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Abstract In the framework of the functional renormaliza-
tion group we present a simple truncation scheme for the
computation of real-time mesonic r-point functions, con-
sistent with the derivative expansion of the effective action.
Via analytic continuation on the level of the flow equations
we perform calculations of mesonic spectral functions in the
scalar O (N) model, which we use as an exploratory exam-
ple. By investigating the renormalization-scale dependence
of the 2-point functions we shed light on the nature of the
sigma meson, whose spectral properties are predominantly
of dynamical origin.

1 Introduction

Real-time observables in strongly interacting systems often
pose major challenges for theoretical calculations. Spectral
functions are key to many such observables. They provide
information on quasi-particle spectra and collective excita-
tions of the system. The spectral functions of the energy-
momentum tensor, moreover, allow one to extract transport
coefficients via the Kubo formulas [1-4] and thus to study
macroscopic properties of strongly interacting matter.

In this letter we study spectral functions of the elemen-
tary sigma and pion correlations in the O(N) model with
the functional renormalization group (FRG). FRG meth-
ods [5-7] have been well developed over the last 30 years.
Although various formulations exist, their underlying physi-
cal principles are always the same. The equations of motion
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are described as functional differential equations of a scale-
dependent generating functional and functional derivatives
of it.

Here we employ the approach pioneered by Wetterich [7]
with the scale-dependent effective average action as the cen-
tral object, which generalizes the usual effective action (see
[8-12] for a general introduction). By integrating the Wet-
terich equation which describes the evolution of the effec-
tive average action with the RG scale k, one obtains the full
quantum effective action in the limit k — 0. The evolution
equations for the n-point functions can be obtained from that
of the effective action via functional derivatives.

A typical problem which one encounters in functional
approaches is the fact that the flow equations for n-point
functions involve information on up to (n + 2)-point func-
tions thereby leading to an infinite tower of coupled evo-
lution equations. Practical applications thus require trun-
cations in order to obtain a closed system of equations
to solve. One frequently used truncation scheme is the
derivative expansion based on expanding the effective action
in terms of derivatives. The leading order in this expan-
sion is the so-called local potential approximation (LPA).
Despite their simplicity, derivative expansions in general
and the LPA in particular, have been applied successfully
to a broad range of physical systems and critical phenom-
ena.

In this letter we present an extension of the deriva-
tive expansion to obtain real-time 2-point correlation func-
tions consistent with the underlying truncation for the
effective potential. Starting from the flow equation for 2-
point functions we employ LPA vertices to obtained a
closed system of flow equations involving as the only
input the scale-dependent effective potential. A consistent
truncation scheme for the calculation of the Euclidean
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2-point correlators at finite external momentum is, how-
ever, only the first step toward a calculation of real-time
quantities such as spectral functions or transport coeffi-
cients.

The crucial second step, acommon challenge in Euclidean
approaches to thermal quantum field theory, is the ana-
lytic continuation of the external momentum to Minkowski
spacetime. At present, real-time correlation functions are
usually either reconstructed from their Euclidean analogs
using Padé approximants or by maximum entropy methods.
Alternatively, they can be calculated directly in Minkowski
spacetime by an analytical continuation at the level of the
flow equations [13,14]. In this respect, our approach is
similar to that of Ref. [15] in which more refined trun-
cations in real time were proposed to include effects of
the back-coupling of a non-trivial propagator on the effec-
tive potential and the wavefunction renormalization. Actual
solutions, however, require an Ansatz for the form of
the propagator and its singularity structure. Our approach,
on the other hand, does not rely on assuming a cer-
tain spectral shape, but it ignores back-coupling effects at
present.

In the following, we concentrate on the calculation of
spectral functions within the O (N) model. The analysis of
the O(N) scalar model, which is frequently used as a chi-
ral effective model for QCD (N = 4), has a long history.
Spectral functions in O(N) models have been calculated,
for example, in optimized perturbation theory [16-19] by
taking into account the 0 — m + m process. The criti-
cal exponents have been evaluated in [17]. Although quan-
tum fluctuations are included via a resummed loop expan-
sion, the critical exponents remain at their mean-field val-
ues. To overcome this limitation a more suitable resumma-
tion scheme is required. Such a framework is provided by
the FRG, where the application of the derivative expansion
leads to very accurate results, e.g., for critical exponents in
O(N) models in higher orders of the derivative expansion
[8,20,21] but to a surprising degree already also in the LPA
[22,23].

