a fully four-dimensional fashion. This
example has allowed us to show that FDR is an approach
to loop calculations in which

– gauge invariance is preserved;
– order-by-order renormalization is avoided;
– a finite renormalization is only needed to fix the parame-

ters of the theory in terms of experimental observables;
– �-loop integrals are directly re-usable in (� + 1)-loop cal-

culations, with no need of further expanding in ε.

In addition, we have described how infrared divergences
can be dealt with within the same four-dimensional frame-
work used to cope with the ultraviolet infinities.

We have also demonstrated that DR and FDR are not
related in a direct way—beyond one loop—since FDR inte-
grals cannot be interpreted any longer as DR ones devoid of

25 δm
∣∣
DR in dimensional reduction is obtained from Eq. (106) through

the replacement ln μ2
R → ln μ2

R + 
, with 
 given in footnote 21.
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Fig. 7 One-loop counterterms
and diagrams generated by
Eq. (105)

the pole part. Due to its four-dimensionality we envisage a
great potential of FDR in further simplifying NNLO compu-
tations. More investigation is needed in this direction, which
we plan to undertake in the near future.

Acknowledgments This work was supported by the European Com-
mission through contracts ERC-2011-AdG No 291377 (LHCtheory)
and PITN-GA-2012-316704 (HIGGSTOOLS). We also thank the sup-
port of the MICINN project FPA2011-22398 (LHC@NLO) and the
Junta de Andalucía project P10-FQM-6552.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
Funded by SCOAP3 / License Version CC BY 4.0.

Appendix A: FDR and shift invariance

In this appendix we demonstrate that, for positive integers α,
β, γ , and δ,

∫
[d4q] 1

(q2 − m2 − μ2)α

=
∫

[d4q] 1

((q + p)2 − m2 − μ2)α
(110)

and

∫ [d4q1][d4q2]
(q2

1 − m2
1 − μ2)β(q2

2 − m2
2 − μ2)γ (q2

12 − m2
12 − μ2)δ

=
∫ [d4q1][d4q2]

((q1 + p1)2 − m2
1 − μ2)β((q2 + p2)2 − m2

2 − μ2)γ ((q12 + p12)2 − m2
12 − μ2)δ

, (111)

where q12 = q1 + q2 and p12 = p1 + p2. Since integrals of
polynomials in the integration variables vanish, the divergent
parts of any one- or two-loop FDR integral can be written—
after expanding in the external momenta—in terms of the
four cases

α = 1, α = 2, β = γ = δ = 1, and

β = γ = 1 with δ > 1. (112)

In all the other cases Eqs. (110) and (111) coincide with
finite integrals, for which shift invariance trivially holds.

We start proving Eq. (110) with α = 1. By using the
shorthand notation

D̄ = (q2 − m2 − μ2), S̄ = (q + p)2 − m2 − μ2, (113)

one writes the FDR expansions of the two sides of the equa-
tion as

1

D̄
=

[
1

q̄2

]
+

[
m2

q̄4

]
+ JF,1(q),

1

S̄
=

[
1

q̄2

]
+

[
m2 − p2 − 2(q · p)

q̄4

]
+ 4

[
(q · p)2

q̄6

]

+J ′
F,1(q). (114)

Then∫
[d4q] 1

D̄
= lim

μ→0
μ−ε

R

(∫
dnq

1

D̄
−

∫
dnq

m2

q̄4

−
∫

dnq
1

q̄2

)

= lim
μ→0

μ−ε
R

(∫
dnq

1

S̄
−

∫
dnq

m2

q̄4

−
∫

dnq
1

(q + p)2 − μ2

)
, (115)

where the shift invariance of the dimensionally regulated
integrals over 1/D̄ and 1/q̄2 has been used. By expanding
the last integrand one obtains

1

(q + p)2 − μ2 − 1

q̄2 = − p2 + 2(q · p)

q̄4 + 4
(q · p)2

q̄6

+O(p3). (116)

Since the l.h.s. of Eq. (116) vanishes upon integration at
any order in p, the same happens for the combination

− p2 + 2(q · p)

q̄4 + 4
(q · p)2

q̄6 . (117)
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The last integral in Eq. (115) can then be rewritten as

μ−ε
R

∫
dnq

1

(q + p)2 − μ2 = μ−ε
R

∫
dnq

×
(

1

q̄2 − p2 + 2(q · p)

q̄4 + 4
(q · p)2

q̄6

)
, (118)

so that

∫
[d4q] 1

D̄
= lim

μ→0

∫
d4q J ′

F,1(q) =
∫

[d4q] 1

S̄
, (119)

which proves Eq. (110) with α = 1. The case α = 2 is proven
by taking the derivative of Eq. (119) with respect to m2.

