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Abstract We consider a condition for charge confine-
ment and gravito-electromagnetic wave solutions in non-
symmetric Kaluza–Klein theory. We consider also the influ-
ence of the cosmological constant on a static, spherically
symmetric solution. We remind the reader of some funda-
mentals of nonsymmetric Kaluza–Klein theory and the geo-
metrical background behind the theory. Simultaneously we
make some remarks concerning a misunderstanding con-
nected to several notions of Kaluza–Klein Theory, Einstein
Unified Field Theory, geometrization and unification of phys-
ical interactions. We reconsider the Dirac field in nonsym-
metric Kaluza–Klein theory.

1 Introduction

The nonsymmetric Kaluza–Klein (Jordan–Thiry) theory has
been developed in the past (see Refs. [1–4]). The theory
unifies gravitational theory described by NGT (Nonsymmet-
ric Gravitational Theory) (see Ref. [5]) and Electrodynamics.
The theory has been extended to Nonabelian Gauge Fields,
Higgs Fields, and a scalar field with applications to cosmol-
ogy. Some possibilities to get a confinement of color have
been suggested. A nonsingular spherically symmetric solu-
tion has been derived. The nonsymmetric Kaluza–Klein the-
ory can be obtained from the Nonsymmetric Jordan–Thiry
Theory by putting the scalar field to zero. In this way it is
the limit of the Nonsymmetric Jordan–Thiry Theory. The
Nonsymmetric Jordan–Thiry Theory has several physical
applications in cosmology, e.g.: (1) cosmological constant,
(2) inflation, (3) quintessence, and some possible relations to
the dark matter problem. Simultaneously the theory unifies
gravity with gauge fields in a nontrivial way via geomet-
rical unification of two fundamental invariance principles in
physics: (1) the coordinate invariance principle, (2) the gauge
invariance principle. Unification on the level of invariance
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principles is more important than on the level of interactions
for from invariance principles we get conservation laws (via
the Noether theorem). In some sense Kaluza–Klein theory
unifies the energy–momentum conservation law with the
conservation law of electric charge. This unification has been
achieved in a higher than 4-dimensional world. It is nontrivial
for we can get some additional effects unknown in conven-

tional theories of gravity and gauge fields (electromagnetic
or Yang–Mills fields). All of these effects, which we call
‘interference effects’ between gravity and gauge fields, are
testable in principle in an experiment or an observation. The
formalism of this unification has been described in references
[1–4]. The nonsymmetric Kaluza–Klein theory is an exam-
ple of the geometrization of gravitational and electromag-
netic interactions according to the Einstein program. In this
paper we consider conditions for charge confinement in the
theory and three solutions of nonsymmetric Kaluza–Klein
theory equations describing gravito-electromagnetic waves.
We consider also the influence of a cosmological constant on
a static, spherically symmetric solution. This solution can
be considered as a model of the electron for it has remark-
able properties being nonsingular in electric and gravitational
fields. Simultaneously this solution has been built from ele-
mentary fields. The properties of the solution can be consid-
ered as ‘interference effects’ between electromagnetic and
gravitational fields in our unification. In this way the theory
realizes an old dream of Einstein, Weyl, Kaluza, Eddington,
and Schrödinger of a unitary classical field theory by having
particles as spherically symmetric singularity-free solutions
of the field equations.

The nonsymmetric Kaluza–Klein theory should be called
a Unified Field Theory according to the definition which
we quote here (see Ref. [6]): “Unified Field Theory: any
theory which attempts to express gravitational theory and
electromagnetic theory within a single unified framework.
Usually, an attempt to generalize Einstein’s general the-
ory of relativity from a theory of gravitation alone to
a theory of gravity and classical electromagnetism”. In

123



2742 Page 2 of 33 Eur. Phys. J. C (2014) 74:2742

our case this single unified framework is a multidimen-
sional analogue of geometry from Einstein Unified Field
Theory (treated as generalized gravity) defined on the
electromagnetic bundle.

Summing up nonsymmetric Kaluza–Klein theory con-
nects old ideas of unitary field theories (unified field theories)
with some modern applications.

The paper has been divided into four sections. In the first
section we give some elements of nonsymmetric Kaluza–
Klein theory in some new setting. We give also a condi-
tion for the dielectric confinement of a charge. In the sec-
ond section we give three solutions of the field equations
describing gravito-electromagnetic waves. In the third sec-
tion we deal with a spherically-symmetric solution in the
presence of a cosmological constant. In the fourth sec-
tion we give a theory of the Dirac field in nonsymmetric
Kaluza–Klein theory getting CP-violation and EDM (Elec-
tric Dipole Moment) for a fermion. We reconsider some
notion known from our previous papers. In Conclusions we
give also some remarks concerning some misunderstand-
ing concerning Kaluza–Klein Theory, Einstein Unified Field
Theory commonly met. We put our investigations on a wider
background. In Appendix A we give some notions of differ-
ential geometry used in the paper and in Appendix B some
details of calculations. In Appendix C we give some ele-
ments of Clifford algebra and spinor theory. Appendix D is
devoted to a redefinition of nonsymmetric Kaluza–Klein the-
ory in terms of GR (General Relativity) and additional ‘matter
fields’.

In this paper we use the following convention. Cap-
ital Latin indices A, B,C = 1, 2, 3, 4, 5 (Kaluza–Klein
indices), lower Greek cases α, β, γ = 1, 2, 3, 4 (space–time
indices), lower Latin cases a, b, c = 1, 2, 3 (space indices).
In Appendix A we use Latin lower indices in the Lie algebra
G of a Lie group G, a, b, c = 1, 2, . . . , n = dim G = dim G.
This cannot cause any misunderstanding. In Appendix B we
use capital Latin indices A, B,C,W, N ,M = 1, 2, . . . , n,
where n is the dimension of the manifold equipped with non-
symmetric tensor and a nonsymmetric connection. This also
does not result in any misunderstanding.

2 Elements of nonsymmetric Kaluza–Klein theory

The basic logic of the construction is as follows. We define
a nonsymmetric Kaluza–Klein theory as the 5-dimensional
analogue of NGT using our extension of natural metriza-
tion of the electromagnetic fiber bundle achieving in this
way a unification of two fundamental principles of invari-
ance (i.e. the coordinate invariance principle and the gauge
invariance principle) reducing both to the coordinate invari-
ance principle in 5-dimensional world (see Ref. [4] for
details).

Let us notice that our construction from Ref. [4] is more
general for it contains a scalar field ρ (or Ψ ) which here is
put ρ = 1 (Ψ = 0).

Let P be a principal fiber bundle with the structural group
G = U (1) over a space–time E with projection π and let us
define on this bundle a connection α. We call this bundle an
electromagnetic bundle and α an electromagnetic connection
(see Appendix A for details). We define a curvature 2-form
for the connection α:

Ω = dα ≡ 1

2
π∗(Fμνθ

μ ∧ θμ), μ, ν = 1, 2, 3, 4, (2.1)

where

Fμν = ∂μAν − ∂ν Aμ, e∗α = Aμθ
μ
. (2.2)

Aμ is the 4-potential of the electromagnetic field, e is a local
section of P(e : E ⊃ U → P), Fμν is the electromagnetic
field strength, and θ

μ
is a frame on E . The Bianchi identity

is

dΩ = 0, (2.3)

so the 4-potential exists. This is of course simply the first
pair of Maxwell equations. On the space–time E we define
a nonsymmetric metric tensor gαβ such that

gαβ = g(αβ) + g[αβ]
gαβgγβ = gβαgβγ = δγα , (2.4)

where the order of the indices is important. In such a way we
assume that

g = det gαβ �= 0. (2.5)

We suppose also that

g̃ = det g(αβ) �= 0, (2.6)

defining the inverse tensor g̃(αβ) for g(αβ) such that g̃(αβ)g(βμ)
= δαμ. The combination of a symmetric and antisymmetric
tensor Eq. (2.4) leads to new insides in the inverse tensor. We
define also on E two connections wαβ and W

α
β

wαβ = Γ
α
βγ θ

γ
(2.7)

and

W
α
β = W

α
βγ θ

γ
, α, β, γ = 1, 2, 3, 4, (2.8)

such that

W
α
β = wαβ − 2

3 δ
α
βW , (2.9)

where

W = W γ θ
γ = 1

2

(

W
σ
γ σ − W

σ
σγ

)

θ
γ
.
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For the connectionwαβ we suppose the following conditions:

Dgα+β− = Dgαβ − gαδQ
δ

βγ (Γ )θ
γ = 0

Q
α
βα(Γ ) = 0,

(2.10)

where D is the exterior covariant derivative with respect to
wαβ and Q

α
βα(Γ ) is the torsion of wαβ . W

α
β is called an

unconstrained connection andwαβ a constrained connection.
Thus we have defined on space–time all quantities present in
Moffat’s theory of gravitation (NGT, see Ref. [7]). In this
approach we consider test particles moving along geodesics
with respect to the Levi–Civita connection generated by the

tensor g(αβ) on E , i.e. ˜wαβ = ˜Γ αβγ θ
γ . Let us introduce on P

a frame (a lift horizontal base)

θ A = (π∗(θα), λα = θ5), λ = const. (2.11)

Now we turn to the natural nonsymmetric metrization of the
bundle P . We have

γ = π∗g − θ5 ⊗ θ5 = π∗(g(αβ)θα ⊗ θβ)− θ5 ⊗ θ5

(2.12)

γ = π∗g = π∗(g[αβ]θα ∧ θβ) (2.13)

where g is a symmetric tensor on E , g = g(αβ)θα ⊗ θβ and
g is a 2-form on E , g = g[αβ]θα ∧ θβ . Taking both parts
together we get

γ = π∗g − θ5 ⊗ θ5 = π∗(gαβθ
α ⊗ θ

β
)− θ5 ⊗ θ5. (2.14)

The nonsymmetric metric γ is biinvariant with respect to the
action of the group U(1) on P . From the classical Kaluza–

Klein theory we know that λ = 2
√

G N
c2 . We work with such a

system of units that G N = c = 1 and λ = 2. Thus we have
in matrix form

γAB =
(

gαβ 0
0 −1

)

,

γ = γABθ
A ⊗ θ B .

(2.15)

The tensor γAB has this shape in a lift horizontal base, which
is of course nonholonomic (dθ5 �= 0). We can find it in a
holonomic system of coordinates. Let us take the section
e : E ⊃ U → P and attach to it the coordinate x5, selecting
xμ = const on the fiber in such a way that e is given by the
condition x5 = 0 and ζ5 = ∂/∂x5. Then we have e∗ dx5 = 0
and

α = 1

λ
dx5 + π∗(Aμθμ), where A = Aμθ

μ = e∗α.

Taking θμ = dxμ one gets θ5 = dx5 + π∗(λAμ dxμ).
Putting the last result into Eq. (2.14) one finds

γ = π∗ ((

gαβ − λ2 AαAβ
)

dxα ⊗ dxβ
)

−π∗(λAα dxα)⊗ dx5 − dx5

⊗(λAβ dxβ)− dx5 ⊗ dx5. (2.16)

In this coordinate system the tensor γ takes the matrix
form

γAB =
(

gαβ − λ2 AαAβ −λAα
−λAβ −1

)

. (2.17)

In order to have the correct dimension of the four-potential
we should rather write e∗α = (q/h̄c)A = μA, where q is an
elementary charge and h̄ is Planck’s constant. The same is
true for the curvature of connection on the electromagnetic
bundle Ω = λμπ∗(F), F = 1

2 Fμνθμθν . Moreover, it can
be absorbed by the constant λ (we have only one constant
as in classical Kaluza theory and the appearance of Planck’s
constant is illusory for the theory is classical (not quantum)
and eventually demands quantization).

In this way Eq. (2.17) gives the classical Kaluza–Klein
approach with a 5-dimensional metric tensor and with the
Killing vector ζ5. Even if in Eq. (2.15) we have not any four-
potential Aμ, the electromagnetic field exists as an electro-
magnetic connection α.

The connection contains (potentially) all possible four-
potential Aμ (that is, in any possible gauge). To choose a
gauge means here to take a section of a bundle. An elec-
tromagnetic connection α is really an electromagnetic field.
We can also consider e∗Ω . Moreover, the structural group
of an electromagnetic bundle U(1) is abelian. It means
Ω = dα + 1

2 [α, α] = dα. This means we can use Eq. (2.1).
In this theory we have two more fiber bundles. Two fiber bun-
dles of frames over E (a space–time) and over P (a bundle
manifold). Moreover, in order to simplify the formalism we
do not refer explicitly to those fiber bundles.

Tensor (2.15) in a lift horizontal base looks simpler than
(2.17), moreover, we do not lose any information. Introduc-
ing nonholonomic frames we can write very complicated
tensors as diagonal and sometimes it causes some misunder-
standing. In this way Fμν tensor is connected to Aμ—four-
potential via the curvature of the electromagnetic fiber bundle
and not via the metric (2.17) which has more mathematical
sound. Equation (2.13) is equivalent to Eq. (2.17). The first
one is written in a lift horizontal frame and the second in
dx A = (dxα, dx5).

Now we define on P the connection wA
B such that

wA
B = Γ A

BCθ
C , A, B,C = 1, 2, 3, 4, 5,

DγA+B− = DγAB − γAD Q D
BC (Γ )θ

C = 0,
(2.18)

which is invariant with respect to the action of the group U (1)
on P . D is an exterior covariant derivative with respect to the
connection wA

B and Q D
BC (Γ ) is its torsion. Let us notice

that forwA
B we do not suppose any constraints on its torsion.

In Refs. [1–3] it is shown that

wA
B =

(

π∗(wαβ)+ gγαHγβθ5 Hβγ θγ

gαβ(Hγβ + 2Fβγ )θγ 0

)

(2.19)
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where Hβγ is a tensor on E such that

gδβgγ δHγα + gαδg
δγ Hβγ = 2gαδg

δγ Fβγ . (2.20)

It is possible to prove that (see Appendix B)

Hγβ = −Hβγ (if Fμν = −Fνμ). (2.21)

The tensors Hμν and Fμν define a 5-dimensional connection
on P . In the case of the symmetric tensor gαβ , Hμν = Fμν
and the theory reduces to ordinary Kaluza–Klein theory.

We define on P a second connection

W A
B = wA

B − 4
9δ

A
B W

W = hor W . (2.22)

Connection W A
B is a 5-dimensional analogue of the connec-

tion Wα
β known in Einstein Unified Field Theory and NGT

(Moffat theory of gravitation, see Ref. [7]). According to our
notation ‘−−’ over a symbol means that the quantity is defined
on E (a space–time), ‘˜’ over a symbol means that the quan-
tity is defined with respect to Levi–Civita connections, i.e.
˜Γ αβγ mean coefficients of Levi–Civita connections on E .

The connections (2.19) and (2.22) unify electromagnetic
and gravitational interactions in nonsymmetric Kaluza–Klein
theory. In the theory we can also consider a dual frame
ζA =(ζα, ζ5) such that θ A(ζB)=δA

B . In this way [ζα, ζβ ]=
λ
2 Fαβζ5 and the remaining commutators of the vector fields
vanish. In the classical Kaluza–Klein Theory the geodetic
equations describe the motion of a charged particle (test par-
ticle), i.e. we get the Lorentz force term. Moreover, in the case
of classical (Riemannian) Kaluza–Klein Theory we have to
do with only one (Levi–Civita) connection on P . Here we
have to do with several possibilities (see Ref. [4]). For we
have Hμν = −Hνμ; it seems now that we should choose the
Riemannian part of (2.19). It means we have a Levi–Civita
connection generated by γ(AB).

This means we have u B
˜∇Bu A = 0, where ˜∇ means a

covariant derivative with respect to w̃A
B = ˜Γ A

BCθ
C (the Rie-

mannian part of the connection wA
B), u A(τ ) is a tangent

vector to a geodetic line. Eventually one gets

˜Duα

dτ
+ q

m0
g̃(αμ) Fμβuβ = 0,

q

m0
= 2u5 = const.