Spectral functions have been calculated with the FRG in
non-relativistic models using different truncation schemes
including the “BMW” approximation [24,25], vertex expan-
sions or derivative expansions [26-28]. In all these cases,
however, the spectral functions were reconstructed from
Euclidean 2-point correlators via analytic continuation using
Padé approximants. Here we employ a simple LPA for the
effective action which we then use to solve analytically con-
tinued flow equations for the 2-point functions at real fre-
quency. For simplicity, we restrict ourselves to the zero-
temperature case in this work. In principle, it is possible to
extend the proposed approximation scheme to finite temper-
ature and finite chemical potential or to include fermions
[13,14].
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Fig. 1 Diagrammatic representation of the flow equation for the effec-
tive action of the O (N) model. Dashed lines represent scale-dependent
boson propagators and gray filled circles correspond to regulator inser-
tions dg Ry

2 Formulation
2.1 Functional RG

The functional renormalization group provides a powerful
non-perturbative tool, especially for the study of critical phe-
nomena. It describes the evolution of a scale-dependent effec-
tive average action Iy from the microscopic bare action, spec-
ified at an ultraviolet (UV) scale k = A, to the corresponding
full quantum effective action for k — 0 in terms of a func-
tional differential equation [7],

1
ol = 3Tr [akRk(r,52> n er‘] , (1)

where I k(") denotes the nth functional derivative of I with
respect to the fields, and Ry is a suitable regulator function.
The trace is taken over the internal degrees of freedom and
momentum space. Figure 1 shows a diagrammatic represen-
tation of the flow equation (1). Note that although the flow
equation has a one-loop structure, it is an exact equation,
involving full (scale- and field-dependent) propagators.

The precise form of the regulator function Ry is not fixed
but limited only by certain general requirements [8]. A con-
venient choice for our purposes is the sharp regulator

R = (K* — ¢*)0(k* — q*), 2)

which is the three-momentum analog of the LPA-optimized
regulator [29]. The introduction of the regulator suppresses
the propagation of field modes with momenta smaller than
the renormalization scale k. Integrating the flow equation
(1) from the bare classical action at k = A down to k =
0 yields the full quantum effective action which includes
quantum fluctuations from all momentum modes. Taking n
functional derivatives of the flow equation (1) one obtains the
flow equations for the n-point correlation functions which,
in turn, contain up to (n + 2)-point correlation functions.

2.2 Flow equation for the effective action

The derivative expansion corresponds to an expansion of the
effective action in terms of gradients
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Fig. 2 Diagrammatic representation of the flow equation for a mesonic
2-point function in the O(N) model. Dashed lines represent scale-
dependent boson propagators and gray filled circles correspond to regu-

Iilo] = / dX{Uk(¢2)—co

1
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where the effective potential Uy and the wavefunction renor-
malization factors Z; x are parametrized in terms of the O (V)
invariant ¢> = ¢;¢' and an explicit symmetry breaking is
induced by the co term giving rise to a finite pion mass. To
study the O(N) symmetry breaking one decomposes Fk(z)
for constant background ¢; into its transverse (/) and lon-
gitudinal (/'y) components in field space

2 2 $i9;
i@ p =526 ) (6,;/ - ¢—2’>
$i9;

¢
Inserting the Ansatz (3) into the flow equation (1) and evaluat-
ing it for a constant field configuration yields the correspond-
ing flow equation for the effective potential. In the simplest
case of the LPA which corresponds to setting Z; x = 1 and
Z;r = 0fori > 1 one is left with solving the flow equation
for the effective potential, which reads

=1
ok 27
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Here we have defined the loop functions / ) as

i

n
1
Ii(”) =Tr, | 0 R(q) (T) , (6)
Fk,i + R g

where the trace runs over the loop momentum ¢. For the
regulator choice in (2), Il.(l) and Ii(z) are given by
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where E; = vVk2 4 2U’, E, = k2 +2U' +4U"$? and
U = 3‘2U2). The curvatures 2U’ and 2U’ + 4U" at the min-
imum og) the effective potential yield the screening masses
squared of pion (mf,crz) and sigma meson (mffrz), respec-

tively. They are defined as the spacelike limits p — 0 of

SR g \
/
\ Fk / \
,_ -+ \ ‘
4) !
/ \\ Ly
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lator insertions i Ri. Black filled circles and gray filled squares denote
the scale-dependent 3- and 4-point vertex functions

the pion and sigma 2-point functions, i.e., the inverse of the
corresponding susceptibilities.