We now deal with the case β = γ = δ = 1. The FDR
expansion of the l.h.s. of Eq. (111) is given by Eq. (8). As
for the r.h.s., we introduce

S̄i = (qi + pi )
2 − m2

i − μ2 and

Ni = m2
i − p2

i − 2(qi · pi ), (120)

in terms of which the expansion reads

1

S̄1 S̄2 S̄12
=

[
1

q̄2
1 q̄2

2 q̄2
12

]
+

[
N1

q̄4
1 q̄2

2 q̄2
12

]
+

[
N2

q̄2
1 q̄4

2 q̄2
12

]

+
[

N12

q̄2
1 q̄2

2 q̄4
12

]
+ 4

[
(q1 · p1)

2

q̄6
1 q̄2

2 q̄2
12

]
+ 4

[
(q2 · p2)

2

q̄2
1 q̄6

2 q̄2
12

]

+4

[
(q12 · p12)

2

q̄2
1 q̄2

2 q̄6
12

]
+ 4

[
(q1 · p1)(q2 · p2)

q̄4
1 q̄4

2 q̄2
12

]

+4

[
(q1 · p1)(q12 · p12)

q̄4
1 q̄2

2 q̄4
12

]
+ 4

[
(q2 · p2)(q12 · p12)

q̄2
1 q̄4

2 q̄4
12

]

+
(

N 2
1

q̄4
1 S̄1

− 4
(q1 · p1)

2

q̄6
1

) [
1

q̄4
2

]

+
(

N 2
2

q̄4
2 S̄2

− 4
(q2 · p2)

2

q̄6
2

)[
1

q̄4
1

]

+
(

N 2
12

q̄4
12 S̄12

− 4
(q12 · p12)

2

q̄6
12

) [
1

q̄4
1

]
+ J ′

F,2(q1, q2).

(121)

Then, by rewriting

m4
i

D̄i q̄4
i

= 1

D̄i
− 1

q̄2
i

− m2
i

q̄4
i

(122)

and shifting all the D̄i and the quadratically divergent inte-
grals, Eq. (8) produces

∫
[d4q1][d4q2] 1

D̄1 D̄2 D̄12

= lim
μ→0

μ−2ε
R

∫
dnq1dnq2

(
1

S̄1 S̄2 S̄12

− 1

((q1 + p1)2 − μ2)((q2 + p2)2 − μ2)((q12 + p12)2 − μ2)

−m2
1

[
1

q̄4
1 q̄2

2 q̄2
12

]
− m2

2

[
1

q̄2
1 q̄4

2 q̄2
12

]
− m2

12

[
1

q̄2
1 q̄2

2 q̄4
12

]

−
(

1

S̄1
− 1

(q1 + p1)2 − μ2 − m2
1

q̄4
1

)[
1

q̄4
2

]

−
(

1

S̄2
− 1

(q2 + p2)2 − μ2 − m2
2

q̄4
2

) [
1

q̄4
1

]

−
(

1

S̄12
− 1

(q12 + p12)2 − μ2 − m2
12

q̄4
12

) [
1

q̄4
1

])
. (123)

An expansion up to O(p2
1), O(p2

2), and O(p1 p2) of the
second line and of the terms

1/((qi + pi )
2 − μ2)

in the last three lines produces extra integrands which—by
the same argument used at one loop—vanish upon integra-
tion. The addition of such terms reconstructs J ′

F,2(q1, q2) as
given in Eq. (121), so that

∫
[d4q1][d4q2] 1

D̄1 D̄2 D̄12
= lim

μ→0

∫
d4q1d4q2 J ′

F,2(q1, q2)

=
∫

[d4q1][d4q2] 1

S̄1 S̄2 S̄12
.

(124)

Finally, taking the derivative with respect to m2
12 demon-

strates the last case.
With more loops the proof follows the same reason-

ing: the mismatch between the FDR expansion of shifted
and unshifted integrands is cured by vanishing integrals
obtained by expanding the polynomially divergent integrals
in JINF(q1, . . . , q�) at the relevant order in p, as in Eq. (116).

Appendix B: Feynman rules

For completeness we list, in Fig. 8, the Feynman rules used
in the calculation. Qt , m0 and v are the top quark charge, the
top bare mass and the vacuum expectation value of the Higgs
field, respectively.
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Fig. 8 Feynman rules used in
the computation of H → γ γ at
O(αS)

Appendix C: A few FDR defining expansions

We collect here the two-loop FDR defining expansions used
throughout the paper. Denominators are defined in Eq. (7)
and divergent integrands are written in square brackets.

1. Expansion for
∫

[d4q1][d4q2] qα
1 qβ

1

D̄3
1 D̄2 D̄12

:

qα
1 qβ

1

D̄3
1 D̄2 D̄12

= qα
1 qβ

1

{[
1

q̄6
1 q̄2

2 q̄2
12

]

+
(

1

D̄3
1

− 1

q̄6
1

) ([
1

q̄4
2

]
− q2

1 + 2(q1 · q2)

q̄4
2 q̄2

12

)

+ 1

D̄3
1 q̄2

2 D̄12

(
m2

2

D̄2
+ m2

12

q̄2
12

)}
. (125)

2. Expansion for
∫

[d4q1][d4q2] 1

D̄2
1 D̄2q̄2

12

:

1

D̄2
1 D̄2q̄2

12

=
[

1

q̄4
1 q̄2

2 q̄2
12

]
+

(
m2

1

D̄1q̄4
1

+ m2
1

D̄2
1 q̄2

1

)

