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Abstract A new way of probing new physics in the B
meson system is provided. We define double ratios for
the observables of Bd,s–B̄d,s mixings and Bd,s → μ+μ−
decays, and find simple relations between the observables. By
using the relations we predict the yet-to-be-measured branch-
ing ratio of Bd → μ+μ− to be (0.809–1.03)×10−10, up to
the new physics models.

1 Introduction

The recent discovery of a Higgs boson at the large hadron col-
lider (LHC) opened a new era of high energy physics. It may
take time to confirm whether the new particle is really the
Higgs boson of the standard model (SM), but it looks more
and more like the SM Higgs. The discovery of the Higgs
boson would mean a completion of the SM. On the other
hand, we have many reasons to believe that there must be
new physics (NP) beyond the SM. Unfortunately, the LHC
up to now has not reported any clues of NP. But it is too early
to say that there is no NP at all. Bd,s mesons are good test beds
for NP. Especially, Bd,s–B̄d,s mixings and Bd,s → μ+μ−
decays are loop-induced phenomena in the SM and very sen-
sitive to NP effects. The current status of the experiments is
well compatible with the SM predictions. For example, the
LHCb and the CMS collaboration reported [1,2]

Br(Bs → μ+μ−) = (2.9+1.1
−1.0) × 10−9,

Br(Bd → μ+μ−) < 7.4 × 10−10 (LHCb), (1)

Br(Bs → μ+μ−) = (3.0+1.0
−0.9) × 10−9,

Br(Bd → μ+μ−) < 1.1 × 10−9 (CMS). (2)

The measured value is slightly smaller than the previous
LHCb measurements [3]:
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Br(Bs → μ+μ−) = (3.2+1.5
−1.2) × 10−9,

Br(Bd → μ+μ−) < 9.4 × 10−10. (3)

For comparison: the SM predictions are [4,5]

Br(Bs → μ+μ−) = (3.25 ± 0.17) × 10−9, (4)

Br(Bd → μ+μ−) = (1.07 ± 0.10) × 10−10. (5)

But there is still some room for NP, as discussed in [4,6,7]. In
this paper, we provide a very simple and quick way to probe
NP in Bd,s–B̄d,s mixings and Bd,s → μ+μ− decays. The
idea is that a double ratio for one observable between different
flavors extracts the relevant couplings for NP, and they are
directly related to the other observable. Schematically, for a
physical observable Oa

i with flavor a,

Rab
i ≡ Oa

i,exp/Oa
i,SM − 1

Ob
i,exp/Ob

i,SM − 1
� fi

(
ca

cb

)
, (6)

where the ca are the new couplings and fi is some function
of ca/cb. For another observable O j we can define a simi-
lar quantity, Rab

j , which would behave � f j (ca/cb). Con-

sequently, Rab
i and Rab

j are related through the functions fi

and f j , and the relations are remarkably simplified when
the new couplings belong to the category of the minimal
flavor violation (MFV). In this way, we can establish sim-
ple relations between the observables of Bd,s–B̄d,s mixings
and Bd,s → μ+μ− decays. The relations are very useful
because Rab

i and Rab
j are directly connected, and the rela-

tions are different for various NP models. For example, we
can predict Br(Bd → μ+μ−) from other known observables
such as �M of Bd,s–B̄d,s mixings, without knowing the val-
ues of the new couplings. Or if we measure the branching
ratio Br(Bd → μ+μ−), we can find from the double ratio
relations which NP is realized in B physics. In this paper
we specifically consider flavor changing scalar (un)particles
and vector boson (Z ′) scenarios. Actually it is already known
that �Mq and Br(Bq → μ+μ−) can be related to each other
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[8–10]. In our approach, the Rab
i are directly proportional

to the NP effects, so the resulting relations are solely those
of NP. The relations might be different for various models,
which makes it easier to see which kind of NP is realized.

The NP couplings adopted in this analysis are summarized
as follows [4,11]:

LZ ′ = [�sb
L (Z ′)(s̄γμ PLb) + �sb

R (Z ′)(s̄γμ PRb)

+���
L (Z ′)(�̄γμ PL�) + ���

R (Z ′)(�̄γμ PR�)]Z ′μ, (7)

LH = [�sb
L (H)(s̄ PLb)+�sb

R (H)(s̄ PRb)+���
L (H)(�̄PL�)

+���
R (H)(�̄PR�)]H, (8)

LU = cbs
U L

�
dU
U

s̄γμ(1−γ5)b ∂μOU + c�
U L

�
dU
U

�̄γμ(1−γ5)� ∂μOU ,

(9)

where PL ,R = (1 ∓ γ5)/2. In LU one can also include the
right-handed couplings, but here (and in [11]) only the min-
imal extension of the SM is considered for simplicity.