2.3 Flow equation for the 2-point functions

Applying two functional derivatives to the flow equation in
(1), we obtain the exact flow equations for 2-point correla-
tion functions. Their diagrammatic forms for the pion and the
sigma in the O (N) model are shown in Fig. 2. These flow
equations contain scale-dependent 3- and 4-point functions.
In order to close the infinite tower of functional equations
for the n-point functions, truncations are required. A possi-
ble scheme has been proposed in Refs. [24,25] (BMW). The
idea is that, because of the insertion of the cutoff function,
the external momentum dependence of the scale-dependent
3- and 4-point functions has a weaker effect than their depen-
dence on the momenta of internal lines containing the loop
momentum. One thus expands the 3- and 4-point functions
in their external momenta in this scheme.

Here we choose a simpler truncation which is a natural
extension of the derivative expansion. For this we replace
the 3- and 4-point functions by their corresponding scale-
dependent but, at the leading order derivative expansion,
momentum-independent forms as obtained from the flow
equation for the effective potential, i.e.,

3) 33Fk
in 7 Ggmagiap
a4

O

We then obtain the flow equations for the pion/sigma 2-point
functions as follows:

W2 = (o + Jra)(4U"$)?
—%179)4U”(N +1) - %1;2>(4U" +8U"4?)
02 = Jog (120" +8U" ¢ + Jun (4U"$)*(N — 1)
—%152)(12U’/ 48U % + 16U ¢

1
—51,9(1\/ — D)@U" +8U"$?), 9)
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Fig. 3 Diagrammatic
representation of the or (2)
contributions to the flow of the mk
2-point functions. Full gray at
circles correspond to insertions
of 9k Ri. Black circles and gray
squares indicate the

T s g g T > ag g
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scale-dependent 3- and 4- point
vertex functions, here obtained
from (8)

or’)

with loop functions J;; defined as

2
1 1
J(p)ijETl'q akRk(q) (W) ( (2)+R ) s
k
+

(10)

where the trace runs over the momentum g. Note that only
the symmetric components of J are needed in (9). In LPA,
for vanishing spatial external momentum p, and with the
regulator in (2), these are obtained as

J(po)ij + J(po)ji
k* (Ei+ E))3(E? + EE; +E2)+(E3+E3)Po
= 3.2
3 AE}E3 (p} + (Ei + E, N2)’

(1)

In Fig. 3, we show diagrammatically the contributions to
the pion/sigma 2-point functions. Although they look like
1-loop contributions, the internal lines represent full scale-
dependent propagators which we evaluate for the constant
field value at the minimum of the effective potential. These
propagators correspond to resummations of perturbative dia-
grams. For the pion 2-point function the process 1 — 7 4o
is included and for the sigma 2-point function the processes
0 — o + o0 and 0 — 7 + 7. Other contributions, such as
o — o + m, would break the residual O (N — 1) symmetry
of the broken phase and are excluded.

In the following we discuss the solutions to (9) at zero
temperature. Note that then, no term proportional to 1/[ p(z) +
(E, — E5)?] arises because Landau damping, i.e., the absorp-
tion of an on-shell particle from the heat bath, does not occur.

We reemphasize that the correlation functions at vanishing
external momentum in our truncation are consistent with the
effective action since the flow equations satisfy

W2 (p =0) = 20U}, (12)
W) (p = 0) = 20.U] + 40, U §°. (13)

This means that the equivalence between the static screen-
ing masses from the spacelike p — 0 limit of the 2-point

@ Springer
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functions and from the curvatures of the effective potential
at its minimum is manifest in our truncation. Moreover, note
that (12) automatically ensures the existence of a dynam-
ical Nambu—Goldstone boson in the chiral limit. Thus our
truncation scheme is also “symmetry conserving.”

We solve the flow equation for the real and imaginary parts
of the retarded 2-point correlators. These are obtained from
(9) via the analytic continuation

for j=m, o
(14)

2 . .
I @ =0 (po=—i(w +ie). p=0).

which is taken before the evaluation of the flow equations.