(2.23)

2u5 has the interpretation of q/m0 for a test particle, where

q is the charge and m0 is the rest mass of a test particle.
˜D
dτ

means the covariant derivative with respect to ˜w
α
β along

the curve to which u(τ ) is tangent. ˜wαβ = ˜Γ αβγ˜θ
γ is of

course the Riemannian part of wαβ = Γ
α
βγ θ

γ (a Levi–
Civita connection generated by g(αβ)).

Let us calculate the Moffat–Ricci curvature scalar for
W A

B , R(W ), R(W )
√

det γAB is the 5-dimensional Lagran-
gian density. One gets

R(W ) = R(W )+
(

2
(

g[μν]Fμν
)2 − HμνFμν

)

(2.24)

where

R(W ) = gμνRμν(Γ )+ 2
3 g[μν]W [μ,ν] (2.25)

is the Moffat–Ricci scalar for the connection W
α
β and

Rαβ(Γ ) is the Moffat–Ricci tensor for the connection wαβ .
In particular

Rμν(Γ ) = R
α
μνα(Γ )+ 1

2 R
α

αμν(Γ ) (2.26)

where R
α
μνρ(Γ ) are components of the ordinary curvature

tensor for Γ . In addition

Hμα = gβμgγαHβγ . (2.27)

The action of the theory simply reads

S =
∫

V

√

det γAB R(W ) d5x .

Using the Palatini variation principle with respect to gαβ , Aμ,
W
α
β , i.e.

0 = δ

∫

V

√

det γAB R(W ) d5x = 2πδ

×
∫

U

√−g

(

R(W )+
(

2
(

g[μν]Fμν
)2 − HμνFμν

))

d4x

(2.28)

(Eqs. (2.24) and (2.28) give a 5-dimensional action in terms
of 4-dimensional quantities which can be compared to the
standard field theory action), where V = U ×U (1), U ⊂ E ,
one gets from (2.28) fields equations

Rαβ(W )− 1
2 gαβR(W ) = 8π

em
T αβ (2.29)

∼g
[μν]

,ν
= 0 (2.30)

gμν,σ − gζνΓ
ζ
μσ − gμζΓ

ζ
σν = 0 (2.31)

∂μ(∼H
αμ) = 2∼g

[αβ]∂β(g[μν]Fμν) (2.32)

where
em
T αβ = 1

4π

{

gγβgτμgεγ HμαHτε − 2g[μν]FμνFαβ

− 1
4 gαβ

(

HμνFμν − 2(g[μν]Fμν)2
)}

(2.33)

∼g
[μν] = √−g g[μν] (2.34)

∼H
μν = √−g gβμgγαHβγ = √−g Hμα (2.35)

One can prove

HμνHμν = FμνHμν, (2.36)

g[μν]Fμν = g[μν] Hμν (2.37)
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and

gσνgανHσαFμν + gμσ gνβHβσ Fμν = 2gμσ gνβFμνFβσ .

We have also

gαβ
em
T αβ = 0. (2.38)

Equations (2.29)–(2.32) can be written in the form

R(αβ)(Γ ) = 8π
em
T (αβ) (2.39)

R[[αβ],γ ](Γ ) = 8π
em
T [[αβ],γ ] (2.40)

Γ μ = 0 (2.41)

gμν,σ − gζνΓ
ζ

μσ − gμζΓ
ζ

σν = 0 (2.42)

∂μ

(

∼H
αμ − 2∼g

[αμ](g[νβ]Fμν)
)

= 0 (2.43)

where Rαβ(Γ ) is the Moffat–Ricci tensor for the connection
wαβ = Γ

α
βγ θ

γ
and

Γ μ = Γ
α
[μα] (2.44)

γ means the partial derivative with respect to xγ (as usual).
The 4-dimensional quantities in the theory Aμ, g(μν), and

g[μν] are the electromagnetic field, the metric, and the skew-
symmetric tensor. They correspond to the following particles:
a photon (a spin one), a graviton (a spin 2) and a skewon
(a spin zero).

In the theory we get a current density,

J
α = 2∂μ

(√−g g[αμ](g[νβ]Fνβ)
)

(2.45)

which is conserved by its definition (in this way it is a topo-
logical current). Equation (2.43) can be written in the form

∇μHαμ = Jα (2.46)

Jα = 2∇μ

(

g[αμ](g[νβ]Fνβ)
)

= 2g[αβ]∇μ(g
[νβ]Fνβ) (2.47)

where ∇μ is a covariant derivative for the connection wαβ .
Equation (2.20) can be solved with respect to Hνμ (see

Appendix B)

Hνμ = Fνμ − g̃(τα)Fανg[μτ ] + g̃(τα)Fαμg[ντ ]. (2.48)

However, the form of Eq. (2.20) is easier to handle from
theoretical point of view. Writing Hμν in the form

Hμν = Fμν − 4πMμν (2.49)

we get

Q5
μν = 8πMμν = 2g̃(τα)

(

Fαμg[ντ ] − Fανg[μτ ]
)

, (2.50)

where Q5
μν is the torsion in the fifth dimension for the connec-

tion wA
B on P and Mμν is the electromagnetic polarization

tensor induced by a nonsymmetric tensor gαβ (if gαβ = g(αβ),

Fμν = Hμν). In this way Hμν can be considered as an induc-
tion tensor of an electromagnetic field. Moreover, the second
pair of Maxwell equations (2.46) suggests that rather Hμν

should be considered as the induction tensor. It is easy to see
that if we take g[μν] = Fμν = 0, g(αβ) = ηαβ (a Minkowski
tensor) we satisfy field equations, i.e. Eqs. (2.39)–(2.43). It
means empty Minkowski space is a solution of the equations.

It is easy to see that the theory contains GR as the limit
g[μν] = 0. In this case we get Einstein equations with elec-
tromagnetic sources. If we consider a nonsymmetric Kaluza–
Klein theory with external sources (see Ref. [4]), we recover
GR in the limit g[μν] = 0. The theory satisfies the Bohr
correspondence principle to GR. Thus we recover all the
achievements of GR, e.g. Newton law, post Newtonian cor-
rections, gravitational waves. Moreover, in our theory we
have gravito-electromagnetic waves which are more general
(Sect. 2). Post Newtonian approximation in nonsymmetric
Kaluza–Klein theory with material (external) sources can be
done similarly as in NGT.

Our theory contains the antisymmetric field g[μν]. More-
over it does not results in ghosts (see Ref. [8] and references
cited therein, especially Ref. [9]). One of these five theories
of gravity is Moffat’s NGT (see Ref. [7]) in real version. Our
approach on the level of ghost consideration corresponds to
NGT. It means after linearization our theory does not differ
from NGT and we can apply results from Ref. [9].

In the theory we get the electromagnetic field lagrangian

Lem = − 1

8π

(

HμνFμν − 2(g[μν]Fμν)2
)

(2.51)

which can be written in the form

Lem = − 1

8π

(

(gμαgνβ − gνβ g̃(μα)

+gνβgμω g̃(τα)gωτ )FαβFμν−2(g[μν]Fμν)2
)

(2.52)

or

Lem = − 1

8π

(

FμνFμν − 2(g[μν]Fμν)2

+(gνβgμω g̃(τα)gωτ − gνβ g̃(μα))FαβFμν
)

(2.53)

where

Fμν = gμαgνβFαβ.

Let us consider energy–momentum tensor of the electro-
magnetic field in the nonsymmetric Kaluza–Klein theory, i.e.
em
T αβ . Using Eq. (2.48) one gets

em
T αβ = o

T αβ + 1

4π
tαβ (2.54)

where

o
T αβ = 1

4π

(

FταFτβ − 1

4
gαβFμνFμν

)

(2.55)
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is the energy–momentum tensor of the electromagnetic field
in N.G.T.,

Fτα = gτγ Fγα = −Fα
τ (2.56)

and

tαβ = gγβFν
τ Fωτ gεγ g̃(ρν)g̃(δω)g[αρ]g[εδ]

−gγβ g̃(ρν)
(

Fμγ Fνμg[αρ] + FμεFν
μgεγ g[αρ]

)

−2g[μν]FμνFαβ + 1

4
gαβ

(

2
(

g[μν]Fμν
)2

−
(

gνδgμω g̃(τε)gωτ − gνδ g̃(με)
)

FεδFμν
)

(2.57)

is a correction coming from nonsymmetric Kaluza–Klein
theory.

Let us consider the second pair of Maxwell equations in
nonsymmetric Kaluza–Klein theory. One writes them in the
following form (using (2.48)):

∇μFαμ = Jαp + Jα (2.58)

where Jα is the topological current and Jαp is a polarization
current

Jαp = 4π∇μMαμ = 4π√−g
∂μ

(√−g Mαμ
)

= ∇μ

(

gαβgμγ g̃(τρ)
(

Fργ g[βτ ] − Fρβg[γ τ ]
)

)

= 1√−g
∂μ

(

∼g
αβgμγ g̃(τρ)

(

Fργ g[βτ ] − Fρβg[γ τ ]
)

)

.

(2.59)

The energy–momentum tensor in the form (2.54) and the
second pair of Maxwell equations can be obtained directly
from Palatini variation principle with respect to W

α
β , gμν ,

and Aμ for

R(W ) = R(W )+ 8πLem (2.60)

where Lem is given by Eq. (2.53).
Writing as usual

Fμν =

⎛

⎜

⎜

⎝

0 −B3 B2 −E1

B3 0 −B1 −E2

−B2 B1 0 −E3

E1 E2 E3 0

⎞

⎟

⎟

⎠

(2.61)

Hμν =

⎛

⎜

⎜

⎝

0 −H3 H2 −D1

H3 0 −H1 −D2

−H2 H1 0 −D3

D1 D2 D3 0

⎞

⎟

⎟

⎠

(2.62)

and introducing Latin indices a, b = 1, 2, 3 we get

Ea = F4a, Da = H4a (2.63)
−→
D = (D1, D2, D3),

−→
E = (E1, E2, E3) (2.64)

−→
B = −(F23, F31, F12),

−→
H = −(H23, H31, H12) (2.65)

or

Ba = −1

2
εa

bc Fbc, Fcm = −εcm
e Be (2.66)

Ha = −1

2
εa

bc Hbc, Hcm = −εcm
e He. (2.67)

εabc is the usual 3-dimensional antisymmetric symbol.
ε123 = 1 and it is unimportant for it if its indices are in
up or down position. We keep those indices in up and down
position only for convenience.

Using Eq. (2.48) one gets

Da = Aac Ec + Cad Bd (2.68)

Ha = A
ac

Ec + C
ad

Bd . (2.69)

In Eqs. (2.68) and (2.69) Aac can be identified with εac

(a dielectric constant tensor) and C
ab

with (μ−1)ab (an
inverse of magnetic constant tensor). Remaining coefficients
have more complex interpretation. Moreover, it is possible
to think about them as on material properties of some kind
generalized medium. A medium with non-zero Cad and Cad

is called bianisotropic. In our case they are induced by the
nonsymmetric tensor gαβ , where

Ame = gμeg[δμ]g̃(4δ)gm4 − g44
(

g[δμ]gμeg̃(mδ) − gme
)

+gω4g[δω]g4eg̃(mδ) − gm4g4e (2.70)

C pe = εmz
p
(

gz4gme + gμeg[δμ]gz4g̃(mδ)

−gω4g[δω]gmeg̃(zδ)
)

(2.71)

A
pm = 1

2ε
p

ek

(

g4k gme − gmk g4e − (gmk g̃(4δ)

+g4k g̃(mδ))gμeg[δμ] − gωk g[δω]gmeg̃(4δ)
)

(2.72)

C
p f = 1

2ε
p

ekεwm
f
(

gwk gme − gwk gμeg[δμ]g̃(mδ)

−gωk g[δω]gmeg̃(wδ)
)

(2.73)

Moreover, in Ref. [10] one can find the induction between
electric and magnetic fields caused by topological effects.
Another connection between our work and Ref. [10] is using
a dimensional reduction which is close to the Kaluza–Klein
idea.

In our theory the nonsymmetric tensor gμν (a nonsym-
metric gravitational field) results as a bianisotropic linear
medium. Due to this we get Eqs. (2.68)–(2.69). Moreover, in
classical electromagnetic theory there are some formalisms
for linear bianisotropic phenomena (see Refs. [11–14]). The
authors consider classical electrodynamics of continuous
media in several forms including a covariant form, i.e.

Hμν = κμναβFαβ

or Fαβ = καβμνHμν

(see Ref. [11]), similar to our Eqs. (2.48) and (2.20).
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In the theory of spatially dispersive materials one can find
the following formulas written in the dyadic formalism:

−→
D = ε · −→

E + ξ · −→H and
−→
B = μ · −→

H − ξ
T · −→

E ,

where ε is the permittivity and μ is the permeability depend-

ing on space (and time). ξ is one more parameter for mirror-
asymmetric structure (chiral materials). For magnetoelectric
coupling media one gets

−→
D = ε · −→

E + ζ · −→
H and

−→
B = μ · −→

H + ζ
T · −→

E ,

where ζ is one more parameter which has to do with par-
ity property of the material with respect to time inversion.
These equations are similar to our Eqs. (2.68)–(2.69) (see
Ref. [12]). In Refs. [13,14] the authors use differential forms
in classical electrodynamics also for bianisotropic media (see
Ref. [14], also [15]), getting similar formulas in covariant
form. In Ref. [13] the authors consider also nonlinear electro-
dynamics by Born–Infeld (see Ref. [16]) and also in the more
general Plebański’s form (see Ref. [17]). In our approach
constitutive relations are linear (in nonlinear electrodynam-
ics they are nonlinear), but the field equations are nonlin-
ear. In Ref. [12] one considers several currents, e.g. external,
polarization. In our case we have also several currents, i.e. a
polarization current and topological current, see Eq. (2.58)
and (2.59), and (2.47). The covariant form of the linear con-
stitutive equations has been considered in a general form in
Ref. [11].

In GR we have also a tensor Hμν , given by the formula

Hμν = gμαgνβFαβ

where gμα is the inverse tensor of the symmetric metric
in GR. In this way we can have the induction tensor Hμν

in curvilinear coordinates in space (e.g. spherical). Someone
can define the induction ‘tensor’ in a different way, as a tensor
density, i.e.

∼h
μν = √−g Hμν.

We do not follow this approach. In this way we have to do
with bianisotropic medium in GR and also in flat Minkowski
space in curvilinear coordinates, i.e.

Da =
(

g44gab−g4bga4
)

Ea −
(

g4m gan −g4ngam
)

εmn
e Be

Ha = 1
2ε

a
mn

(

gmbgn4−gm4gnb
)

Eb+ 1
2ε

a
mnεcb

eg[m[cgn]b].

It is easy to see that the ‘medium’ is bianisotropic if g4m �= 0.
In nonsymmetric Kaluza–Klein theory the situation is

more complex:

Hμν = gμαgνβHαβ

and Hαβ is given by the Eq. (2.48).

One can also consider a tensorial density

∼h
μν = √−g Hμν.

Moreover, we do not follow this approach. In Refs. [18,19]
one can find some conditions posed on εac (or εδac) and
(μ−1)ab (or δab

μ
). In the nonsymmetric Kaluza–Klein the-

ory such conditions are not satisfied for our ‘generalized
medium’ being a gravitational field described by the non-
symmetric tensor gμν . Let us notice the following fact: even
if g4m = 0 �= gm4 (in the nonsymmetric case) our constitu-
tive relations can still describe bianisotropic medium.

Let us notice that in the case of a diagonal g(αβ), Fμν =
Hμν , also in the case of spherically symmetric gμν we have
Fμν = Hμν , which was extensively used in order to find the
exact solution for field equations (see [4]).