First consider the Bd,s–B̄d,s mixing. The mixing effect is
parametrized as the following quantity:

�Mq = G2
F

6π2 M2
W m Bq |V ∗

tbVtq |2 F2
Bq

ηB |S(Bq)|, (10)

where

S(Bq) = S0(xt ) + �S(Bq) ≡ |S(Bq)|eiθ
Bq
S , (11)

and xt = m2
t /m2

W . Here the loop function

S0(xt ) = 4xt − 11x2
t + x3

t

4(1 − xt )2 − 3x2
t log xt

2(1 − xt )3 , (12)

and

�S(Bq) = [�S(Bq)]V (S)LL + [�S(Bq)]V (S)RR

+[�S(Bq)]V (S)LR, (13)

where the subscript V (S) stands for Z ′(H) contributions.
Explicitly [6,7],

[S(Bq)]VLL =
[

�
bq
L (Z ′)

V ∗
tbVtq

]2
4r̃

M2
Z ′ g2

SM

, (14)

[S(Bq)]VRR =
[

�
bq
R (Z ′)

V ∗
tbVtq

]2
4r̃

M2
Z ′ g2

SM

, (15)

[S(Bq)]VLR = �
bq
L (Z ′)�bq

R (Z ′)
T (Bq)M2

Z ′

× [CVLR
1 (μZ ′)〈QVLR

1 (μZ ′ , Bq)〉
+ CVLR

2 (μZ ′)〈QVLR
2 (μZ ′ , Bq)〉], (16)

where

gSM ≡ 4G F√
2

α

2π sin2 θW
, (17)

T (Bq) ≡ G2
F

12π2 F2
Bq

B̂Bq m Bq M2
W (V ∗

tbVtq)2ηB, (18)

and r̃ = 0.985 for MZ ′ = 1 TeV. For the scalar field,

[�S(Bq)]SL L = − [�bq
L (H)]2

T (Bq)2M2
H

×[C SL L
1 (μH )〈QSL L

1 (μH , Bq)〉
+ C SL L

2 (μH )〈QSL L
2 (μH , Bq)〉], (19)

[�S(Bq)]S R R = [�S(Bq)]SL L(L → R), (20)

[�S(Bq)]SL R = −�
bq
L (H)�

bq
R (H)

T (Bq)M2
H

×[C SL R
1 (μH )〈QSL R

1 (μH , Bq)〉
+ C SL R

2 (μH )〈QSL R
2 (μH , Bq)〉]. (21)

The expectation values of the operators Qa
i are

〈Qa
i (μM , Bq)〉 ≡ 1

3
m Bq F2

Bq
Pa

i (μM , Bq). (22)

For the case of �
bq
R = 0,

�Mq(Z ′)
�MSM

q
=
∣∣∣∣1 + [S(Bq)]V L L

S0(xt )

∣∣∣∣

� 1 + 1

S0(xt )
Re

[
�

bq
L (Z ′)

V ∗
tbVtq

]2
4r̃

M2
Z ′ g2

SM

, (23)

up to the leading order of �
bq
L . Now we define a double ratio

RZ ′
�M as

RZ ′
�M ≡ �Ms(Z ′)/�MSM

s − 1

�Md(Z ′)/�MSM
d − 1

= Re
[
�bs

L (Z ′)/Vts
]2

Re
[
�bd

L (Z ′)/Vtd
]2 ,

(24)

where the result of Eq. (23) is applied. Similarly, for the scalar
contribution (with �

bq
R = 0),

RH
�M ≡ �Ms(H)/�MSM

s − 1

�Md(H)/�MSM
d − 1

= B̂Bd

B̂Bs

Re
[
�bs

L (H)/Vts
]2

Re
[
�bd

L (H)/Vtd
]2 .