The spectral functions are proportional to the imaginary
parts of the retarded propagators or more explicitly, for w >
07

1 m ;2% ()
2 2
T (Re 2k (w)) +(Im @k (w))

pi(w) = — , i=mo, (15

which are understood to be evaluated in the limite — 0. In
the numerical evaluations we have to keep a small but finite
positive imaginary part in the external energy, however.

3 Numerical results
3.1 Numerical method

In order to solve the flow equations numerically, we employ
the Taylor-expansion method. We expand the flow equations
(5) and (9) by expanding Uy and the real or imaginary part
of I’kﬁ (i = o, ) around the scale-dependent minimum:

K
U= ani(@> = ¢7)",

n=0
L
Re F(Z)R(w) = Zb;,k(w)(¢2 — D",
L

Z (@)@ — )" (16)

n=0

F(Z)R(a))
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Fig. 4 Real and imaginary parts of the retarded pion propagator as a
function of the timelike external momentum

The flow equations for the effective potential and the 2-point
functions then translate into flow equations for the expansion
coefficients a, , ¢,§, bf@ (@) and sz, (@) in the usual way.
Choosing L = K — 1 ensures that the consistency condi-
tion (12) between the pion 2-point function and the effective
potential is maintained exactly also in a finite Taylor expan-
sion for the numerical implementation. The flow equation for
the sigma correlator involves up to four derivatives and thus
requires K > 4. We will employ K = 5 and L = 4 in the
following.

The numerical results presented in this article were
obtained using the Taylor-expansion method as described
above, which by construction does not take into account the
full field-dependence of the effective potential. Hence we
checked our results against the so-called grid method [22],
which involves discretizing the effective potential on a set
of grid points in field space and solving the corresponding
flow equations at fixed values in field space, from which the
full field-dependent effective potential can be reconstructed.
The scale-dependent derivatives of the effective potential,
evaluated at its minimum, can then be used as input for the
corresponding flow equations (9) for the 2-point functions.
The disadvantage of the grid method is that one incurs con-
siderably larger numerical costs for reaching low IR cutoff
values than with the Taylor expansions. Fortunately, we were
able to verify that the results from the grid method generally
reproduce the Taylor results for £ > 0.05A very well.

The parameter sets used here for the O (4) model with UV
potential of the form Uy— 4, = a¢?+b¢* are listed in Table 1.

3.2 Pion and sigma meson spectral functions

In Figs. 4 and 5 we show the real and imaginary parts of the
retarded 2-point functions I'X and I, respectively. These

05
o
=
Py 0
S
—
Re r@
05T Imr®

Re I'® at log(k/A)=-1.0

Im @ at log(k/A)=-1.0 -~

-1 1 1 1 1
0 100 200 300 400 500

o [MeV]

Fig. 5 Real and imaginary parts of the retarded sigma propagator as a
function of the timelike external momentum w at the IR scale and at an
intermediate scale

were obtained by solving the flow equations (9), separated
into real and imaginary parts for a small but finite imaginary
part € ~ 0.1 MeV in the external frequency w + i€ as a
function its real part w. For the pion the imaginary part in
Fig. 4 remains negligible, whereas the real part behaves as
demonstrated in earlier investigations [13,14]. The zero of
the real part, which corresponds to the pion pole mass, is
found at 135.1 MeV as compared to a screening mass of
137.2 MeV. This once more reflects the difference between
screening and pole masses which is a small effect of only a
few percent, however, in the purely bosonic model [13,14].
At finite density, these values should be compared to the
pion mass defined via the onset of pion condensation when
coupling the model to an isospin chemical potential [14,30].
The pole mass from our present truncation for the 2-point
function is considerably closer to the exact mass from the
Bose—Einstein condensation transition at zero temperature,
in particular, when fermions are included as first observed in
the Quark—Meson—Diquark model for two-color QCD [13].

For the sigma meson, shown in Fig. 5, the imaginary part
remains negligible but only up to the 2-pion threshold at
o ~ 2my; ~ 275 MeV and tends to finite negative values
thereafter. The two-pion emission threshold also shows up
as a kink in the real part. The zero of the real part is found
at 350.6 MeV and we will argue that this value might be a
good estimate for the sigma mass even in cases where no
clear maximum in the corresponding spectral function is vis-
ible. For comparison, the value of the sigma screening mass
extracted from the curvature of the effective potential results
to be 425.0 MeV for the parameter set with nearly physical
pion mass in Table 1.