Equations (2.61)–(2.62) have a formal character. The
physical meaning of (

−→
D ,

−→
H ) and (

−→
E ,

−→
B ) as induction or

strength vectors of electric or magnetic fields is sound only
in a stationary case.

Let us consider the nonsymmetric tensor for axially sym-
metric and stationary space–time in cylindrical coordinates
(see Ref. [20])

gμν =

⎛

⎜

⎜

⎝

−e2(n−l) 0 aden den

0 −e2(n−l) kaem ken

−aden −aken ca2e2l − r2e−2l ace2l

−den −ken ace2l ce2l

⎞

⎟

⎟

⎠

(2.74)

where c = 1+d2 + k2, x1 = r , x2 = z, x3 = θ , x4 = t , and
all the functions n, l, a, b, d, k are functions of r and z only,

g = r2e4(n−l), g̃ = −r2e4(n−l)(1 + d2 + k2). (2.75)

The electromagnetic field is described by

Fμν =

⎛

⎜

⎜

⎝

0 0 p s
0 0 q u
−p −q 0 0
−s −u 0 0

⎞

⎟

⎟

⎠

(2.76)

p = Bz, s = −Er , q = −Br , u = −Ez,

and all the functions depend on r and z only.
In this case we can calculate Hμν and Hμν . One gets

Hμν = 1

g̃

⎛

⎜

⎜

⎝

0 r2m1 −pr2m2 −r2sm2

−r2m1 0 −qr2m2 −r2um2

pr2m2 qr2m2 0 r2m3

r2sm2 r2um2 −r2m3 0

⎞

⎟

⎟

⎠

(2.77)

where m1 = (du − ks)e5n−6l , m2 = (1 + d2 + k2)e4(n−l),
m3 = (d(p − as)+ k(q − as))e3n−2l ,
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Hμν = 1

P

⎛

⎜

⎜

⎝

0 0 r4m4 ar4m4 + r6m6

0 0 r4m5 −ar4m5 + r6m7

−r4m4 −r4m5 0 0
−ar4m4 − r6m6 ar4m5 − r6m7 0 0

⎞

⎟

⎟

⎠

(2.78)

where

P = e12(n−l)r6(1 + d2 + k2),

m4 = e10n−8l(1 + d2 + k2)(as − p),

m5 = e10n−8l(1 + d2 + k2)(au − q),

m6 = e10n−12l(s + d2s + dku),

m7 = e10n−12l(dks + u + k2u). (2.79)

Let us come back to Eq. (2.32) (the second part of Maxwell
equations) and let us consider it for α = 4:

∂m∼H
4m = 2∼g

[4b]∂b

(

g[μν]Fμν
)

, m, b = 1, 2, 3, (2.80)

or

div
(√−g

−→
D

)

= ρ
√−g. (2.81)

In this equationρ represents the density of the electric charge.
If

−→
D = 0 the density of charge equals zero. The problem

which we now pose is as follows. Is it possible to have
−→
D = 0

and
−→
E �= 0? This means that we have the condition

Aae Ee + Cae He = 0. (2.82)

This means we have the confinement of a charge induced by
the special properties of ‘vacuum’ (i.e. a gravitational field
described by the nonsymmetric tensor gμν). It means non-
zero electric field and zero charge distribution.

In the case of a stationary, axially symmetric field we have
conditions

as − p = r2(s + d2s + dku)

a(1 + d2 + k2)
e−4l (2.83)

au − q = r2(dks + u + k2u)

a(1 + d2 + k2)
e−4l (2.84)

with u, s �= 0.
These conditions can be imposed on functions n, l, d, k, a

to be satisfied for any non-zero u, s with some dependence
on p and q. One gets

e4la2(1 + d2 + k2) = r2(1 + d2)

p = −u
r2dk

a(1 + d2 + k2)
e−4l

e4la2(1 + d2 + k2) = r2(1 + k2)

q = −s
dkr2

a(1 + d2 + k2)
e−4l

(2.85)

and finally

d = k, a = re−2l

√

1 + d2

1 + 2d2 , (2.86)

p = −βu, q = −βs, (2.87)

where

β = rde2l

√

(1 + d2)(1 + 2d2)
(2.88)

or

Bz = βEz (2.89)

Br = −βEr . (2.90)

We do not give here any quantum version of the theory. It
is a classical field theory and the classical theory of charge
confinement. Moreover, a confinement is a nonperturbative
effect and cannot be obtained in perturbative quantum field
theory. This dielectric model of a charge confinement can
be considered as an ‘interference effect’ between gravity
and electromagnetism in our unified classical field theory.
In order to find the quantum version of the theory we should
consider the Ashtekar–Lewandowski canonical quantization
procedure of the theory, which is suitable here, for the theory
is nonlinear and contains gravity (see Ref. [21]).

According to the Einstein program of geometrization and
unification of physical interactions we should get equations
where on the left-hand side we have geometrical quantities
and on the right-hand side material quantities. A full program
is completed if on the right-hand side we get zero. It means all
quantities have been geometrized. Equations (2.29)–(2.32)
give in this sense geometrization and unification of gravity

and electromagnetism if we shift 8π
em
T αβ from the right-hand

side to the left in Eq. (2.29) and 2∼g
[αβ]∂β(g[μν]Fμν) from

the right-hand side to the left in Eq. (2.32). Having in mind

Eq. (2.33) we see that 8π
em
T αβ is geometrized. According

to this geometrization and unification program all quantities
coming from higher dimension should get an interpretation
in terms of matter defined on the space–time. In this way in
the theory we geometrized all quantities completing Einstein
program for the unification of gravity and electromagnetism
getting ‘interference effects’ between both interactions.
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3 Gravito-electromagnetic waves solutions
in nonsymmetric Kaluza–Klein theory

Let us consider the following nonsymmetric metric in carte-
sian coordinates:

gμν =

⎛

⎜

⎜

⎝

−1 0 r −r
0 −1 s −s
−r −s e − 1 −e
r s −e 1 + e

⎞

⎟

⎟

⎠

(3.1)

where

e = e(x, y, z − t)

s = s(x, y, z − t)

r = r(x, y, z − t)

which describes generalized plane wave for gμν and

Fμν =

⎛

⎜

⎜

⎝

0 0 k −k
0 0 p −p
−k −p 0 0
k p 0 0

⎞

⎟

⎟

⎠

(3.2)

where

p = p(x, y, z − t)

q = q(x, y, z − t)

which describes generalized plane electromagnetic wave. All
the functions mentioned here are subject of field equations
in nonsymmetric Kaluza–Klein theory. Using results form
Ref. [22] one gets the following equations:

−Δe + 4Q −
[

(

∂r

∂x
− ∂s

∂y

)2

+
(

∂r

∂y
+ ∂s

∂x

)2
]

= 4

[

(

∂A

∂x

)2

+
(

∂A

∂y

)2
]

(3.3)

where

Q =
[(

∂r

∂x

)2

+ r
∂2r

∂x2 + 1

2

∂s

∂x

(

∂r

∂y
+ ∂s

∂x

)

+1

2
s

(

∂2r

∂x∂y
+ ∂2s

∂x2

)

+
(

∂s

∂y

)2

+ s
∂2s

∂y2

+1

2

∂r

∂y

(

∂r

∂y
+ ∂s

∂x

)

+ 1

2
r

(

∂2r

∂y2 + ∂2s

∂x∂y

)]

(3.4)

ΔA(x, y, z − t) = 0 (3.5)

p = ∂A

∂x
, q = −∂A

∂y
(3.6)

∂r

∂y
= ∂s

∂x
+ H(x, y, z − t), ΔH(x, y, z − t) = 0

(3.7)

whereΔ = ∂2

∂x2 + ∂2

∂y2 is the Laplace operator in two dimen-
sions. Equation (3.3) is the Poisson equation for e. Using

Eq. (2.30) one gets

∂s

∂y
= − ∂r

∂x
or s = −∂B

∂x
, r = ∂B

∂y
.

In this way we get

ΔB = H. (3.8)

A and H are arbitrary harmonic functions in two dimen-
sions with arbitrary dependence on (z−t) of C2 class. B is an
arbitrary solution of Poisson equation and arbitrary function
for (z − t) of C2 class. The function e can be obtained from
the Poisson equation

Δe = f (3.9)

where f is given in terms of B, A, H and takes the simple
form

f = −4

[

(

∂A

∂x

)2

+
(

∂A

∂y

)2
]

+
(

∂2 B

∂y2 − ∂2 B

∂x2

)2

+ 2

(

∂B

∂x

∂H

∂x
+ ∂B

∂y

∂H

∂y

)

.

The dependence on (z − t) is parametric and is given by the
dependence on (z − t) of B, A, H . This solution describes a
generalized plane gravito-electromagnetic wave.

Now we consider the following nonsymmetric tensor in
cartesian coordinates:

gμν =

⎛

⎜

⎜

⎝

−a 0 r −r
0 −a s −s
−r −s −b 0
r s 0 b

⎞

⎟

⎟

⎠

, (3.10)

a = a(x, y), r = r(x, y, z − t),

b = b(x, y), s = s(x, y, z − t),

and the electromagnetic field strength tensor

Fμν =

⎛

⎜

⎜

⎝

0 0 p −p
0 0 q −q
−p −q 0 0
p q 0 0

⎞

⎟

⎟

⎠

, (3.11)

p = p(x, y, z − t), q = q(x, y, z − t). (3.12)

We put (3.10) and (3.11) into the field equation (2.29)–
(2.35). Using the results from Ref. [23] we get the following
equations:

Δ(α/a) = 4aβ2 − 2

a

[

(

∂ψ

∂x

)2

+
(

∂ψ

∂y

)2
]

(3.13)

p = ∂ψ

∂y
, q = −∂ψ

∂x
(3.14)

ψ = ψ(x, y, z − t), Δψ = 0
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β = 1

2a

(

∂r

∂y
− ∂s

∂x

)

(3.15)

α = r2 + s2. (3.16)

From the remaining field equation we get

Δβ = 0, (3.17)

where Δ = ∂2

∂x2 + ∂2

∂y2 ,

a = eA, (3.18)

where A is an arbitrary harmonic function in two variables,

ΔA = 0. (3.19)

The function b is given by

b = G1(z + t)G2(z − t) (3.20)

where G1 and G2 are arbitrary functions of C2 class (of on
variable). The function β should be written in the form

β(x, y, z, t) = f0(z − t)β0(x, y) (3.21)

where β0 is an arbitrary harmonic function and f0 is an arbi-
trary function of one variable (of C2 class). Let us consider
Eq. (2.30). One gets

∂r

∂y
+ ∂s

∂x
= 0. (3.22)

From this equation we get

r = ∂ϕ

∂x
, s = −∂ϕ

∂y
(3.23)

where ϕ is a function (arbitrary) of two variables (of C3) and
a function of z − t .

One gets

Δϕ = 2eA f0β0. (3.24)

Let ϕ̃ be any arbitrary solution of Eq. (3.24) (remembering
that A, f0, and β0 are arbitrary). In this way

α = r2 + s2 =
(

∂ϕ̃

∂y

)2

+
(

∂ϕ̃

∂x

)2

. (3.25)

Let us consider Eq. (3.13) in the form

Δg = 4eAβ2
0 f 2

0 − 2

eA

[

(

∂ψ

∂x

)2

+
(

∂ψ

∂y

)2
]

(3.26)

and let g̃ be any solution of this Poisson equation.
Thus

α

a
= g̃ (3.27)

(

∂ϕ̃

∂y

)2

+
(

∂ϕ̃

∂x

)2

= g̃eA. (3.28)

Equation (3.28) gives a consistency condition for the exis-
tence of gravito-electromagnetic wave.

Let us consider the following nonsymmetric metric:

gμν =

⎛

⎜

⎜

⎝

0 0 0 1
0 b 0 l + q
0 0 b m + p
1 l − q m − p −v

⎞

⎟

⎟

⎠

(3.29)

and the electromagnetic field strength tensor

Fμν =

⎛

⎜

⎜

⎝

0 0 0 0
0 0 0 s
0 0 0 u
0 −s −u 0

⎞

⎟

⎟

⎠

(3.30)

in cartesian coordinates

x1 = x, x2 = y, x3 = z, x4 = t.

It is possible to consider x4 as z − t . We suppose that

∂

∂x1 gμν = ∂

∂x1 Fμν = 0.

Using results from Refs. [24,25] and field equation of the
nonsymmetric Kaluza–Klein theory we get the following
equations:

s = ∂ψ

∂x3 ,

u = ∂ψ

∂x2 , (3.31)
(

∂2

∂(x2)2
+ ∂2

∂(x3)2

)

ψ=0, ψ=ψ(x2, x3, x4).

Supposing

b = 1, q = 0 (3.32)

we get further

p = p(x2, x4)

∂3

∂(x2)3
p = 0

∂l

∂x3 = ∂m

∂x2 ,
∂l

∂x2 = − ∂m

∂x3

l = l(x2, x3, x4), m = m(x2, x3, x4).

(3.33)

Thus l and m are harmonically conjugate.
Writing

v = 1 + f, f = f (x2, x3, x4), (3.34)

where f satisfies the equation

Δ f = 2p2

(

p,22

p
+

(

p,2
p

)2
)

− 2
(

(ψ,2)
2 + (ψ,3)

2
)

,

(3.35)

the form of p can easily be found

p = (x2)2

2
ϕ1(x

4)+ x2ϕ2(x
4)+ ϕ3(x

4)
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where ϕi , s = 1, 2, 3, are arbitrary functions of one variable
of C3 class.

This solution represents a gravito-electromagnetic wave
if we interpret x4 as wave front variable z − t . ‘,’ means a
derivative with respect to x2 or x3, f is the solution of a Pois-
son equation with a parametric dependence on x4 imposed
by ψ , ϕi , i = 1, 2, 3. Functions ψ , l, and m are arbitrary
functions of x4 variable of C2 class.

For all three solutions considered here tμν = Mμν =
Jμ = Jμp = 0. Moreover,

−→
D �= −→

E for all solutions. Those
solutions are not solutions of nonsymmetric theory of gravity
coupled to the Maxwell field. They are examples of wave
solutions in nonsymmetric Kaluza–Klein theory, a unified
theory of gravity and the electromagnetic field.

4 The influence of the cosmological constant
on a solution in nonsymmetric Kaluza–Klein theory

Let us consider Eqs. (2.29)–(2.35) and let us change
em
T αβ

into

Tαβ = em
T αβ − �

8π
gαβ.

It means we introduce the cosmological constant � into the
theory.

In nonsymmetric Kaluza–Klein theory� = 0. Moreover,
in the Nonsymmetric Nonabelian Kaluza–Klein Theory this
constant is in general non-zero. The Yang–Mills field can be
reduced to a U (1) subgroup of the group G (see Ref. [3] for
more details). We also consider nonsymmetric Kaluza–Klein
theory with external sources, and the cosmological constant
term can be added to the external energy–momentum tensor
(see Ref. [4]).

Let us consider corrected field equations in a static, spher-
ically symmetric case. Using results from Ref. [4] we get the
following exact solution:

gμν =

⎛

⎜

⎜

⎝

−α 0 0 ω

0 −r2 0 0
0 0 −r2 sin2 θ 0
−ω 0 0 γ

⎞

⎟

⎟

⎠

(4.1)

where

ω = l2

r2 (4.2)

α−1 =
(

1 + Q2

br
g

(

r

b

)

+ �r2

3

)

(4.3)

γ =
(

1 + l4

r4

)(

1 + Q2

br
g

(

r

b

)

+ �r2

3

)

(4.4)

F14 = E = − Q

r2

(

r4

r4 + b
4

)

(4.5)

b
4 = 4l4 (4.6)

Q is the electric charge and l is an integration constant of
length dimension. Let us notice that a solution with a cos-
mological constant differs from the previous solution (see
Ref. [4]) only by a term �r2

3 similarly as in General Relativity
for a Schwarzschild solution with a cosmological constant.