(25)

We assumed here that the light-quark dependence on Pa
i (μH ,

Bq) is negligible [12], and thus Pa
i (μH , Bd) � Pa

i (μH , Bs).
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In the scalar unparticle scenario [11],

�MU
q

�MSM
q

− 1 ≡ |�U | − 1 = Re[(cbq
U L)2 f q

U cot dUπ ]

+ Im[(cbq
U L)2 f q

U ] + O(c4
U L). (26)

Here

f q
U = 5

24MSM
12

AdU

(
F2

Bq

m Bq

)(
m2

Bq

�U

)dU

, (27)

where MSM
12 is the SM contribution and

AdU ≡ 16π5/2

(2π)2dU
�(dU + 1/2)

�(dU − 1)�(2dU )
, (28)

with dU being the scaling dimension of the scalar unparticle
operator. The double ratio for the scalar unparticle is

RU
�M ≡ �MU

s /�MSM
s − 1

�MU
d /�MSM

d − 1

�
(

B̂Bd

B̂Bs

)(
m2

Bs

m2
Bd

)dU −1
Re(c̃bs

U L )2 cot dUπ+Im(c̃bs
U L )2

Re(c̃bd
U L )2 cot dUπ+Im(c̃bd

U L )2
,

(29)

where we put cbq
U L ≡ c̃bq

U L · V ∗
tbVtq . For real c̃bq

U L , one has

RU
�M =

(
B̂Bd

B̂Bs

)(
m2

Bs

m2
Bd

)dU−1 (
c̃bs
U

c̃bd
U L

)2

. (30)

If c̃bq
U L is purely imaginary, one gets a similar result.
Now we move to Bd,s → μ+μ− decays. The relevant

effective Hamiltonian is given by

Heff = −G Fα√
2π

[
V ∗

ts Vtb

10,S,P∑
i

(CiOi + C ′
iO′

i ) + h.c.

]
,

(31)

where the operators Oi are

O10 = (s̄γμ PLb)(�̄γ μγ5�), O′
10 = (s̄γμ PRb)(�̄γ μγ5�),

(32)

OS = mb(s̄ PRb)(�̄�), O′
S = mb(s̄ PLb)(�̄�), (33)

OP = mb(s̄ PRb)(�̄γ5�), O′
P = mb(s̄ PLb)(�̄γ5�).

(34)

For Bs decay it is convenient to define [13,14]

Br(Bs → μ+μ−) ≡ 1

r(ys)
Br(Bs → μ+μ−)th, (35)

where

r(ys) ≡ 1 − y2
s

1 + ysA��

, (36)

ys ≡ τBs

��s

2
= 0.088 ± 0.014, (37)

and we have the asymmetric parameter

A�� ≡ RH − RL

RH + RL
, (38)

where RH(L) exp[−�
(s)
H(L)t] is the decay rate of the heavy

(light) mass eigenstate. Here Br(Bs → μ+μ−)th is a theo-
retical prediction, while Br(Bs → μ+μ−) would be directly
compared with the experimental results. In general,

Br(Bs → μ+μ−)

Br(Bs → μ+μ−)SM
= 1 + ysA��

1 + ys
(|P|2 + |S|2), (39)

where

P ≡ C10 − C ′
10

CSM
10

+ m2
Bs

2mμ

mb

mb + ms

CP − C ′
P

CSM
10

≡ |P|eiϕP ,

(40)

S ≡
√√√√1 − 4m2

μ

m2
Bs

m2
Bs

2mμ

mb

mb + ms

CS − C ′
S

CSM
10

≡ |S|eiϕS . (41)

The standard model contribution is

CSM
10 = − 1

sin2 θW
ηY Y0(xt ), (42)

with ηY = 1.012 and

Y0(xt ) = xt

8

[
xt − 4

xt − 1
+ 3xt log xt

(xt − 1)2

]
. (43)

For the Z ′ model,

sin2 θW C10(Z ′)=−ηY Y0(xt )− 1

g2
SM

1

M2
Z ′

�sb
L (Z ′)�μμ

A (Z ′)
V ∗

ts Vtb
,

(44)

sin2 θW C ′
10(Z ′) = − 1

g2
SM

1

M2
Z ′

�sb
R (Z ′)�μμ

A (Z ′)
V ∗

ts Vtb
, (45)

while the other coefficients are vanishing. Using �sb
L ,R(Z ′) =

�bs
L ,R(Z ′)∗, one has

Br(Bs → μ+μ−)

Br(Bs → μ+μ−)SM
− 1 � ys

1 + ys
[cos(2θ

Bs
Y + θ

Bs
S ) − 1]

+ 1

1 + ys

1

ηY Y0(xt )

1

M2
Z ′ g2

SM

2Re

[
(�bs∗

L − �bs∗
R )�

μμ
A

V ∗
ts Vtb

]
,

(46)
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and

Br(Bd → μ+μ−)

Br(Bd → μ+μ−)SM

−1 � 1

ηY Y0(xt )