Figure 6 displays the pion and sigma spectral functions
as calculated from (15). The pion spectral function shows a
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Table1 Parameter sets fora UV cutoff A = 500 MeV corresponding to
two different pion masses. The physical parameters, f; and the meson
masses, are given in MeV

a/A? b /A fx m" my’
—0.30 3.65 0.014 93.0 137.2 425.0
—0.34 3.40 0.002 93.1 164 299.8
1000
100
10
1
q'; 0.1
< 0.01
0.001
0.0001
1e-05
1e-06 1 1 1 1 1
0 100 200 300 400 500
o [MeV]

Fig. 6 Spectral functions for the pion (p,) and the sigma meson (p,)

sharp peak at 135 MeV to be identified with the pion mass.
The sigma spectral function exhibits the 2-pion threshold as
a characteristic increase in the spectral density followed by
a broad maximum at about 312 MeV above this threshold.
Considering a case in which the imaginary part Im I"®) were
independent of the (timelike) external momentum so that the
only momentum-dependence was in the real part Re I"?, it is
obvious from (15) that the maximum of the spectral function
would then occur at the zero of the real part with a width as
determined by the constantimaginary part. This is the case for
the pion 2-point function where the peak in the spectral func-
tion and zero of the 2-point function coincide as they must
since the imaginary part practically vanishes. The same coin-
cidence between the sigma mass defined via the maximum of
the spectral function and the zero of the corresponding real
part is of course no longer valid for a momentum-dependent
imaginary part as obtained here, although the zero of the real
part may still provide an estimate for the sigma mass. For
the current parameter set the zero of the real part, however,
overestimates the sigma mass defined via the maximum of
the spectral function by 14 %. This illustrates the difficulties
of a mass assignment for a broad resonance with a strongly
momentum-dependent width. In this case the imaginary part
does not vanish at the zero of the real part. Hence no zero is
found in the complex plane of the physical sheet, consistent
with the Killen—Lehmann representation, which allows only
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Fig. 7 Comparison of pion (p;) and sigma meson (p,) spectral func-
tions for parameter sets corresponding to two different pion masses

poles on the real axis. One expects a zero on the unphysical
sheet, however, as illustrated in [16,31].

Except for a significantly lower sigma mass in our calcu-
lations, the zero-temperature spectral functions are in qual-
itative agreement with perturbation theory results [16—19].
All these calculations show a sharp peak in the pion spectral
function which determines the pion mass, and a resonance
peak beyond the two-pion threshold in the sigma spectral
function. This agreement is reassuring since perturbation the-
ory around the mean-field vacuum was found to work well
outside the critical region. For comparison, we have also per-
formed corresponding perturbative calculations by integrat-
ing the flow equations for the 2-point functions with constant
values for renormalized interactions and masses. While the
qualitative features discussed above are indeed all present
already in this simple one-loop approximation, the quanti-
tative differences are quite considerable, however. In partic-
ular, we generally observe that the difference between pole
and screening mass in the pion propagator, which is on the
few percent level in the fully non-perturbative FRG solution
as described above, increases considerably. With deviations
on the order of around 100 % between the two, with pion pole
masses typically almost twice as large as the input screening
masses, the one-loop calculations therefore yield quantita-
tively rather inconsistent results for all input parameters we
have considered.

As a consistency check we have also calculated the pion
and sigma spectral functions closer to the chiral limit using
the second parameter set in Table 1 corresponding to a pion
pole mass of 16.0 MeV. The comparison with the physical
pion mass is shown Fig. 7. When approaching the chiral limit,
one expects the spectral weight of the pion pole in its cor-
relator to increase more and more as this pole moves closer
to the w = 0 axis where it eventually accumulates the full
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Fig. 8 Zeros of the real part of the sigma 2-point function, the

sigma screening mass (y/2U’ + 4¢2U") and the 2-pion threshold
(2+/k% 4 2U") as a function of the RG scale k

spectral weight in the chiral limit. Consequently, the spec-
tral sum rule then implies that all other contributions to the
spectral function should decrease with decreasing pion mass.
Both these trends are seen in Fig. 7 where we extended the
frequency range of Fig. 6 to include the 0 — 7 threshold
in the pion spectral function. To explicitly verify the non-
renormalization of the pion field in the chiral limit requires
a more careful analysis, however, probably best done with
polar coordinates in field space to correctly disentangle the
Goldstone bosons from the radial mode [32].