Similar solution is known in Einstein Unified Field Theory
and in Schrödinger Theory (see Ref. [26]) (i.e. which gen-
eralizes Schwarzschild-like solution from those theories to
the case with non-zero cosmological constant). This means
that cosmological constant results only via term �r2

3 . Thus
the solution is not asymptotically flat.

It is easy to see that

F14 = E −→
r→∞ − Q

r2 (4.7)

from Eq. (4.5). From Eq. (4.4) and the definition of the func-
tion g(x) (see Eq. (4.13) below) one gets

α−1 −→
r→∞ 1 − 2m N

r
+ Q2

r2 + �r2

3
(4.8)

where

m N = πQ2

2
√

2b
(4.9)

(see Ref. [4]) is the energy of the solution (a Schwarzschild-
like or Kottler-like asymptotically). It is also easy to see that
α−1(0) = 1, F14(0) = E(0) = 0.

All the details concerning the solution without a cosmo-
logical constant can be found in Ref. [4]. In Ref. [4] it has
been proved that the energy of the solution is finite and the
total charge is equal to Q. The electric field of the solution
is plotted in Fig. 3 of Ref. [4] (it is the same as in the case
with non-zero cosmological constant).

Moreover, we repeat some details important for the reader.
This solution is not a solution with a cosmological con-
stant in a nonsymmetric theory of gravity coupled to the
Maxwell field. This solution cannot be obtained in pure NGT
with electromagnetic sources. Thus its remarkable proper-
ties concerning nonsingularity of electric and gravitational
fields are ‘interference effects’ between gravity and elec-
tromagnetism in our unification of gravity and electromag-
netism. The solution asymptotically behaves as Reissner–
Nordström solution in NGT. Due to this it satisfies Bohr
correspondence principle between our unification (nonsym-
metric Kaluza–Klein theory) and NGT and General Rel-
ativity. The solution achieves an old dream by Einstein,
Weyl, Kaluza, Schrödinger, Eddington on a unitary classical
field theory which has spherically-symmetric singularity-free
solutions of the field equations treated as particles.

The properties of the solution are traced back to Abraham–
Lorentz (see Refs. [27–30]) idea and more advanced in Born–
Infeld electrodynamics (see Refs. [16,31]) of the electron
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being a particle-like finite-energy field configuration, the
soliton, which energy is of completely field nature. It means
it is the energy of field selfinteraction. The solution is in rest.
In order to get a moving soliton it is enough to boost it via a
Lorentz transformation.

Our theory is nonlinear (nonlinear field equations). More-
over, our constitutive equations between the field strength
tensor Fμν and an induction tensor Hμν are linear.

Let us introduce the following notation:

a = Q2

2l2

(

a = G N Q2

2c2l2

)

(4.10)

b = 2l2�

3
(4.11)

In this notation one gets

α−1 = 1 + a
g(x)

x
+ bx2 = f (x) (4.12)

where

g(x)= 1

4
√

2
log

(

x2+√
2x + 1

x2 − √
2x+1

)

− 1

2
√

2
[arctan(

√
2x + 1)

+ arctan(
√

2x − 1)] (4.13)

(see Ref. [4]),

x = r√
2l
. (4.14)

The function g(x) has been plotted in Fig. 2 of Ref. [4].
Similarly as in Ref. [4] one writes f (x) = 1 − P(x). In
this way P(x) has an interpretation of a generalized Newto-
nian gravitational field in normalized radial coordinate, i.e.
P(x) = −a g(x)

x − bx2 (see Schwarzschild solution in GR,
see also Fig. 6 of Ref. [4] in the case of b = 0). The solution
described here can be considered as the classical model of
an electron. We can try to quantize it using collective coor-
dinate approach. One can also apply loop quantum gravity
approach (see Ref. [21]) similarly as in Ref. [32].

Now it is interesting to examine the influence of the cos-
mological constant � (via b) on properties of the solution.
The most interesting case is to find horizons for such a solu-
tion. That is, to find zeros of the function

f (x) = α−1 = 1 + a
g(x)

x
+ bx2 = 0. (4.15)

(The function f (x) gives information of gravitation field of
the discussed solution. In the case of zero cosmological con-
stant we have a plot in Fig. 6 of Ref. [4].)

All the plots of the function f (x) for some values of
parameters a and b give some information on the behavior of
relativistic gravitational field of the solution for some critical
values of a and b and some typical behavior of the solution
among critical values. For we expect horizons f (x) gives
more than P(x). We have of course P(0) = 0 ( f (0) = 1).

In the previous case b = 0 (see Ref. [4]) we find that there
is a critical value of a = acrt = 3.17 . . . such that for a < acrt

there is not any horizon, for a = acrt there is one horizon,
and for a > acrt there are two horizons. Let us suppose that
� > 0 (b > 0) and examine acrt in this case. One gets

for b = 0.001, acrt ∼= 3.2

for b = 0.01, acrt ∼= 3.6

for b = 0.1, acrt ∼= 4

for b = 1, acrt ∼= 11.

It means that as before we have for a < acrt not any horizon,
a = acrt one horizon and for a > acrt two horizons. Thus the
cosmological constant results in a higher value of acrt.

It is interesting to consider a negative value of� (b < 0).
In this case we have always one more horizon (the so-called
de Sitter horizon, the cosmological horizon). For example
for a = 0.1, b = −0.001 we have only one horizon. For
a = 5, b = −0.001 we have three horizons, two as before
for b > 0 and one de Sitter horizon. For a = 3, b = −0.01
we have two horizons, one de Sitter horizon and one double
as before for b > 0. In this case a = 3 is a critical value for
b = −0.001. For lower negative values of b, i.e. b = −0.1,
we have for a = 0.1, 0.7, 3 only one (de Sitter) horizon.

Summing up, for� > 0 we get two horizons, one horizon
or no horizon, 0 < rH1 < rH2 , 0 < rH (as in the case
of Reissner–Nordström solution). For � < 0 we have the
de Sitter horizon

0 < rS

0 < rH1 < rH2 < rS

0 < rH < rS

and inside it one or two horizons or the case without an inside
horizon. In Figs. 1, 2, 3, 4, 5 we give plots of the function
f (x) for several values of parameters a and b.

One gets the value of the critical parameter acrt and the
critical value of the horizon radius from the following equa-
tions (let us remind the reader that x is r (the radius) in the
convenient unit

√
2 l, see Eq. (4.14)):

0 = f (xcrt) = 1 + acrt
g(xcrt)

xcrt
+ bx2

crt

0 = d f

dx
(xcrt) = 2bxcrt + acrt

xcrt

dg

dx
(xcrt)− acrt

x2
crt

g(xcrt).

(4.16)

After some algebra we get

x3
crt(1 + bx2

crt)+ g(xcrt)(x
4
crt + 1)(3bx2

crt + 1) = 0 (4.17)

acrt = − (1 + bx2
crt)xcrt

g(xcrt)
= (1 + x4

crt)

x2
crt

(3bx2
crt + 1) (4.18)

Equation (4.17) has one solution for b ≥ 0. However, in the
case of b0 < b < 0 it has two solutions, one solution for
b = b0 and no solutions for b < b0. Thus we can write
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Fig. 1 Plots of the
function f (x) (Eq. (4.15)) for
some values of parameters a
and b (see the text for
explanation).
a a = 500.00000, b = −0.100;
b a = 59.00000, b = −1.000;
c a = 11.50000, b = 1.000;
d a = 5.00000, b = 0.000;
e a = 5.00000, b = −0.001;
f a = 4.00000, b = 0.100;
g a = 3.17300, b = 0.000;
h a = 3.00000, b = −0.260

A B

C D

E F

G H

acrt = acrt(b), xcrt(b) only for b ≥ 0 (and b = b0). In the
remaining case b0 < b < 0 we rewrite these equations as

b = acrt
x3

crt + g(xcrt)(1 + x4
crt)

2x3
crt(x

4
crt + 1)

acrt = − 2xcrt(x4
crt + 1)

x3
crt + 3g(xcrt)(x4

crt + 1)
.

(4.19)

The estimated value of b0 is −0.0302993. It seems that in
the case of de Sitter horizon for b < b0 = −0.0302993 there
are not any horizon except the mentioned one.

In the case of b < 0 we have an interesting phenomenon
due to the fact that the function f has two local extrema (one
minimum and one maximum). For a special value of b0 they

collapse to one inflection point. This results in one horizon
as a solution of a system of equations

f (xcrt, acrt, b0) = 0

∂ f

∂x
(xcrt, acrt, b0) = 0

∂2 f

∂x2 f (xcrt, acrt, b0) = 0

(4.20)

One finds xcrt ≈ 2.30331, acrt ≈ 2.8446, b0 =
−0.0302993.

The points xcrt ≈ 2.30331, acrt ≈ 2.8446 correspond to
the minimum of the function b(x)defined by the first equation
(4.19).
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Fig. 2 Plots of the
function f (x) (Eq. (4.15)) for
some values of parameters a
and b (see the text for
explanation).
a a = 3.00000, b = −0.200;
b a = 3.00000, b = −0.010;
c a = 3.00000, b = 0.000;
d a = 3.00000, b = 0.001;
e a = 3.00000, b = 0.010;
f a = 3.00000, b = 0.100;
g a = 3.00000, b = 0.200;
h a = 3.00000, b = 1.000

A B

C D

E F

G H

In Fig. 6 we give plots for xcrt(b) and acrt(b) for b > 0
and for b < 0. In the case of b < 0 we have two branches,
xcrt and acrt.

5 Dirac equation in nonsymmetric Kaluza–Klein theory

In this section we deal with the generalization of the Dirac
equation on P . Thus we consider spinor fields Ψ,Ψ on P
transforming according to Spin(1, 4) (a double covering
group of SO(1, 4)—de Sitter group). We want to couple these
fields to gravity and electromagnetism. ForΨ andΨ we have
Ψ,Ψ : P → C

4 and

Ψ (ϕ(g)p) = σ(g−1)Ψ (p)

Ψ (ϕ(g)p) = Ψ (p)σ (g), (5.1)

where σ ∈ L(C4), p = (x, g1) ∈ P , g, g1 ∈ U(1).
On E we define spinor ordinary fields ψ,ψ : E → C

4.
We suppose that ψ and ψ are defined up to a phase factor
and that

ψ f (x) = Ψ ( f (x))

ψ f (x) = Ψ ( f (x))
(5.2)

where f : E → P is a section of a bundle P . In some sense
spinor fields on P are lifts of spinors on E (see Appendix C),

Ψ ( f (x)) = π∗(ψ f (x)), ψ f = f ∗Ψ
Ψ ( f (x)) = π∗(ψ f (x)), ψ f = f ∗Ψ .

(5.3)
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Fig. 3 Plots of the
function f (x) (Eq. (4.15)) for
some values of parameters a
and b (see the text for
explanation).
a a = 2.00000, b = 0.010;
b a = 0.79126, b = 0.001;
c a = 0.78126, b = −0.100;
d a = 0.78126, b = −0.010;
e a = 0.78126, b = −0.001;
f a = 0.78126, b = 0.000;
g a = 0.78126, b = 0.001;
h a = 0.78126, b = 0.010

A B

C D

E F

G H

Let us consider a different section of the bundle P , e :
E → P . In this case we have

ψe = e∗Ψ, ψ = e∗Ψ , ψe(x) = Ψ (e(x)),

ψe(x) = Ψ (e(x)), ψe(x) = ψ f (x) exp

(

ikq

h̄c
χ(x)

)

,

ψe(x) = ψ f (x) exp

(

− ikq

h̄c
χ(x)

)

,

where kq is the charge of the fermion, k = 0,±1,±2, . . . ,
for an electron k = 1, χ is a gauge changing function.

Let us define an exterior gauge derivative
gauge

d of the
field Ψ . One gets

dΨ = ζμΨ θ
μ + ζ5Ψ θ

5 (5.4)

and

gauge
d Ψ = hor dΨ = ζμΨ θ

μ

gauge
d Ψ = hor dΨ = ζμΨ θ

μ.

(5.5)

Let γμ ∈ L(C4) be Dirac’s matrices obeying the conven-
tional relations

{γμ, γν} = 2ημν (5.6)

(where ημν is the Minkowski tensor of signature (−−−+))
and let B = B+ be a matrix such that

γ μ+ = Bγ μB−1, ψ = ψ+B (5.7)
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Fig. 4 Plots of the
function f (x) (Eq. (4.15)) for
some values of parameters a
and b (see the text for
explanation).
a a = 0.78126, b = 0.100;
b a = 0.10000, b = −0.100;
c a = 0.10000, b = −0.010;
d a = 0.10000, b = −0.001;
e a = 0.10000, b = 0.000;
f a = 0.10000, b = 0.001;
g a = 0.10000, b = 0.010;
h a = 0.10000, b = 0.100

A B

C D

E F

G H

(the indices are raised by ημν , the inverse tensor of ημν),
where ‘+’ is the Hermitian conjugation, and we have

σμν = 1
8 [γμ, γν]. (5.8)

We define

γ 5 = γ 1γ 2γ 3γ 4 ∈ L(C4).

One can easily check that

{γA, γB} = 2g AB (5.9)

where

g AB = diag(−1,−1,−1,+1,−1)

and γ A = (γ α, γ 5) (5.10)

(the indices are raised by g AB , the inverse tensor of g AB).
We have

γ 5+ = Bγ 5 B−1 and Ψ = Ψ+ B. (5.11)

So

γ A+ = Bγ A B−1. (5.12)

On the manifold P we have an orthonormal coordinate
system θ A and we can perform an infinitesimal change of
the frame

θ A′ = θ A + δθ A = θ A − εA
Bθ

B

εAB + εB A = 0.
(5.13)
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Fig. 5 Plots of the
function f (x) (Eq. (4.15) for
some interesting values of a
and b (b < 0) (see the text for
an explanation).
a a = 3.0349, b = −0.0145067;
b a = 3.4281, b = −0.0163862;
c a = 2.9677, b = −0.0207742;
d a = 2.8446, b = −0.0302993

A B

C D

Fig. 6 Plots of xcrt(b) and
acrt(b) for b > 0 (a, b) and for
b < 0 (c, d)

A B

C D

If the spinor field Ψ corresponds to θ A and Ψ ′ to θ A′
then

we get

Ψ ′ = Ψ + δΨ = Ψ − εAB σ̂ABΨ

Ψ
′ = Ψ + δΨ = Ψ + Ψ σ̂ABε

AB
(5.14)

(Ψ and Ψ are Schouten σ -quantities (see Refs. [33,34])
where

σ̂AB = 1
8 [γA, γB]. (5.15)

Notice that the dimension of the spinor space for a 2n-
dimensional space is 2n and it is the same for a (2n + 1)-
dimensional one (in our case n = 2).

We take a spinor field for the 5-dimensional space P and
assume that the dependence on the 5th dimension is trivial,
i.e. Eq. (5.1) holds. Taking a section we obtain spinor fields
on E .

Let us introduce some new notions. We introduce the
Levi–Civita symbol and the dual Cartan’s base

ηαβγ δ, η1234 =
√

− det(g(αβ)) (5.16)
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ηα = 1

2 · 3
θ
δ ∧ θγ ∧ θβηαβγ δ (5.17)

η = 1

4
θ
α ∧ ηα. (5.18)

We define

ηα = π∗(ηα)
η = π∗(η)

(5.19)

We rewrite here the Riemannian part of the connection (2.19)

introducing the constant λ = 2
√

G N
c2 ,

w̃A
B =

(

π∗ (

˜wαβ
) + λ

2π
∗(Fαβ)θ5 λ

2π
∗(Fαγ θγ )

−λ
2π

∗(Fβγ θγ ) 0

)

(5.20)

(see Refs. [35,36]).
Let us consider exterior covariant derivatives of spinorsΨ

and Ψ ,

˜DΨ = dΨ + w̃A
B σ̂ A

BΨ

˜DΨ = dΨ − w̃A
BΨ σ̂ A

B
(5.21)

with respect to the Riemannian connection w̃A
B .