1

M2
Z ′ g2

SM

2Re

[
(�bd∗

L − �bd∗
R )�

μμ
A

V ∗
td Vtb

]
,

(47)

up to O(ys�L ,R�A). For �R = 0 and �
bq
L = �̃

bq
L Vtq where

�̃
bq
L is real, the double ratio

RZ ′
μμ ≡

[
Br(Bs → μ+μ−)Z ′

Br(Bs → μ+μ−)SM
− 1

]/

[
Br(Bd → μ+μ−)Z ′

Br(Bd → μ+μ−)SM
− 1

]
(48)

remarkably reduces to

RZ ′
μμ = 1

1 + ys

(
�̃bs

L

�̃bd
L

)
. (49)

In this case we have the ratio RZ ′
�M = (�̃bs

L /�̃bd
L )2, and thus

one arrives at the very simple relation

RZ ′
μμ(1 + ys) =

√
RZ ′

�M . (50)

For neutral scalar H , the coefficients are

C10(H) = CSM
10 , (51)

CS(H) = 1

mb sin2 θW

1

g2
SM

1

M2
H

�sb
R (H)�

μμ
S (H)

V ∗
ts Vtb

, (52)

C ′
S(H) = 1

mb sin2 θW

1

g2
SM

1

M2
H

�sb
L (H)�

μμ
S (H)

V ∗
ts Vtb

, (53)

CP (H) = 1

mb sin2 θW

1

g2
SM

1

M2
H

�sb
R (H)�

μμ
P (H)

V ∗
ts Vtb

, (54)

C ′
P (H) = 1

mb sin2 θW

1

g2
SM

1

M2
H

�sb
L (H)�

μμ
P (H)

V ∗
ts Vtb

. (55)

One can define a double ratio RH
μμ similar to Eq. (48). For

simplicity we assume that �R = 0 and �
bq
L = �̃

bq
L Vtq with

real �̃
bq
L . Note that in this case

RH
�M = B̂Bd

B̂Bs

(
�̃bs

L

�̃bd
L

)2

. (56)

For the case of �
μμ
S (H) = 0, the double ratio reduces to

RH
μμ ≡

[
Br(Bs → μ+μ−)H

Br(Bs → μ+μ−)SM
− 1

]/

[
Br(Bd → μ+μ−)H

Br(Bd → μ+μ−)SM
− 1

]

= 1

1 + ys

(
m2

Bs

m2
Bd

mb + md

mb + ms

)2 (
B̂Bs

B̂Bd

)
RH

�M . (57)

On the other hand if �
μμ
P = 0,

RH
μμ =

(
1 − 2ys

1 + ys

)( 1 − 4m2
μ/m2

Bs

1 − 4m2
μ/m2

Bd

)

×
(

m2
Bs

m2
Bd

mb + md

mb + ms

)2 (
B̂Bs

B̂Bd

)
RH

�M . (58)

For scalar unparticles [15],

P = 1 − sin2 θW

ηY Y0(xt )

√
2π AdU

αG F m2
Bs

(
m Bs

�U

)2dU

×
(

mb

mb + ms

)(
cbs
U Lc�

U L

V ∗
tbVts

)∗
(cot dUπ + i), (59)

S = 0, (60)

and thus A�� = cos(2ϕP − φU
s ). Here φU

s is the phase of

�U in Eq. (26). For real c̃bq
U L , c�

U L , cos(2ϕP − φU
s ) � 1 up

to O(cU L)4, and the double ratio is

RU
μμ ≡

[
Br(Bs → μ+μ−)U
Br(Bs → μ+μ−)SM

− 1

]/

[
Br(Bd → μ+μ−)U
Br(Bd → μ+μ−)SM

− 1

]

= 1

1 + ys

(
m Bs

m Bd

)2dU−2 (mb + md

mb + ms

)(
c̃bs
U L

c̃bd
U L

)

= 1

1 + ys

(
m Bs

m Bd

)dU−1 (mb + md

mb + ms

)√√√√ B̂Bs

B̂Bd

√
RU

�M ,

(61)

where the result of Eq. (30) is used. Our results are summa-
rized as follows:

RZ ′
μμ(1 + ys) =

√
RZ ′

�M , (62)

RH
μμ(1 + ys) =

(
m2

Bs

m2
Bd

mb + md

mb + ms

)2

×
(

B̂Bs

B̂Bd

)
RH

�M (if �
μμ
S = 0), (63)

RH
μμ(1 + ys) = (1 − 2ys)

⎛
⎜⎜⎝

1 − 4m2
μ

m2
Bs

1 − 4m2
μ

m2
Bd

⎞
⎟⎟⎠
(

m2
Bs

m2
Bd

mb + md

mb + ms

)2

×
(

B̂Bs

B̂Bd

)
RH

�M (if �
μμ
P = 0), (64)
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Table 1 Predictions for Br(Bd → μ+μ−) for various Br(Bs → μ+μ−) measurements. For unparticles, the branching ratio is given at a reference
point dU = 1.5