3.3 Spectral functions at intermediate scales

As described in the previous section, we find a resonance
sigma at k = 0. It is illustrative to also consider the spectral
functions at intermediate scales and thus their evolution with
the RG scale k. In Fig. 8, we show the scale dependence of the
zeros of the real part of the sigma’s 2-point function together
with its screening mass, defined via \/2U’ + 4¢2U", as well
as the 2-pion threshold at 2+/k% + 2U’.

During the k-evolution two distinct zeros occur at inter-
mediate scales. This is illustrated in Fig. 5 where we have
also included the real and imaginary parts of Fg(? at such a
scale (dashed lines). The first zero in the real part (dashed-
blue line) represents the pole corresponding to a renormal-
ized sigma field. At the ultraviolet scale, the correlator FU(Z)
agrees with the classical one and its unique zero thus coin-
cides with the screening mass of the bare sigma field. This
zero gets renormalized by quantum fluctuations and starts
to deviate from the sigma’s screening mass at intermediate
scales. It completely disappears at log(k/A) ~ —2.2 when
it reaches the 2-pion threshold. It turns out, however, that
before this happens, a second zero emerges at larger w (solid

10
at 1st zero -------
at 2nd zero
at Mgscr oo
1 -
C\l'_' ..............................................................
=
’(\T_
L. 0.1
£
0.01
0001 1 1 1 1 1 1 1 1

log(k/A)

Fig. 9 Imaginary part of the retarded sigma propagator evaluated at
the scale-dependent first zero (dashed green line), second zero (solid
red line) and sigma screening mass (dotted blue line)

red line in Fig. 8). This zero is dynamically generated via
the 0 — m + 7 process, and it is therefore not present
at the ultraviolet cutoff scale yet. It arises above the scale-
dependent 0 — m + 7 threshold at w ~ 2E . After decreas-
ing alongside this threshold with the RG scale for a while,
it approaches its constant infrared value before the 2-pion
threshold eventually does as well. Thus we find that, while
the original zero disappears at some scale, a second one is
generated and survives corresponding to the zero of the real
part at the IR scale as shown in Fig. 5 (solid-blue line).

Figure 9 displays the imaginary part of the sigma cor-
relator, evaluated at the first zero (dashed green line), sec-
ond zero (solid red line) and the curvature mass (dotted
blue line), respectively. At large scales (k ~ A), both
the first zero and the screening mass are below the scale-
dependent 2-pion threshold and the corresponding imagi-
nary parts vanish. The finite imaginary part in the numer-
ical calculation is related to the finite imaginary external
momentum employed to calculate the spectral function; see
(14). Below log(k/A) ~ —1, the screening mass crosses the
threshold and the corresponding imaginary part of the prop-
agator becomes finite. This behavior should be compared to
the scale-dependence of the imaginary part in [15], which
corresponds in some sense to an expansion of the 2-point
function around the screening mass, albeit in a more refined
truncation scheme. The second zero, which corresponds to
the zero in the real part that survives until & = 0, arises
above the threshold and hence the imaginary part assumes a
finite value. It decreases with k and becomes constant below
log(k/A) ~ —2.

These observations at intermediate scales indicate that
the final zero in the real part of the sigma 2-point func-
tion does not emerge from the original single-particle con-
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Fig. 10 Zeros of the real part of the pion 2-point function and the pion
screening mass (+~/2U’) as a function of the RG scale k. The second
zero was rescaled by a factor of 1/3 to allow a comparison of all three
quantities in a single figure

tribution of the sigma at the cutoff scale by renormalization
effects, but that it is predominantly due to the 0 — 7 + 7
process. This is in contrast to the pion 2-point function
whose single-particle contribution does flow continuously
from the ultraviolet to the infrared and thus corresponds
to the renormalized original pion mass. Such considera-
tions question the reliability of truncation schemes based
on an expansion around a single scale-dependent pole [15].
It seems that the inclusion of the full external momentum
dependence of the sigma 2-point function or at least an
expansion around a more complicated singularity structure
is required.

In order to contrast these conclusions for the sigma with
the corresponding results for the pion correlator, we show
in Fig. 10 the analog of Fig. 8, the zeros of the real part
of the pion 2-point function. As before, we find two such
zeros at intermediate scales, the first one (dashed green line)
corresponding to the renormalized single-particle contribu-
tion from the pion screening mass at the UV scale, and the
second (solid red line) corresponding to a dynamically gen-
erated pion via the 7 — 7 + o process. In this case the
zero at k = 0 is connected to the first zero, however, whereas
the second zero vanishes around log(k/A) ~ —1.9. This
underlines the fact that the zero in the pion 2-point function
originates from the ultraviolet pion mass by finite renormal-
ization.