Now we introduce the derivative D, i.e. an exterior ‘gauge’
derivative of a new kind. This derivative may be treated as the
generalization of minimal coupling scheme between spinor
and electromagnetic field on P ,

DΨ = hor DΨ

DΨ = hor DΨ .
(5.22)

We get

DΨ = ˜DΨ − λ

8
Fαμ[γα, γ5]Ψ θμ

DΨ = ˜DΨ + λ

8
FαμΨ [γα, γ5]θμ

(5.23)

where

˜DΨ =
gauge

d Ψ + π∗(˜wαβ)σαβΨ
˜DΨ =

gauge
d Ψ − π∗(˜wαβ)Ψ σαβ.

(5.24)

The derivative ˜D is the covariant derivative with respect
to both π∗(˜wαβ) and ‘gauge’ at once. It introduces inter-
action between the electromagnetic and gravitational fields

with Dirac’s spinor in a classical well-known way (˜DΨ =
hor ˜DΨ ).

In Dirac theory we have the following Lagrangian for the
spinor 1

2 -spin field on E :

L(ψ,ψ, d) = i
h̄c

2

(

ψ l ∧ dψ + dψ ∧ lψ
) + mψψη

(5.25)

where l = γμη
μ.

Let us lift the Lagrangian on a manifold P . We pass from
the spinorsψ andψ toΨ andΨ and from the derivative d to

gauge
d or to ˜D. This is the classical way. Moreover, we have to

do with a theory which unifies gravity and electromagnetism
and in order to get new physical effects we should pass to
our new derivative D. Simultaneously we pass from η to η
and from l to π∗(l) = l.

In this way one gets

LD(Ψ,Ψ ,D) = i h̄c

2
(Ψ l ∧ DΨ + DΨ ∧ lΨ )+ mΨΨη.

(5.26)

Using Eqs. (5.23) one obtains

LD(Ψ,Ψ ,D)=LD(Ψ,Ψ ,
˜D)−i

2
√

G N

c
h̄FμνΨ γ5σ

μνΨ η

(5.27)

where

LD(Ψ,Ψ ,
˜D) = i h̄c

2

(

Ψ l ∧ ˜DΨ + ˜DΨ ∧ lΨ
)

+ mΨΨη.

(5.28)

Now we should go back to a space–time E (see Appendix
C) and we get the following Lagrangian:

LD(ψ,ψ,D)=LD(ψ,ψ,
˜D)−i

2
√

G N

c
h̄Fμνψγ5σμνψ

(5.29)

LD(ψ,ψ,
˜D)= i h̄c

2

(

ψ l ∧ ˜Dψ+˜Dψ ∧ lψ
)

+ mψψη.

(5.30)

We get the new term

− i
2
√

G N

c
h̄Fμνψγ5σμνψ. (5.31)

It is an interaction of the electromagnetic field with an anoma-
lous dipole electric moment. For such an anomalous interac-
tion it reads

i
dkk

2
Fμνψγ5σμνψ. (5.32)

Our anomalous moment reads

dkk =−4
√

G N

c
h̄ =−4lpl√

α
q �−7.56784835 × 10−32 [cm]q

(5.33)

where lpl is the Planck length

lpl =
√

h̄G N

c3 � 1.61199 × 10−35m,

q is the elementary charge and

α = e2

h̄c
� 1

137

is the fine structure constant.
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This term can also be rewritten in a different way,

− 2

�p
(h̄3c5)1/2 Fμνψγ5σμνψ (5.34)

where

�p = m pc2 � 1.2209 × 1019GeV

m p = 2.1765 × 10−8kg (5.35)

are Planck energy scale and Planck mass. Thus we get a term
which probably gives the trace of New Physics on the Planck
energy scale. This term is nonrenormalizable in Quantum
Field Theory and it is of 5 order in mass units (i.e. c = h̄ = 1)
divided by the energy (mass) scale.

The term (5.32) can be written in a very convenient way

dkkψ
(

β(
−→
Σ · −−−→

E + i−→α −→
B )ψ

)

(5.36)

where

β =
(

I 0
0 −I

)

, −→α =
(

0 −→σ−→σ 0

)

, −→γ = β−→α (5.37)

−→
Σ = −γ 5−→α = γ 4γ 5−→γ = βγ 5−→γ (5.38)
−→σ = (σx , σy, σz), (5.39)

I is the identity matrix 2×2 and −→σ are Pauli matrices.
−→
E is

the electric field and
−→
B is the magnetic field. In this way our

term introduces an anomalous dipole electric interaction and
also an anomalous magnetic dipole interaction. Of course the
magnetic interaction is negligible in comparison to ordinary
magnetic moment interaction of the electron. One can easily
calculate this anomalous magnetic moment of the electron in
terms of Bohr magneton getting

4√
α

(

me

mp

)

μB = 19.188 × 10−21μB,

where me is the mass of the electron and μB = qh̄
2me

is
the Bohr magneton. From the physical point of view the
most important is the electric dipole moment (EDM). So

we see that using spinors Ψ and Ψ and the derivative ˜D
in the Kaluza–Klein Theory we have achieved an additional
gravitational-electromagnetic effect. It is just the existence
of a dipole moment of a fermion, which value is determined
by fundamental constants (only!). This is another ‘interfer-
ence effect’ between electromagnetic and gravitational fields
in our unified field theory. Thirring also has achieved in his
paper [37] a dipole electric moment of a fermion of the same
order. In his theory the minimal rest mass of the fermion is of
order of the Planck mass. Thus his theory cannot describe a
fermion from the Standard Model. The anomalous moment
in Thirring’s theory depends on a mass of a fermion. In order
to get dkk of order 10−32 [cm]q this must be of a Planck mass
order. Otherwise the value of dkk can be smaller. (In reality

W. Thirring obtains two types of anomalous Pauli terms—
electric and magnetic of the same order.)

In our case mass m may be arbitrary, e.g. m = 0. Thus we
can consider also massless fermions. We can also consider
chargeless fermions, i.e. for k = 0. It is also worth notic-
ing that Thirring’s quantities Ψ and Ψ have nothing to do
with our spinor fields Ψ and Ψ for the mysterious Thirring
quantity ϕ which is absent in our theory (it appears also in
Thirring’s definition of the parity operator). We develop the
theory considered here also in ordinary Kaluza–Klein The-
ory and in the Kaluza–Klein theory with torsion (see Refs.
[35,38,39]). Someone develops a theory using our spinors
Ψ and Ψ getting also anomalous electric dipole moments
(see Refs. [40,41]). We develop a similar approach for the
Rarita–Schwinger field (see Ref. [42]). In the case of non-
symmetric Kaluza–Klein theory we consider also a differ-
ent approach (see [43,44]). However, now we consider the
present as appropriate.

Let us consider operations of reflection defined on a man-
ifold P . To define them we choose first a local coordinate
system on P in such a way that we pass from θ A to dx A (see
Sect. 1), i.e. (π∗(dxα), dx5). In this way

x A = (xα, x5), xα = (
−→x , t). (5.40)

Then

Ψ (p) = Ψ (x A) = Ψ
(

(
−→x , t), x5

)

(5.41)

and we define the following transformations: space reflection
P (do not confuse with a manifold P), time reversal T , charge
reflection C , and the combined transformations PC , θ =
PCT ,

Ψ C (xα, x5) = CΨ ∗(xα,−x5), (5.42)

where C−1γμC = −γ ∗
μ .

Taking a section f we get

(ψ f )C (xα) = Cψ f ∗(xα) (5.43)

and the charge changes sign. The reflection x5 → −x5 as
a charge reflection has been already suggested by J. Rayski
(see Ref. [45]). For the space coordinate reflection we have

Ψ P (xα, x5) = γ 4Ψ (−−→x , t, x5). (5.44)

Taking a section f we obtain

(ψ f )P (
−→x , t) = γ 4ψ f (−−→x , t), (5.45)

i.e. a normal parity operator on E .
This contrasts with Thirring’s definition of the parity oper-

ator (Thirring was forced to change the definition of the parity
operator on 5-dimensional space and he could not obtain the
normal parity operator on E). The transformation of time
reversal T is defined by

Ψ T (
−→x , t, x5) = C−1γ 1γ 2γ 3Ψ ∗(−→x ,−t,−x5). (5.46)
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Taking a section f we get

(ψ f )T (
−→x , t) = C−1γ 1γ 2γ 3(ψ f )∗(−→x ,−t) (5.47)

and the charge does change sign, i.e. a normal time-reversal
operator on a space–time.

To define a transformation θ = PCT we write

Ψ θ(
−→x , t, x5) = −iγ 5Ψ (−−→x ,−t,−x5). (5.48)

Taking a section f we get

(ψ f )θ (
−→x , t) = −iγ 5ψ f (−−→x ,−t) (5.49)

and the charge changes sign. The transformation PC is as
follows:

Ψ PC (
−→x , t, x5) = γ 4CΨ ∗(−−→x , t, x5). (5.50)

Taking a section f we have

(ψ f )PC (
−→x , t) = γ 4C(ψ f )∗(−−→x , t) (5.51)

and the charge changes sign.
It is clear now that the transformations obtained by us do

not differ from those known from the literature.
The additional term in Lagrangian (5.27) breaks PC or

T symmetries as in Thirring’s theory (see Ref. [37]), but
Thirring defines the operator PC in a different way. This can
be easily seen by acting on both sides of Eq. (5.31) with
the operator defined by Eq. (5.50). Of course this break-
ing is very weak and it cannot be linked to C P-breaking
term in Cabbibo–Kobayashi–Maskava matrix. From this
breaking due to δPC -phase, which is responsible for PC-
nonconservation in K 0, K 0 mesons decays and also for
D0, D0, Bs, Bs , B0, B0, and so on, see Ref. [46], we
can get a dipole electric moment of the electron of order
8 × 10−41 [cm]q (if there is not New Physics beyond SM,
see Ref. [47]). This is because all Feynman diagrams which
induce EDM of electron vanish to three loops order.

According to Ref. [47] electron EDM

de =
(

g2
w

32π2

)(

me

Mw

)

[

ln
�2

M2
W

+ O(1)

]

dW (5.52)

where

dW = J

(

g2
W

32π2

)

(

q

2MW

)

m4
bm2

s m2
c

M2
W

(5.53)

is EDM for the W boson, � is an energy scale for a New
Physics (beyond SM),

J = s2
1 s2s3c1c2c3 sin δC P = 2.96 × 10−5

(see Ref. [48]) is the Jarlskog invariant, mb,ms,mc are
masses of quarks (we suppose the existence of three families
of fermions in SM) and si = sin θi , ci = cos θi , i = 1, 2, 3.

EDMs of the electron de and quarks can induce EDMs of
paramagnetic and diamagnetic atoms

dpara ∼ 10α2 Z3de (5.54)

ddia ∼ 10Z2
(

RN

RA

)2
˜dq . (5.55)

For Thalium (Tl) and for Mercury (Hg) one gets

dTl = −585de (5.56)

dHg = 7 × 10−3e(˜du − ˜dd)+ 10−2de. (5.57)

For the neutron

dn = (1.4 ∓ 0.6)(dd − 0.25du)+ (1.1 ± 0.5)q(˜dd + 0.5˜du)

where dd , du are EDM of quarks and ˜dd ,˜du,˜dq are color
EDM operators (see Ref. [49] and references cited therein).
Recently we have an upper bound on EDMs (see Ref. [50]
and references cited therein)

|dn| < 2.9 × 10−26 [cm]q, |de| < 1.6 × 10−27 [cm]q,
d(199Hg) < 3.1 × 10−29 [cm]q.

In the case of θ -term in QCD we have also dn = 3 ×
10−16θ [cm]q (see Ref. [49]).

Recently there has been significant progress in obtaining
an upper limit on the EDM of the electron by using a polar
molecule thorium monoxide (ThO). The authors of Ref. [51]
obtained an upper limit on de,

|de| < 8.7 × 10−29[cm]q. (5.58)

This is only of three orders of magnitude bigger than our
result (see Eq. (5.33)). From the other side there is also
progress in calculation of SM prediction of EDM for the
electron coming from a phase δC P of CKM matrix. This cal-
culation gives the so called equivalent EDM (see Ref. [52]),

dequiv
e ∼ 10−38[cm]q, (5.59)

which is bigger of three orders of magnitude than the result
from Ref. [46]. Moreover, still smaller of six orders than our
result. The parameter θ from QCD is unknown and has no
influence on EDM of the electron. The existence of EDM
of the electron coming from Kaluza–Klein theory can help
us in understanding of an asymmetry of matter-antimatter
in the Universe. This EDM moment which breaks PC and
T symmetry in an explicit way can have an influence on the
surviving of annihilation of matter with antimatter following
Big Bang.

It is interesting to notice that EDM from Kaluza–Klein
Theory is the same for a muon (a μ meson) and a tauon
(a τ meson) as for the electron. We get the same value for
flavor states of neutrinos. Due to this, EDM of this value can
influence oscillations of neutrinos species (see Ref. [53]).

To be honest, we write down a different, however trivial,
coupling of the spinor fields Ψ and Ψ in the Kaluza–Klein
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model. This is a coupling to a connection of the form

ŵA
B =

(

π∗ (

˜wαβ
)

0
0 0

)

. (5.60)

In this wayΨ andΨ are transforming according to SL(2,C)
and new phenomena are absent, i.e. we have to do with
Lagrangian (5.28).

Let us come back to neutrino oscillations in the presence of
EDM. Let us write the Lagrangian for three neutrino species
neglecting gravitational field:

LD(Ψλ, Ψ λ, d)

=
∑

λ=α,β,γ

(

i h̄c

2

(

Ψ λl ∧ dΨλ + dΨ λ ∧ lΨλ
)

+i
dkk

2
FμνΨ λγ5σμνΨλ

)

+
∑

λ,λ′=α,β,γ
Ψ λmλλ′Ψλ′η.

(5.61)

Despite the smallness of dkk its interaction with strong elec-
tric and magnetic fields can result in sizeable effects (see
Eq. (5.36)). mλλ′ is the mass matrix for neutrinos which is
not diagonal. In particular α = e, β = μ, γ = τ .

Let us consider mass eigenstates of our neutrinos Ψa , a =
1, 2, 3 (see [53])

Ψλ =
∑

a=1,2,3

UλaΨa . (5.62)

The unitary matrix U = (Uλa) diagonalizes the mass matrix
m = (mλλ′). The eigenvalues of the mass matrix are called
ma , a = 1, 2, 3.
⎛

⎝

m1 0 0
0 m2 0
0 0 m3

⎞

⎠ = U+ m U (5.63)

U =
⎛

⎝

c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

⎞

⎠

(5.64)

where ci j = cos θi j , si j = sin θi j , the angles θi j ∈ [0, π2 ], δ ∈
[0, 2π ] is the Dirac CP-violation phase (see Refs. [46,53], i
means λ—flavor, j means a—mass eigenstate).

In the new spinor variables the Lagrangian (5.61) reads

LD(Ψa, Ψ a, d) =
∑

a=1,2,3

(

i h̄c

2

(

Ψ al ∧ dΨa

+dΨ a ∧ lΨa
) + Ψ a MaΨη

)

, (5.65)

where

Ma = ma + i
dkk

2
Fμνγ5σμν = ma

+dkkβ
(

Σ · E + iα · B
)

(5.66)

(see Eq. (5.36)).