×
([

1

q̄4
2

]
− q2

1 + 2(q1 · q2)

q̄4
2 q̄2

12

)

+ m2
2

D̄2
1(D̄2q̄2

2 )q̄2
12

. (126)

3. Expansion for
∫

[d4q1][d4q2] qα
1 qβ

1

D̄2
1 D̄2

2 q̄2
12

:

qα
1 qβ

1

D̄2
1 D̄2

2 q̄2
12

= qα
1 qβ

1

{[
1

q̄4
1 q̄4

2 q̄2
12

]
+

(
m2

2

D̄2q̄4
2

+ m2
2

D̄2
2 q̄2

2

)

×
([

1

q̄6
1

]
− q2

2 + 2(q1 · q2)

q̄6
1 q̄2

12

)

+
(

1

D̄2
1

− 1

q̄4
1

)
1

D̄2
2 q̄2

12

}
. (127)

4. Expansion for
∫

[d4q1][d4q2] qα
12qβ

12

D̄2
1 D̄2

2 q̄2
12

:

qα
12qβ

12

D̄2
1 D̄2

2 q̄2
12

= qα
12qβ

12

{[
1

q̄4
1 q̄4

2 q̄2
12

]
+

[
1

q̄6
12

] ((
m2

1

D̄1q̄4
1

+ m2
1

D̄2
1 q̄2

1

)
+

(
m2

2

D̄2q̄4
2

+ m2
2

D̄2
2 q̄2

2

))

+ 1

q̄2
12

((
1

D̄2
1

− 1

q̄4
1

) (
1

D̄2
2

− 1

q̄4
2

)

+
(

1

q̄4
1

− 1

q̄4
12

)(
1

D̄2
2

− 1

q̄4
2

)

+
(

1

q̄4
2

− 1

q̄4
12

) (
1

D̄2
1

− 1

q̄4
1

))}
. (128)

Appendix D: The basic two-loop scalar integral

In this appendix, we demonstrate that the basic two-loop
scalar integral in Eq. (95) reads

[
2m1 | m2 | 0

] ≡
∫

[d4q1][d4q2] 1

D̄2
1 D̄2q̄2

12

= π4

{
f − Li2

(
1 − m2

2

m2
1

)
− 1

2
ln2 μ2

R

m2
1

− ln
μ2

R

m2
1

}
,

(129)

with

f = i√
3

(
Li2(e

i π
3 ) − Li2(e

−i π
3 )

)
. (130)

A direct integration of the finite part of its FDR defining
expansion—Eq. (126)—gives

[
2m1 | m2 | 0

] = m2
2 I2(m1, m2) − m2

1 I1(m1), (131)
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where

I2(m1, m2) = lim
μ→0

∫
d4q1d4q2

1

D̄2
1(D̄2q̄2

2 )q̄2
12

and

I1(m1) = lim
μ→0

∫
d4q1d4q2

q2
1 + 2(q1 · q2)

q̄4
2 q̄2

12

×
(

1

D̄1q̄4
1

+ 1

D̄2
1 q̄2

1

)
. (132)

By power counting—due to the presence of 1/q4
i terms—

a logarithmic dependence on μ is expected in I1(m1), while
μ can be immediately set to zero in I2(m1, m2). A natural
split is then obtained in FDR: I2(m1, m2) only depends on

r12 = m2
1

m2
2

, (133)

and I1(m1) on

ρ1 = μ2

m2
1

, (134)

so no difficult integral containing both ratios needs to be
computed. A simple Feynman parametrization produces

I2(m1, m2) =
1∫

0

dz
∫

d4q1d4q2
1

D2
1(q2

2 − m2
2z)2q2

12

= π4

m2
2

1∫

0

dz

1∫

0

dx

1∫

0

dy
y

xyz + r12(1 − y)

= π4

m2
2

{
π2

6
− Li2

(
r12 − 1

r12

)}
, (135)

and

I1(m1) = 2 lim
μ→0

1∫

0

dz
∫

d4q1d4q2
q2

1 + 2(q1 · q2)

(q̄2
1 − m2

1z)3q̄4
2 q̄2

12

= 2π4

m2
1

lim
μ→0

1∫

0

dz

1∫

0

dx

1∫

0

dy

× (2x − 1)y2x

(z + ρ1)x(1 − x)y + ρ1(1 − y)

= π4

m2
1

{
π2

6
− f + 1

2
ln2 ρ1 + ln ρ1

}
, (136)

from which Eq. (129) follows. The same result can be derived
as a finite combination of divergent integrals. From Eq. (126),
by using DR,

[
2m1 | m2 | 0

] = μ−2ε
R

∫
dnq1dnq2

1

D2
1 D2q2

12

− lim
μ→0

μ−2ε
R

∫
dnq1dnq2

[
1

q̄4
1 q̄2

2 q̄2
12

]

− lim
μ→0

μ−2ε
R

∫
dnq2

[
1

q̄4
2

] ∫
dnq1

×
(

m2
1

D̄1q̄4
1

+ m2
1

D̄2
1 q̄2

1

)
. (137)

The relevant DR integrals can be found in the appendix
of [51].
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