4 Summary and conclusions

In the present work we have extended the truncation scheme
of Refs. [13,14] for the functional renormalization group

@ Springer

(FRG) equations of 2-point functions. This scheme is consis-
tent with the truncation for the effective potential and there-
fore “symmetry conserving” by construction. In contrast to
earlier approaches in the literature, we have employed an ana-
lytic continuation on the level of the flow equations which
allows for a direct computation of retarded 2-point functions
at real frequencies. The numerical solutions of the corre-
sponding flow equations yield realistic spectral functions of
collective excitations, as we have demonstrated for the pion
and the sigma meson in the O(4) model. Their shape was
found to be in good qualitative agreement with general expec-
tations and previous studies.

To gain further insight into the origin of the pion and the
sigma meson, we have evaluated the sigma and pion cor-
relators at intermediate scales k. It turns out that the pole
in the pion propagator flows continuously from the initial
screening mass at the ultraviolet cutoff to the physical single-
particle pole for k — 0 by the renormalization effects.
Since there is no renormalization of the pion in the chiral
limit this ensures the existence of a zero-mode as required
by Goldstone’s theorem. In stark contrast, the sigma pole
at the infrared scale originates from a dynamical process.
We have found two distinct trajectories in the singularity
structure of the propagator at intermediate scales; one cor-
responding to the renormalized initial mass and the other
to a dynamically generated complex pole on the unphysi-
cal sheet via the ¢ — m + 7 coupling process. In par-
ticular, the sigma pole at k = 0 belongs to the branch
which is dynamically generated. The other branch, connected
to the bare sigma mass, disappears at some intermediate
scale.

We stress that it is possible to extend our approximation
scheme to a thermal medium, and to include fermions. We are
particularly interested in extending the framework to finite
temperature and to investigate the medium-modified spec-
tral functions. One should be able to observe the asymptotic
restoration of chiral symmetry also directly in the spectral
functions. In the region around the phase boundary one might
expect to observe qualitative differences between the FRG
and results based on perturbation theory.
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Appendix: Breaking of Lorentz invariance

In this appendix we discuss the impact of the violation of
Euclidean O(4) resp. Lorentz invariance by the employed
three-dimensional regulator function in (2). On the one hand
such regulator functions are particularly convenient as they
do not introduce additional poles in the complex pg-plane
at finite RG scales k, and hence allow for a straightforward
analytic continuation. On the other hand they have the slight
disadvantage of breaking the underlying spacetime symme-
tries. Perhaps more severely, however, they also allow arbi-
trarily large momentum transfers in the frequency direction
which can potentially be problematic in combination with the
derivative expansion. Therefore, our present work should cer-
tainly be supplemented by computations using 4d-regulator
functions in the future. For now we can assess the system-
atic errors of our approach by including finite spatial external
momentum components in our flow equations for the 2-point
functions. As an additional technical complication, the spa-
tial loop-momentum integrations can then no-longer be per-
formed analytically but have to be evaluated also numerically.

For Euclidean external 4-momenta, the O(4)-breaking
effects induced by the three-dimensional regulator in the
Euclidean 2-point functions are truly negligible. We have
compared the relative differences in their integrated flows for
spatial external momenta between zero and |p| = 500 MeV
and found that the Euclidean 2-point functions agree with
each other within better than 1 % when plotted over the invari-

ant / p2 + p? up to 300 MeV.

For timelike external momenta the effect is somewhat
more pronounced. In Fig. 11 we compare the spectral func-
tion of the pion as obtained for different fixed values of the
spatial external momentum but now plotted as a function

of the invariant /w? — p2. Deviations of similar size are
observed for the sigma spectral function. Except in the very
small momentum region where these deviations are enhanced
by the finiteness of our small residual imaginary part € in
the frequency components (for the retarded boundary con-
ditions) the results are nevertheless in reasonable agreement
with the required Lorentz symmetry at vanishing temper-
ature. The general shape and, most importantly, the peak
position at the pion mass remain unchanged and are hence
rather robust results of our approach.
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