Using initial conditions for mass eigenstates

Ψa(
−→r , t = 0) = Ψ (0)

a (
−→r ) (5.67)

Ψ
(0)
λ (

−→r ) = UλaΨ
(0)
a (

−→r ) (5.68)

Ψ (0)
a (

−→r ) = (U−1)aλΨ
(0)
λ (

−→r ) (5.69)

we can solve the initial value problem for linear equations
corresponding to the Lagrangian (5.65), finding the evolution
in time of fields Ψa (they do not couple). Afterwards using
(5.62) and (5.69) we find oscillations of three neutrino flavors
under the influence of magnetic and electric fields due to
additional term coming from Kaluza–Klein Theory. Field
equations for Ψa (Euler–Lagrange equations for Lagrangian
(5.65)) are given in the following Hamilton form:

i h̄c
∂Ψa

∂t
= HaΨa, a = 1, 2, 3, (5.70)

where

Ha = c−→α · −→p + βma − dkk

(−→
Σ · −→

E + i−→α · −→
B

)

(5.71)

−→p = −i h̄
−→∇ . (5.72)

Thus eventually one gets

i h̄c
∂Ψa

∂t
= −i h̄c(−→α · −→∇ )Ψa + maβΨa

−dkk(
−→
Σ · −−−→

E + i−→α · −→
B )Ψa, a = 1, 2, 3.

(5.73)

Equations (5.73) are typical Dirac–Pauli equations. More-
over, they have a term which explicitly breaks PC transfor-
mation. We suppose

−→
E = const,

−→
B = const. For Eqs. (5.73)

are linear the general solutions are expressed by the Fourier
integral

Ψa(
−→r , t) =

∫

d3−→p
(2π)3/2

ei−→p ·−→r

×
∑

ζ=±1

[

a(ζ )a u(ζ )a (
−→p ) exp

(

−i E(+)(ζ )a t
)

+b(ζ )a v(ζ )a (
−→p ) exp

(

−i E(−)(ζ )a t
)]

(5.74)

where a(ζ )a , b(ζ )a are arbitrary coefficients, u(ζ )a , v
(ζ )
a are base

spinors such that

Hau(ζ )a = E(+)(ζ )a u(ζ )a (5.75)

Hav
(ζ )
a = E(−)(ζ )a v(ζ )a . (5.76)

In the classical situation

E(+)(ζ )a = −E(−)(ζ )a (5.77)

and ζ = ±1 describes different polarization states of the
fermions Ψa (see Refs. [54,55]). In our case E(+)(+1)

a ,
E(+)(−1)

a , E(−)(−1)
a , E(−)(+1)

a are roots of the polynomial
of the fourth order
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det(Ha(
−→p )− I Ea) = 0 (5.78)

where I is the identity matrix 4 × 4 and

Ha(
−→p )=c−→α · −→p +βma −dkk(

−→
Σ · −→

E + i−→α · −→
β ). (5.79)

Spinors u(ζ )a , v
(ζ )
a are eigenvectors corresponding to those

eigenvalues. They are orthogonal. Using initial conditions
we can determine coefficients a(ζ )a and b(ζ )a , i.e. we expand
Ψ
(0)
a (

−→r ) into Fourier integral

Ψ (0)
a (

−→r ) =
∫

d3−→p
(2π)3/2

ei−→p ·−→r

×
∑

ζ=±1

[

a(ζ )a u(ζ )a (
−→p )+ b(ζ )a v(ζ )a (

−→p )
]

. (5.80)

We can consider several possibilities of neutrino flavor oscil-
lations supposing e.g.

Ψ (0)
α (

−→r ) = ξ(
−→r ) and Ψ

(0)
β (

−→r ) = Ψ (0)
γ (

−→r ) = 0. (5.81)

In this way

Ψ (0)
a (

−→r ) = Uaαξ(
−→r ) (5.82)

which can be considered as initial conditions for oscillations.
Moreover, this problem is beyond the scope of this paper

and will be considered elsewhere.
Let us notice that our generalization of the minimal cou-

pling scheme Eq. (5.22) induces a new connectionon P .

w̌A
B = hor(w̃A

B ) (5.83)

orw̌A
B =

(

π∗(˜wαβ) λ
2π

∗(Fαγ θγ )
−λ

2π
∗(Fβγ θγ ) 0

)

. (5.84)

This connection is a metric but with non-vanishing tor-
sion. The properties of this connection have been extensively
examined (also in the case of nonabelian Kaluza–Klein The-
ories) in Ref. [56].

Let us consider the following problem. What would it
mean for physics if someone measured the EDM for the elec-
tron of the value dkk = − 4lpl√

α
q as predicted in this section?

It means the fifth dimension is a reality in the sense of a
5-dimensional Minkowski space.

The experiment which measures such a quantity strongly
supports an idea of rotations around the fifth axis in this
space (the fifth dimension is space-like). This EDM exists
only due to these rotations. Otherwise spinor fields couple to
the connection (5.60) and there is no new effect.

Even if P is a 5-dimensional manifold, the additional fifth
dimension is not necessarily of the same nature as the remain-
ing four dimensions, in particular three space dimensions.
This dimension is a gauge dimension connected to the elec-
tromagnetic field. Moreover, we can develop this theory using
Yang–Mills’ fields and also Higgs’ fields using dimensional
reduction procedure, expecting some additional effects. It

means we can expect something as ‘traveling’ along addi-
tional dimensions. This prediction would have tremendous
importance for physics and technology.

Simultaneously the existence of the EDM of the electron
has also very great impact on our understanding of PC and T
symmetries breaking. This is also very important.

Thus a mentioned measurement with the answer: Yes,
would have very important physical, technological and even
philosophical implications.

6 Conclusions

In the paper we consider four problems:

1. Charge confinement in nonsymmetric Kaluza–Klein the-
ory.

2. Gravito-electromagnetic waves solutions in this theory.
3. The influence of the cosmological constant on a spheri-

cally-symmetric static solution.
4. Dirac equations in nonsymmetric Kaluza–Klein theory.

There are some further prospects:

1. To find similar conditions for confinement (of color) in a
nonabelian version in the theory.

2. To find similar gravito-Yang–Mills waves.
3. To find spherical and cylindrical waves in the theory.

Finally, we give some remarks. There are some misunder-
standings connecting Kaluza–Klein Theory, Einstein’s Uni-
fied Field Theory, Nonsymmetric Gravitation Theory (NGT),
Nonsymmetric Kaluza–Klein Theory (NKKT), Nonsymmet-
ric Jordan–Thiry Theory (NJTT).

1. First of all we comment on the constant λ = 2
√

G N
c2 . The

constant λ appeared as a free parameter in this theory.
Moreover in order to get Einstein equations with electro-
magnetic sources known from GR it is fixed and it is not
free any more. Why is there no Planck’s length? I shall
explain it briefly. The Kaluza theory is classical for the
paper published by him is classical as a classical paper in
the scientific literature. It is also classical for this theory is
not quantum. For this we cannot get here the Planck con-
stant. This is simply because we need Planck’s constant in
order to construct the Planck length. Planck’s constant is
absent in Kaluza theory for this theory is classical (non-
quantum). The Planck’s length appeared in the further
development done by O. Klein. O. Klein considered the
Klein–Gordon equation in 5-dimensional extension. The
Planck’s constant is present in Klein–Gordon equation.
This equation can be considered as an equation for a clas-
sical scalar field. In Kaluza–Klein theory Planck’s length
appears as the scale of length.
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2. The classical Kaluza theory as a realistic unified field the-
ory has been abandoned by the 1950s. Moreover, due to
some mathematical investigations a deep structure has
been discovered behind the theory. Let us describe it
shortly. First of all it happens that behind Maxwell the-
ory of electromagnetism there is a principal fiber bundle
over a space–time with the structural group U(1) and the
connection defined on this bundle is an electromagnetic
field. Gauge transformation, four-potential, the first pair
of Maxwell equation obtained a clear geometrical mean-
ing in terms of the fiber bundle approach (see Sect. 1 and
Appendix A).

It happens also that the classical Kaluza theory is a theory
of metrized (in a natural way) electromagnetic fiber bundle
(see Ref. [57]).

This is a true unification of the two fundamental principles
of invariance in physics: the gauge invariance principle and
the coordinate invariance principle.

In Section 2 of Ref. [35] a classical KKT in this setting
has been described (see also the last two lines of page 576
with a fixing of the constant λ).

Moreover this paper is devoted to the KKT with torsion
in such a way that we put in the place of GR the Einstein–
Cartan theory obtaining new features the so-called ‘interfer-
ence effects’ between gravity and electromagnetism going to
some effects which are small, moreover in principle measur-
able in experiment. The nonsymmetric Kaluza–Klein theory
has been constructed using ideas and mathematical formal-
ism similar to those from Ref. [35], i.e. to Kaluza–Klein
Theory with torsion.

3. Let us consider Einstein Unified Field Theory. A. Einstein
started this theory in the 1920s. In 1950 he came back
to this theory describing it in Appendix II of the fifth
edition of his famous book The Meaning of Relativity
(see Ref. [58]).

It is worth to mention that there are many versions of this
theory. The oldest Einstein–Thomas theory and after that
Einstein–Strauss theory, Einstein–Kaufmann theory. There
are also two approaches, weak and strong field equations.
The Einstein Unified Field Theory can be also considered
as a real theory and Hermitian theory. A slight deviation is
the so-called Bonnor’s Unified Field Theory. In all of these
approaches there are two fundamental notions: nonsymmet-
ric affine connection Γ λμν �= Γ λνμ and the nonsymmet-
ric metric gμν �= gνμ. Connection and metric can be real
or Hermitian. In this theory there is also a second connec-
tion W λ

μν �= W λ
νμ. Connection Γ λμν is a so-called con-

strained connection, W λ
μν is called unconstrained. All of

these approaches have no free parameters. Some parameters
which appear in solutions of field equations are integration
constants.

What was the aim to construct such theories? The aim
was to find a unified theory of gravity and electromagnetism
in such a way that GR and Maxwell theory appear as some
limit of the theory. This approach ended with fiasco. It was
impossible to obtain the Lorentz force. It was impossible to
obtain the Coulomb law too.

One can find all references to all versions of Einstein Uni-
fied Field Theory in Refs. [1,3–5] and we will not quote
them here. Moreover, it is worth to mention that A. Einstein
considered this theory as the theory of extended gravitation.
Moreover, there is a reference of A. Einstein’s idea to treat
this theory as a theory of extended gravity only. A. Einstein
published a paper on it in Scientific American (the only one
by Einstein in this journal, see Ref. [59]).

Geometrical–mathematical properties of Einstein Unified
Field Theory have been described in a book by Vaclav
Hlavatý (see Ref. [60]).

In those times A. Einstein started a program of geometriza-
tion of physics. Some notions of this program have been
described in Ref. [61].

There is also an approach to this theory going in a different
direction. It has been summarized in the book by A. H. Klotz
(see Ref. [62]).
4. Let us comment NGT (Nonsymmetric Gravitational The-

ory) by J. W. Moffat. J. W. Moffat reinterpreted Einstein
Unified Field Theory as a theory of a pure gravitational
field (see Ref. [7]). He introduced material sources to the
formalism. Moreover, he introduced in his theory an addi-
tional universal constant. He and his co-workers devel-
oped this idea getting many interesting results which are
in principle testable by astronomical observations in the
Solar System and beyond. He was using both real and
Hermitian theory. Simultaneously he developed a for-
malism with two connections Γ λμν and W λ

μν .
5. Let us comment nonsymmetric Kaluza–Klein and the

Nonsymmetric Jordan–Thiry theory. I posed and devel-
oped these theories using the nonsymmetric metriza-
tion of an electromagnetic fiber bundle using differential
forms formalism as in Ref. [35].

Early results concerning nonsymmetric Kaluza–Klein theory
have been published in Refs. [63,64].

The final result of the theory with some developments
has been published in Ref. [4]. The paper contains also an
extension to the Nonsymmetric Jordan–Thiry Theory with
the scalar field Ψ (or ρ). In order to get a pure nonsymmetric
Kaluza–Klein theory it is enough to put Ψ = 0 (or ρ = 1).
All new features as some ‘interference effects’ between elec-
tromagnetic fields and gravitation have been quoted in Intro-
duction of Ref. [4]. The theory has no free parameters except
integration constants in solutions.

It is possible to get an extension of the theory to the non-
Abelian case. In this case we have one free parameter. More-
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over, this parameter can be fixed by a cosmological constant.
The final version of this theory can be found in Ref. [3].
In Ref. [1] one can find also an extension to the case with
Higgs’ field and spontaneous symmetry breaking. In the last
case there are three free parameters which can be fixed by
the cosmological constant and scales of masses.

I do not refer in my paper to the paper Ref. [65], for the
authors are using completely different approach (it is better to
say three approaches). This approach is far away from inves-
tigations in my work. Moreover, in future both approaches
can meet and we will shake hands. The only one point which
is now common is the starting point, the classical Kaluza
Theory. We do not refer to Ref. [66]. This paper deals with
some problems in NGT. However, NGT considered by them
has only a little touch with NGT considered here. They intro-
duced a mass for skew-symmetric field Bμν = −Bνμ (in our
notation it is g[μν]). Moreover, the g[μν] can obtain a mass
in a linear approximation of Nonsymmetric Non-Abelian
Kaluza–Klein Theory due to a cosmological constant and
it is not necessary to introduce a mass term. It seems that this
is a completely different approach (see Ref. [66]). For a cure
of NGT by a cosmological constant see also Ref. [67].

Let us notice the following fact. Einstein’s Unified Field
Theory has been abandoned as a realistic unified theory for
it has been proved using the EIH (Einstein–Infeld–Hoffman)
method that there is no Lorentz force term and no Coulomb-
like law.

These are disadvantages of Einstein Unified Field Theory
but not NGT. This works now for our advantage, for we do
not see any term like Lorentz force and Coulomb-like law in
gravitational physics (I do not mean a Newton gravitational
law which can be obtained in Einstein Unified Field Theory).
Someone said: ‘it is clever to use advantages, moreover, more
clever is to use disadvantages’ and this is the case. Moreover,
in nonsymmetric Kaluza–Klein theory we get Lorentz force
term from (N + 4)-dimensional (5-dimensional in the elec-
tromagnetic case) geodetic equations (see Refs. [1–4]).

All additional notions in nonsymmetric Kaluza–Klein
(Jordan–Thiry) theory have been described in [1]. We get
from (N + 4)-dimensional theory (N = n + n1) 4-dim-
ensional al equations due to the invariance of a nonsymmet-
ric metric and a connection with respect to the right action of
the group (in the electromagnetic case this is a biinvariance
of the action of the group U(1)).

Let us notice also the following fact. Equations obtained
in the nonsymmetric Kaluza–Klein (Jordan–Thiry) theory
are different from these in pure NGT. Due to this we can
obtain nonsingular solutions of field equations in the electro-
magnetic case. These solutions possess a nonsingular metric
g(αβ) and nonsingular electric field. The asymptotic behav-
ior is as in the case of Reissner–Nordström solution (see
Refs. [1,4] and Sect. 3). This is impossible to get in pure
NGT.