New physics Z ′ H (�μμ
S = 0) H (�μμ

P = 0) U(dU = 1.5)

Br(Bs → μ+μ−) = 2.9 × 10−10 [1] 0.799 × 10−10 0.775 × 10−10 0.716 × 10−10 0.803 × 10−10

Br(Bs → μ+μ−) = 3.0 × 10−10 [2] 0.837 × 10−10 0.816 × 10−10 0.766 × 10−10 0.840 × 10−10

Br(Bs → μ+μ−) = 3.2 × 10−10 [3] 0.913 × 10−10 0.900 × 10−10 0.868 × 10−10 0.915 × 10−10

RU
μμ(1 + ys) =

(
m Bs

m Bd

)dU−1 (mb + md

mb + ms

)√√√√ B̂Bs

B̂Bd

√
RU

�M .

(65)

The reason why RH
μμ ∼ RH

�M is that in RH
μμ, Br/BrSM − 1

is non-vanishing only at O(c2), due to the fact that �
μμ
P is

purely imaginary [4].
Numerically, Eqs. (62)–(65) are

RZ ′
μμ = 0.919 ×

√
RZ ′

�M = 0.775, (66)

RH,�S=0
μμ = 0.993 × RH

�M = 0.707, (67)

RH,�P=0
μμ = 0.818 × RH

�M = 0.583, (68)

RU
μμ = (1.02)dU−1 × 0.925

√
RU

�M = 0.780 × (1.02)dU−1,

(69)

where R�M = 0.712 is used. The above results can
be used to predict the yet-to-be-measured branching ratio,
Br(Bd → μ+μ−). Table 1 shows the predicted values of
Br(Bd → μ+μ−).

Note that the values of Table 1 are all far below the
current upper bound, Br(Bd → μ+μ−) < 7.4 × 10−10

by the LHCb [1] and Br(Bd → μ+μ−) < 1.1 × 10−9

by the CMS [2], and slightly smaller than the SM pre-
diction, Br(Bd → μ+μ−)SM = 1.05 × 10−10. This is
because Br(Bs → μ+μ−) < Br(Bs → μ+μ−)SM =
(3.56 ± 0.18) × 10−9 [4] and R�M = 0.712 > 0. Note also
that the predictions are made without knowing any numeri-
cal details of the new couplings, except that they are small
enough to neglect higher orders. In this way, by measuring
Br(Bd → μ+μ−) we can easily figure out which kind of NP
is realized in B systems.

In conclusion, we derived new relations between Bd,s

observables. The relations are valid only when NP exists
in Bd,s systems, which is a very plausible assumption. The
relations are different in specific models. In this analysis we
only consider flavor changing scalar (un)particles and vector
bosons. For other models one can define similar double ratios
as given in this work. The double ratios become very simple
when there are only left- (or right-) handed couplings, and
the couplings are MFV-like. If this were not the case, then our
simple relations would not hold any more. In other words, if
we confirm that the simplified double ratio relations really

hold, then we may conclude that NP is realized in a minimal
way.

One point to be mentioned is that our double ratio becomes
meaningless if there were no NP at all. In this case both
numerator and denominator are vanishing and one cannot
take a ratio. Thus the double ratio is not adequate to check
whether there is any NP or not, but to see which kind of NP
is involved once the observables turn out to be quite different
from the SM predictions. The current status of NP searches
in the case of the B meson is not so pessimistic. According
to [16], the relative size of NP in �Md,s (= hd,s) is currently
�0.2–0.3, and would be �0.1 in the near future (“Stage I”
where the LHCb will end). As for Bd → μ+μ−, the current
upper bound is almost an order of magnitude larger than the
SM prediction. It is predicted in [17] that at 2σ , 0.3×10−10 �
Br(Bd → μ+μ−) � 1.8×10−10. If the measured branching
ratio does not lie within this window, it would be a clear
indication of NP. It is also found in [17] that although the
measured value of Br(Bs → μ+μ−) provides constraints
on NP, there are still sizable regions allowed for CS–C ′

S and
CP –C ′

P parameter space.
Besides the current status of NP searches, we need NP for

various reasons (dark matter for example). Although there
have been no smoking-gun signals for NP up to now, we
believe that the SM is not (and should not be) the full story
of particle physics. In this context the double ratio analysis
might be very promising with the coming flavor precision
era, and it can also be applied to K meson systems.
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