6. In Sect. 2 we consider gravito-electromagnetic waves.
They have nothing to do with gravito-electromagnetism
in General Relativity. The notion of a wave is not so
easy as in Halliday’s textbook. It is more general, see
Ref. [68]. A wave carries information. Roughly speak-
ing, it can be modulated. This means that it should pos-
sess an arbitrary function of e.g. (z − t). In the case
of nonlinear waves we use Riemann invariants (see e.g.
Ref. [69]) and the wave possesses an arbitrary func-
tion of a Riemann invariant. Moreover, a gravitational
wave is more complicated, e.g. there is no plane gravita-
tional wave. The gravitational field of such a wave is zero
(the curvature tensor induced by the metric describing a
plane wave is zero). Moreover, we can consider gener-
alized plane waves (see Ref. [70]). Gravitational waves
considered in [70] are not only gravitational waves in
a linear approximation. There are here exact solutions
of Einstein equations which can describe a very strong
gravitational field. So we consider in Sect. 2 wave solu-
tions of nonsymmetric Kaluza–Klein theory in the sense
of the mentioned definition of a wave. Field equations
in nonsymmetric Kaluza–Klein theory describe gravita-
tional and electromagnetic fields. The solutions depend
on arbitrary functions of (z − t). In the limit of zero ske-
won and zero electromagnetic fields we get generalized
plane waves known from the book by Zakharov. Thus
those solutions are gravito-electromagnetic waves. We
use some achievements in Einstein Unified Field The-
ory as results in a pure gravity (see Refs. [21–25]). The
electromagnetic wave has remarkable properties to have
both invariants of the electromagnetic field S = FμνFμν ,
P = FμνF∗μν equal to zero. The electromagnetic field
for gravito-electromagnetic field wave has this property.
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7 Appendix A

In the appendix we describe the notation and definitions of
geometric quantities used in the paper. We use a smooth prin-
cipal bundle which is the ordered sequence

P = (P, F,G, E, π), (7.1)
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where P is the total bundle manifold, F is a typical fiber, and
G, a Lie group, is the structural group, E is the base manifold
and π is a projection. In our case G = U(1), E is a space–
time, π : P → E . We have a map ϕ : P × G → P defining
the action of G on P . Let a, b ∈ G and ε be a unit element
of the group G, then ϕ(a)◦ϕ(b) = ϕ(ba), ϕ(ε) = id, where
ϕ(a)p = ϕ(p, a). Moreover, π ◦ϕ(a) = π . For any open set
U ⊂ E we have a local trivialization U × G � π−1(U ). For
any x ∈ E , π−1({x}) = Fx � G, Fx is a fiber over x and is
equal to F . In our case we suppose G = F , i.e. the Lie group
G is a typical fiber. ω is a 1-form of connection on P with
values in the algebra of G, G. In the case of G = U(1)we use
the notation α (an electromagnetic connection). Lie algebra
of U (1) is R. Let ϕ′(a) be a tangent map to ϕ(a) whereas
ϕ∗(a) is the contragradient to ϕ′(a) at a point a. The form ω

is a form of ad-type, i.e.

ϕ∗(a)ω = ad′
a−1 ω, (7.2)

where ad′
a−1 is the tangent map to the internal automorphism

of the group G

ada(b) = aba−1. (7.3)

In the case of U(1) (abelian) the condition (7.2) means

L
ζ5

α = 0, (7.4)

where ζ5 is the Killing vector corresponding to one genera-
tor of the group U(1). Thus this is the vector tangent to the
operation of the group U(1) on P , i.e. to ϕexp(iχ), χ = χ(x),
x ∈ E , L

ζ5

is the Lie derivative along ζ5. We may introduce

the distribution (field) of linear elements Hr , r ∈ P , where
Hr ⊂ Tr (P) is a subspace of the space tangent to P at a
point r and

v ∈ Hr ⇐⇒ ωr (v) = 0. (7.5)

So

Tr (P) = Vr ⊕ Hr , (7.6)

where Hr is called a subspace of horizontal vectors and Vr of
vertical vectors. For vertical vectors v ∈ Vr we have π ′(v) =
0. This means that v is tangent to the fibers.

Let

v = hor(v)+ ver(v), hor(v) ∈ H, ver(v) ∈ Vr . (7.7)

It is proved that the distribution Hr is equal to choosing a
connection ω. We use the operation hor for forms, i.e.

(hor β)(X,Y ) = β(hor X, hor Y ), (7.8)

where X,Y ∈ T (P).
The 2-form of the curvature is defined as follows:

Ω = hor dω = Dω, (7.9)

where D means the exterior covariant derivative with respect
to ω. This form is also of ad-type.

For Ω the structural Cartant equation is valid

Ω = dω + 1
2 [ω,ω], (7.10)

where

[ω,ω](X,Y ) = [ω(X), ω(Y )]. (7.11)

Bianchi’s identity for ω is as follows:

DΩ = hor dΩ = 0. (7.12)

The map f : E ⊃ U → P such that f ◦ π = id is called
a section (U is an open set).

From the physical point of view it means choosing a gauge.
A covariant derivative on P is defined as follows:

DΨ = hor dΨ. (7.13)

This derivative is called a gauge derivative.Ψ can be a spinor
field on P .

In this paper we use also a linear connection on manifolds
E and P , using the formalism of differential forms. So the
basic quantity is a 1-form of the connectionωA

B . The 2-form
of curvature is as follows:

Ω A
B = dωA

B + ωA
C ∧ ωC

B (7.14)

and the 2-form of torsion is

Θ A = Dθ A, (7.15)

where θ A are basic forms and D means exterior covariant
derivative with respect to connection ωA

B . The following
relations are established connections with common symbols:

ωA
B = Γ A

BCθ
C

Θ A = 1
2 Q A

BCθ
B ∧ θC

Q A
BC = Γ A

BC − Γ A
C B

Ω A
B = 1

2 R A
BC Dθ

C ∧ θD,

(7.16)

where Γ A
BC are coefficients of connection (they do not have

to be symmetric in indices B and C), R A
BC D is a tensor

of the curvature, and Q A
BC is the tensor of the torsion in

a holonomic frame. The covariant exterior derivation with
respect to ωA

B is given by the formula

D�A = d�A + ωA
C ∧�C

DΣ A
B = dΣ A

B + ωA
C ∧ΣC

B − ωC
B ∧Σ A

C .
(7.17)

The forms of the curvature Ω A
B and the torsion Θ A obey

Bianchi’s identities

DΩ A
B = 0

DΘ A = Ω A
B ∧ θ B .

(7.18)

All quantities introduced here can be found in Ref. [71].
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In this paper we use the formalism of a fiber bundle over
a space–time E with the electromagnetic connection α and
traditional formalism of differential geometry for linear con-
nections on E and P . In order to simplify the notation we
do not use fiber bundle formalism of frames over E and P .
A vocabulary connected geometrical quantities and gauge
fields (Yang–Mills fields) can be found in Ref. [57].

In Ref. [72] we have also a similar vocabulary (see Table I,
for a translation of the terminology). Moreover, we consider
a little different terminology. First of all we distinguished
between a gauge potential and a connection on a fiber bundle.
In our terminology a gauge potential Aμθμ is in a particular
gauge e (a section of a bundle), i.e.

Aμθ
μ = e∗ω (7.19)

where Aμθμ is a 1-form defined on E with values in a Lie
algebra G of G. In the case of the strength of a gauge field
we have similarly

1
2 Fμνθ

μ ∧ θν = e∗Ω (7.20)

where Fμνθμ ∧ θν is a 2-form defined on E with values in a
Lie algebra G of G.

Using the generators of a Lie algebra G of G we get

A= Aa
μθ

μXa =e∗ω and F = 1
2 Fa

μνθ
μ ∧ θνXa =e∗Ω

(7.21)

where

[Xa, Xb] = Cc
ab Xc, a, b, c = 1, 2, . . . , n,

n = dim G(= dim G), (7.22)

are generators of G, Cc
ab are structure constants of a Lie

algebra of G, and G, [·, ·] is the commutator of the Lie algebra
elements.

In this paper we use Latin lower case letters for 3-
dimensional space indices. We use Latin lower case letters as
Lie algebra indices. It does not result in any misunderstand-
ing. We have

Fa
μν = ∂μAa

ν − ∂ν Aa
μ + Ca

bc Ab
μAc

ν . (7.23)

In the case of the electromagnetic connection α the field
strength F does not depend on the gauge (i.e. on a section of
a bundle).

Finally it is convenient to connect our approach using the
gauge potentials Aa

μ with the common (see Ref. [73]) matrix
valued gauge quantities Aμ and Fμν . It is easy to see how to
do it if we consider Lie algebra generators Xa as matrices.
Usually one assumes that the Xa are matrices of the adjoint

representation of a Lie algebra G, T a with the normalization
condition

Tr({T a, T b}) = 2δab, (7.24)

where {·, ·} means the anticommutator in the adjoint repre-
sentation.

In this way

Aμ = Aa
μT a, (7.25)

Fμν = Fa
μνT a . (7.26)

One can easily see that if we take

Fμν = ∂μAν − ∂ν Aμ + [Aμ, Aν] (7.27)

from Ref. [73] we get

Fμν = (Fa
μν)T

a, (7.28)

where Fa
μν is given by (7.23). From the other side if we take

a section f , f : U → P , U ⊂ E , and corresponding to it
we have

A = A
a
μθ

μXa = f ∗ω (7.29)

F = 1
2 F

a
μνθ

μ ∧ θνXa = f ∗Ω, (7.30)

and we consider both sections e and f . we get the trans-
formation from Aa

μ to Aa
μ and from Fa

μν to Fa
μν in the

following way. For every x ∈ U ⊂ E there is an element
g(x) ∈ G such that

f (x) = e(x)g(x) = ϕ(e(x), g(x)). (7.31)

Due to (7.2) one gets

A(x) = ad′
g−1(x) A(x)+ g−1(x) dg(x) (7.32)

F(x) = ad′
g−1(x) F(x) (7.33)

where A(x), F(x) are defined by (7.29)–(7.30) and A(x),
F(x) by (7.21). Equations (7.32)–(7.33) give the geometrical
meaning of a gauge transformation (see Ref. [57]). In the
electromagnetic case G = U(1) we have similarly, if we
change the local section from e to f we get

f (x) = ϕ(e(x), exp(iχ(x))) ( f : U ⊃ E → P)

and A = A + dχ .
Moreover, in the traditional approach (see Ref. [73]) one

gets

Aμ(x) = U (x)−1 Aμ(x)U (x)+ U−1(x)∂μU (x) (7.34)

Fμν(x) = U−1(x)FμνU (x), (7.35)
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where U (x) is the matrix of the adjoint representation of
the Lie group G.

For the action of the group G on P via (7.2), g(x) is
exactly the matrix of the adjoint representation of G. In this
way (7.32)–(7.33) and (7.34)–(7.35) are equivalent.

Let us notice that usually the Lagrangian of a gauge field
(Yang–Mills field) is written as

LYM ∼ Tr(FμνFμν) (7.36)

where Fμν is given by (7.26)–(7.27). It is easy to see that
one gets

LYM ∼ hab Fa
μνFbμν (7.37)

where

hab = Cd
acCc

bd (7.38)

is the Cartan–Killing tensor for the Lie algebra G, if we
remember that the Xa in the adjoint representation are given
by structure constants Cc

ab.
Moreover, in Refs. [1,3] we use the notation

Ω = 1
2 Ha

μνθ
μ ∧ θνXa . (7.39)

In this language

LYM = 1
8π hab Ha

μνHbμν. (7.40)

It is easy to see that

e∗(Ha
μνθ

μ ∧ θνXa) = Fa
μνθ

μ ∧ θνXa . (7.41)

Thus (7.40) is equivalent to (7.37) and to (7.36). (7.36) is
invariant to a change of the gauge. (7.40) is invariant with
respect to the action of the group G on P .

Let us notice that hab Fa
μνFbμν = hab Ha

μνHb
μν , even

Ha
μν is defined on P and Fa

μν on E . In the nonabelian case
it is more natural to use Ha

μν in place of Fa
μν .

8 Appendix B

In this appendix we find a formula for Hνμ from Eq. (2.48).
In order to do this let us solve this equation perturbatively.
According to Refs. [4,74] one gets

Hαβ = (0)
H αβ + δ

(1)
Hαβ + δ

(2)
H αβ + · · · (8.1)

where
(0)
H αβ is Hαβ in zero order of expansion with respect to

hαβ where

gαβ=ηαβ+hαβ=ηαβ+h(αβ)+h[αβ] =ηαβ+h(αβ)+g[αβ]
(8.2)

and δ
(k)
H αβ is the kth correction to

(0)
H αβ . One gets

gμσ gνσ =
(

ημσ+δ(1)h μσ+δ(2)h μσ+· · ·
)

(ηνσ+hνσ )=δμν .
(8.3)

From (8.3) one gets

δ
(1)
h μν = −ημσ ηνβhβσ (8.4)

δ
(2)
h μν = −ηνβδ(1)h μσ hβσ = ηνβημγ ηασ hσγ hβα (8.5)

where δ
(k)
h μν are kth corrections to ημν (a zero order of the

inverse tensor of gμν , ημν is the inverse Minkowski tensor).
We get

gμν = ημν − ημσ ηνβhβσ + ημγ ηνβηασ hβαhσγ . (8.6)

Equation (2.20) can be rewritten in the more convenient form

Hβσ−gγ δ
[

g[βδ]Hγ σ+g[γ σ ] Hβδ
]= Fβσ−2g[δσ ]gδγ Fβγ .

(8.7)

Using Eq. (8.7) and writing

Hβα = Aαβ + Bαβ (8.8)

Aαβ = Aβα, Bαβ = −Bβα (8.9)

we can easily prove that Aαβ = 0. This means that Hαβ =
−Hβα if Fαβ = −Fβα . Using Eqs. (8.6) and (8.7) one gets

(0)
H αβ = Fαβ

δ
(1)
H βσ = ηγ δ(h[βδ]Fγ σ − h[αδ]Fγβ) (8.10)

δ
(2)
H βσ = ηγ δηρα(h(ργ )(h[σδ]Fαβ − h[βδ]Fσα))

and eventually

(2)
H βα= Fβα+(ηγ δ − h(γ δ))(h[βδ]Fγα−h[αδ]Fγβ), (8.11)

where

h(γ δ) = ηαδηβγ h(αβ). (8.12)

Eq. (8.11) can be rewritten in the form

(2)
H νμ = Fνμ − (1)

g̃ (τα)(g[μτ ]Fαν − g[ντ ]Fαμ) (8.13)

where
(1)
g (τα) is the inverse tensor for g(αβ) up to the first order

of expansion with respect to h(αβ). One can easily generalize
this equation to any order k, getting
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(k)
H νμ = Fνμ − (k−1)

g̃ (τα)(g[μτ ]Fαν − g[ντ ]Fαμ). (8.14)

Taking k → ∞ we get Eq. (2.48), where
(∞)

H μν = Hμν ,
(∞)

g̃ (αβ) = g̃(αβ).
Let us get Eq. (2.48) from the general formula in n-
dimensional generalization of Einstein Unified Field Theory
obtained by Hlavatý and Wrede (see Refs. [60,75]). One gets

Γ N
W M = ˜Γ N

W M + 1
2

(

KW M
N − 2k[M ·A KW ]ABk N B

)

+ hN E
{

KE(W ·AkM)A+kC ·B
[

k(M ·C KW )ABkE ·A

−KE ABk(W ·AkM)·C
]}

(8.15)

where

gAB = h AB + kAB (8.16)

h AB = hB A, kAB = −kB A (8.17)

K ABC = −˜∇AkBC − ˜∇BkC A + ˜∇C kAB, (8.18)

˜Γ N
W M is the Levi–Civita connection generated by h AB =

γ(AB) (γ[AB] = kAB). ˜∇A is a covariant derivative with
respect to the connection ˜Γ N

W M .
The connection Γ N

W M is the solution of the equation

DγA+B− = DγAB − γAD Q D
BC (Γ )θ

C = 0,

A, B,C, D, N ,M = 1, 2, . . . , n, (8.19)

where D is an exterior covariant derivative with respect to
the connection Γ .

h ABhBC = δA
C (8.20)

and all indices are raised by h AB (E. Schrödinger was sur-
prised that it was possible to find a solution to (8.19) in a
covariant form). Equation (8.15) is more general than that
from Refs. [60,75] for in Eq. (8.15) ˜Γ N

W M are coefficients
of the Levi–Civita connection. This connection can be con-
sidered in a nonholonomic frame. Thus ˜Γ N

W M can be non-
symmetric in indices W and M . In Refs. [60,75] ˜Γ N

W M

mean Christoffel symbols. Moreover, the proof is exactly the
same as in Refs. [60,75]. The authors of [60,75] are using
the natural nonholonomic frame connected to the nonsym-
metric tensor γAB in order to find Eq. (8.15). Moreover, this
nonholonomic frame has nothing to do with the frame we
consider. They assume det(γAB) �= 0 and det(γ(AB)) �= 0,
which is equivalent to our assumptions (2.5) and (2.6) (in the
case n = 5 for γAB given by Eq. (2.15)). Let us notice there is
not any constraint imposed on the torsion of the connection.

V. Hlavatý and C. R. Wrede were first to consider an n-
dimensional generalization of the geometry from Einstein
Unified Field Theory with the nonsymmetric real tensor γAB .

Here we are using capital Latin indices as indices of many-
dimensional manifolds. This does not result in any misun-
derstanding. In general, in non-Abelian theory, even in the
case with spontaneous symmetry breaking, n = 4+ N + N1,
where N is the dimension of the Lie group and N1 is the
dimension of the homogeneous space (see Refs. [1,3,5]).

In our case we have n = 5 and γAB is given by Eq. (2.15).
It is easy to see that

Γ 5
μν = Hμν (8.21)

(in the lift horizontal basis, an anholonomic frame). Thus it
is enough to calculate Γ 5

μν . One gets

Γ 5
ωμ = ˜Γ 5

ωμ − 1
2 Kωμ5 − 1

4

{

K5ω·αkμα + K5μ·αkωα

− kγ ·βkαβkω·αkμ·γ − kγ ·βK5αβkμ·αkω·γ
}

(8.22)

where all indices are raised by hαβ

hαβhαγ = δβγ (8.23)

gαβ = hαβ + kαβ (8.24)

hαβ = g(αβ), kαβ = g[αβ].

We are keeping the notation from Refs. [60,75].
Moreover in Ref. [35] (see Eq. (3.16)) Levi–Civita con-

nection coefficients for ˜Γ N
W N generated by γ(AB) = h AB

are calculated. One has ˜Γ αβ5 = Fαβ , ˜Γ 5
βγ = Fβγ , ˜Γ β5γ =

Fβγ , ˜Γ αβγ = ˜Γ αβγ for λ = 2 (n = 5 in Kaluza–Klein The-
ory). It is easy to see that they are not symmetric in indices
(they are not Christoffel symbols for the frame is not holo-
nomic, it is a lift horizontal basis). The remaining coefficients
are zero.
Using these results one gets

˜∇μkμ5 = −Fτωkμτ = −˜∇ωk5μ (8.25)

˜∇5kωμ = −Fτμkωτ − Fτωkτμ (8.26)

˜∇μkτω = ˜∇μkτω (8.27)

where we use the fact that

kμ5 = k55 = k5μ = 0 (8.28)

∂5kωμ = 0. (8.29)

Eventually we get

Kωμ5 = 2(Fτωkμτ − Fτμkωτ ) (8.30)

K5αβ = 2(Fτωkμτ − Fτμkτω) (8.31)

Kω5μ = 2Fτμkτω. (8.32)
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The remaining K ABC are zero. One gets

Hωμ = Fωμ − Fτωkμτ + Fτμkωτ . (8.33)

Coming back to our notation from the paper (i.e. kμν = g[μν],
hτα = g̃(τα)) we get

Hωμ = Fωμ − g̃(τα)Fαωg[μτ ] + g̃(τα)Fαμg[ωτ ], (8.34)

i.e. Eq. (2.48). In this way we have consistency in our theory,
leading to the same results by both methods.

9 Appendix C

In this paper we consider two kinds of spinor fieldsΨ,Ψ and
ψ,ψ defined, respectively, on P and E . The spinor fields Ψ
andΨ transform according to Spin(1, 4) andψ,ψ according
to Spin(1, 3) � SL(2,C). We have s

U (g)�(X)= DF (g)�(g−1 X), X ∈ M (1,4), g ∈SO(1, 4).
(9.1)

SO(1, 4) acts linearly in M (1,4) (5-dimensional Minkowski
space). The Lorentz group SO(1, 3) ⊂ SO(1, 4). DF is a
representation of SO(1, 4) (de Sitter group) such that after a
restriction to its subgroup SO(1, 3) we get

DF |SO(1,3)(�) = L(�), (9.2)

where

L(�) = D(1/2,0)(�)⊕ D(0,1/2)(�) (9.3)

is the Dirac representation of SO(1, 3). More precisely, we
deal with representations of Spin(1, 4) and Spin(1, 3) �
SL(2,C) (see Ref. [76]). In other words, we want spinor
fields Ψ and Ψ to transform according to such a repre-
sentation of Spin(1, 4) which is induced by the Dirac rep-
resentation of SL(2,C). The complex dimensions of both
representations are the same: 4. They are also Clifford
algebras,

C(1, 4) � C(1, 3) (9.4)

(see Refs. [77,78]).
One gets (up to a phase)

Ψ|SL(2,C) = ψ. (9.5)

The spinor fields ψ and ψ transform according to Dirac
representation, ψ = ψ+ B. Our matrices γμ and γA are
representations of C(1, 3) (C(1, 4)). One can consider pro-
jective representations for Ψ and ψ , i.e. representations of

Spin(1, 3) ⊗ U(1) and SL(2,C) ⊗ U(1). Moreover, we do
not develop this idea here.

In this paper we develop the following approach to spinor
fields on E and on P . We introduce orthonormal frames
on E (dx1, dx2, dx3, dx4) and on P (dX1 = π∗(dx1),
dX2 = π∗(dx2), dX3 = π∗(dx3), dX4 = π∗(dx4), dX5).
Our spinorsΨ on (P, γ(AB)) andψ on (E, g(αβ)) are defined
as complex bundles C

4 over P or E with homomorphisms
ρ : C(1, 4) → L(C4) (resp. ρ : C(1, 3) → L(C4)) of bun-
dles of algebras over P (resp. E) such that for every p ∈ P
(resp. x ∈ E), the restriction of ρ to the fiber over p (resp. x)
is equivalent to the spinor representation of the Clifford alge-
bra C(1, 4) (resp. C(1, 3)), i.e. DF (resp. Dirac representa-
tion, see Refs. [79,80]). (There is also a paper on a similar
subject (see Ref. [81]).) Spinor fieldsΨ andψ are sections of
these bundles. There is also an approach to consider spinor
bundles for Ψ and ψ as bundles associated to principal bun-
dles of orthonormal frames for (P, γ(AB)) or (E, g(αβ)) (spin
frames). Spinor fieldsΨ andψ are sections of these bundles.
In our case we consider spinor fields Ψ and Ψ transforming
according to (5.13) and (5.14). In the case of ψ and

θα′ = θα + δθα = θα − εαβθ
β

εαβ + εβα = 0. (9.6)

If the spinor field ψ corresponds to θα and ψ ′ to θα′ we
get

ψ ′ = ψ + δψ = ψ − εαβσαβψ

ψ ′ = ψ + δψ = ψ + ψεαβσαβ. (9.7)

Spinor fields Ψ and Ψ are ψ and ψ in any section of a bun-
dle P . Simultaneously we assume the conditions (5.2).

Similarly as for Ψ,Ψ one gets

˜Dψ = dψ + ˜wαβσα
βψ

˜Dψ = dψ − ˜wαβψσα
β (9.8)

˜Dψ = hor ˜Dψ =
gauge

d ψ + ˜wαβσα
βψ

˜Dψ = hor ˜Dψ =
gauge

d ψ − ˜wαβψσα
β. (9.9)

10 Appendix D

In this paper we proceed toward unification and geometriza-
tion of gravitational and electromagnetic interactions. More-
over, there is an approach (see Refs. [82–87]) which is going
in a different direction. In that direction, the authors of
those papers are transforming all possible alternative the-
ories of gravitation described by some geometric notions,
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i.e. connections, torsions, metric tensors, and also with non-
standard Lagrangians, i.e. nonlinear Lagrangians ( f (R),

f (RμνRμν), f
(

(

RαβμνεμνλρRβαλρ
)2

)

etc.) to GR with

additional ‘matter fields’. In our notation f means an arbi-
trary function, R is the scalar curvature, Rμν is the Ricci
tensor, Rαβμν means the curvature tensor (not necessarily
Riemann–Christoffel tensor). One can consider also some
different Lagrangians, i.e. f (gμν, Rμν). In this way some
unified theories, even Einstein Unified Field Theory, can be
transformed into GR (General Relativity) plus some addi-
tional ‘matter fields’, i.e. scalar fields, vector fields, and so
on. This is possible of course by using Legendre transfor-
mation techniques to define a new metric (symmetric) ten-
sor and the Levi–Civita connection compatible with this ten-
sor.

The interpretation of this new tensor and the new con-
nection can be complex. They could not have clear physical
interpretation. In the case of nonsymmetric Kaluza–Klein
theory considered in this paper we proceed in a little differ-
ent way.

Let us consider our nonsymmetric connection W λ
μ and

wλμ on a space–time E . Using results from Ref. [60] we can
write (see Sect. 1):

W λ
μν = Γ λμν + 1

3δ
λ
μW ν (10.1)

and

Γ λμν = ˜Γ λμν + Qλ
μν +Δλμν (10.2)

where ˜Γ λμν is the Levi–Civita connection induced by g(αβ)
on E and

˜∇ is a covariant derivative with respect to the Levi–Civita

connection ˜Γ αβγ (˜w
α
β). We have of course

g̃(αβ)g(αγ ) = δβγ (10.7)

and

gβ[γ · ] = g̃(βα)g[γα]. (10.8)

Starting from the formula for the 2-form of the curvature:

Ωα
β(W ) = dWα

β + Wα
γ ∧ W γ

β

one gets

Ωα
β(W ) = ˜Ωα

β − ˜∇[δ
(

Qα|β|γ ] +Δα|β|γ ]θδ ∧ θγ )

− 2
3δ
α
βW [δ,γ ]θδ ∧ θγ

where ˜Ωα
β is the 2-form of the curvature for a Levi–Civita

connection ˜wαβ on E .
From the formula above we can easily read the tensor

of the curvature Rαβδγ (W ) and afterwards the Moffat–Ricci
tensor as given below:

Rβδ(Γ ) = ˜Rβδ − 1

2

(

˜∇δQδ
βγ + ˜∇δ

˜Δδβγ

)

+ 1

4

(

˜∇γΔ
α
βα − ˜∇αΔ

α
βγ

)

(10.9)

where ˜Rβγ is the Ricci tensor for a Levi–Civita connection
generated by g(αβ). We get also the Moffat–Ricci tensor for
W λ

μ. One gets

Rβμ(W ) = Rβμ(Γ )+ 2
3 W [β,μ]. (10.10)

The final result reads

Rβμ = ˜Rβγ − 1
2
˜∇δQδ

βγ + 1
4
˜∇γΔ

α
βα

− 3
4
˜∇δΔ

δ
βγ + 2

3 W [β,γ ]. (10.11)

One can also write the scalar curvature

R(W ) = g(βγ )˜Rβγ − 1
2 g[βγ ]˜∇δQδ

βγ

− 3
4 g(βγ )˜∇δΔ

δ
βγ + 1

4 gβγ˜∇γΔ
α
βα + 2

3 g[βγ ]W [β,γ ].
(10.12)

Thus now we can write the Einstein equations

Rαβ(W ) = 8π
em
T αβ (10.13)

in the following way:

˜Rβγ − 1
2
˜∇δQδ

βγ − 3
4
˜∇δΔ

δ
βγ + 1

4
˜∇γΔ

α
βα

+ 2
3 W [β,γ ] = 8π

em
T βγ . (10.14)
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Taking the symmetric and anti symmetric part of equa-
tion (10.14) one gets

˜Rβγ = 8π
em
T (βγ ) + 3

4
˜∇δΔ

δ
βγ − 1

4
˜∇(γ Δ

α
β)α (10.15)

− 1
2
˜∇δQδ

βγ + 1
4
˜∇[γΔαβ]α + 2

3 W [β,γ ] = 8π
em
T [βγ ]. (10.16)

One can eliminate Wμ from the theory using (10.16) and
getting

1
4
˜∇[[γΔ

α
β]|α|,μ] − 1

2
˜ΔδQ[βγ,μ] = 8π

em
T [[βγ ],μ]. (10.17)

Let us consider our second Maxwell equation, i.e. Eq. (2.46)
writing it in a new way. One gets

˜∇μFαμ = ΔμδμFδα − Qα
δμFδμ + ∇μ

(

gαβgμγ g̃(τρ)

× (

Fργ g[βτ ]−Fρβg[γ τ ]
))+2g[αβ]Δμ(g[νβ]Fνβ).

(10.18)

In this way we get the Einstein equations Eq. (10.15) and
the second pair of Maxwell equations in GR (10.18).

Moreover, we get a supplementary condition Eq. (10.17).
In this way our unified theory is equivalent to GR plus addi-
tional ‘matter fields’. Moreover, our ‘matter field’ has pure
geometrical origin. We get additional terms on the right-hand
side of Einstein equations (some additional terms for an effec-
tive energy–momentum tensor). We get also Eq. (2.30) (i.e.

∼g
[μν]

,ν
= 0) which is a field equation for skewon g[μν]. We

get also additional currents on the right-hand side of the sec-
ond pair of Maxwell equations. This is similar to the case of
Einstein–Cartan theory (see Ref. [88] and references cited
therein). In this case the theory is described by the metric
(symmetric) tensor and the metric connection on a space–
time, which can have non-zero torsion. The external sources
are the energy–momentum tensor (not necessary symmetric)
and spin density. One gets the following equations:

Rμν − 1
2 gμνR = 8π tμν (10.19)

Qρ
μν + δρμ − δρνQσ

μσ = 8πsρμν. (10.20)

Qρ
μν is the tensor of torsion for the metric connection, Rμν

and R are Ricci tensor and the scalar curvature for the con-
nection, tμν is an energy–momentum tensor, sρμν is the spin
density tensor. Equation (10.20) can be solved getting the
torsion (and a contorsion)

Qρ
μν = 8π

(

sρμν + 1
2δ
ρ
μsσνσ + 1

2
δρνsσσμ

)

. (10.21)

Finally, we get the connection on a space–time and we can
rewrite Eq. (10.19) in the following way:

˜Rμν − 1
2 gμν˜R = 8πT eff

μν (10.22)

T eff
μν = Tμν − 2π

(

sμνγ sγ + 2sμγ δs
δγ
ν + sμγ δs

γ δ
ν

)

+gμν
(

sγ sγ − sδγ αsαγ δ − 1
2 sδγ αsγαδ

)

(10.23)

Tμν = tμν + 1
2π

˜∇ρ
(

sνμ
ρ + s ρ

ν μ + s ρ
μ ν

)

(10.24)

sα = sγαγ

where ˜Rμν , ˜R, ˜∇ are Ricci tensor, scalar curvature, and
covariant derivative with respect to the Levi–Civita connec-
tion generated by gαβ . Equation (10.24) gives the Belifante–
Rosenfeld symmetrization of the canonical energy–mom-
entum tensor. On the right-hand side of Eq. (10.22) we have
additional ‘matter fields’, and on the left-hand side a typical
term—the Einstein tensor in GR.

We can perform a very similar procedure in the case of
Moffat (see Ref. [7]) and Einstein–Cartan–Moffat theory (see
Ref. [89]) using both procedures described above. In the case
of Kaluza–Klein Theory with torsion (see Refs. [35,36]) a
method similar to Einstein–Cartan Theory can be applied. In
all of these cases GR with additional ‘matter fields’ uses the
same metric tensor as in original theory, which is not true in
the case of Refs. [82–87]. Thus we have no problems with
the physical interpretation of the symmetric metric and we
can consider our theory as GR plus additional ‘matter fields’,
which have a geometrical interpretation. In this way we can
complete the Einstein program of the geometrization of phys-
ical interactions getting ‘interference effects’ between grav-
itational and electromagnetic fields and prove that GR is a
distinguished gravitational theory among alternative theories
of gravitation and unified field theories.
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