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Abstract Bound states of massive fermions in Aharonov–
Bohm (AB)-like fields have analytically been studied. The
Hamiltonians with the (AB)-like potentials are essentially
singular and therefore require specification of a
one-parameter self-adjoint extension. We construct self-
adjoint Dirac Hamiltonians with the AB potential in 2+1
dimensions that are specified by boundary conditions at the
origin. It is of interest that for some range of the extension
parameter the AB potential can bind relativistic charged mas-
sive fermions. The bound-state energy is determined by the
AB magnetic flux and depends upon the fermion spin and
extension parameter; it is a periodical function of the mag-
netic flux. We also construct self-adjoint Hamiltonians for the
so-called Aharonov–Casher (AC) problem, show that nonrel-
ativistic neutral massive fermions can be bound by the (AC)
background, determine the range of the extension parameter
in which fermion bound states exist, and find their energies
as well as wave functions.

1 Introduction

The quantum Aharonov–Bohm (AB) effect [1] is an impor-
tant phenomenon analyzed in various physical situations in
numerous works (see, e.g., Ref. [2]). Considering an electron
traveling in a region with the magnetic flux restricted to a thin
solenoid, the electron wave function may develop a quantum
(geometric) phase, which describes the real behavior of the
electrons propagation. Thus, the AB vector potential can pro-
duce observable effects because the relative (gauge-invariant)
phase of the electron wave function, correlated with a non-
vanishing gauge vector potential in the domain where the
magnetic field vanishes, depends on the magnetic flux [3].

It has been observed that the AB problem is governed
by Hamiltonians that are essentially singular and therefore
require specification of a one-parameter self-adjoint exten-
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sion in order for them to be treated as self-adjoint quantum-
mechanical operators [4–7]. Self-adjoint Hamiltonians are
specified by boundary conditions at the singular point.

One-parameter self-adjoint extensions of the Dirac Hamil-
tonian for the AB problem in 2+1 dimensions were con-
structed in [5,6,8]. In [5] a formal solution was constructed,
which describes a bound fermion state in the field of a cos-
mic string. Recently great interest in different effects in the
two-dimensional systems has been shown after successful
fabrication of graphene [9–11]. We note that while descrip-
tions of electron states in the graphene in [12–14] were based
on the Dirac equation for massless fermions, [15] has shown
that the massive case can also be created.

It seems that the physical reason for the additional spec-
ification of the above Dirac Hamiltonians is also related to
the interaction between the fermion spin magnetic moment
and the source field [16]. Since the interaction potential is
repulsive or attractive for different signs of the spin projec-
tion, this feature must be taken into account in the behavior
of the wave functions at the origin. The existence of weakly
bound electron states, which can emerge due to the interac-
tion between the electron spin magnetic moment and the AB
magnetic field in 3+1 dimensions, was shown in [17].

Fermion bound states can emerge in the Aharonov–Casher
(AC) problem [18] of the motion of a neutral fermion with an
anomalous magnetic moment (AMM) in the electric field of
an electrically charged conducting long straight thin thread
oriented perpendicularly to the plane of fermion motion
resulting from the interaction between the AMM of the mov-
ing fermion and the electric field [19]. The authors of Ref.
[19] argue that such a kind of point interaction also appears
in several AB-like problems [20–24].

In this paper, we analyze the AB problem taking into
account the fermion spin term in the Dirac Hamiltonian.
We find all self-adjoint Dirac Hamiltonians as well as their
spectra in the AB potential in 2+1 dimensions using the so-
called form asymmetry method developed in Refs. [25,26].
In particular, expressions for the wave functions and bound-
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state energies are obtained as functions of the magnetic flux,
spin, and extension parameters. By constructing self-adjoint
Hamiltonians for the AC problem we show that fermion
bound states exist, and we find their energies as well as
wave functions. We note that the AB and AC scattering
problems were studied in [16,27] using corresponding self-
adjoint Hamiltonians.

We shall adopt units where c = h̄ = 1.

2 Self-adjoint radial Dirac Hamiltonians in an
Aharonov–Bohm potential in 2+1 dimensions

In two spatial dimensions, the Dirac γ μ-matrix algebra can
be represented in terms of the two-dimensional Pauli matrices
σ j , and the parameter s = ±1 can be introduced to label two
types of fermions [28]; and this is applied to characterizing
the two states of the fermion spin (spin ‘up and ‘down’)
[29,30]. Then, the Dirac Hamiltonian for a fermion of the
mass m and charge e = −e0 < 0 in an AB potential, A0 = 0,
Ar = 0, Aϕ = B/r , r = √

x2 + y2, ϕ = arctan(y/x), is

HD = σ1 P2 − sσ2 P1 + σ3m, (1)

where Pμ = −i∂μ−eAμ is the generalized fermion momen-
tum operator (a three-vector). The Hamiltonian (1) should be
defined as a self-adjoint operator in the Hilbert space H =
L2(R2) of square-integrable two-spinors �(r), r = (x, y)
with the scalar product

(�1, �2) =
∫
�

†
1 (r)�2(r)dr, dr = dxdy. (2)

The total angular momentum J ≡ Lz + sσ3/2, where
Lz ≡ −i∂/∂ϕ, commutes with HD; therefore, we can con-
sider separately each eigenspace of the operator J and the
total Hilbert space is the direct orthogonal sum of the sub-
spaces of J .

In the real (three-dimensional) space, the quantity B char-
acterizes the flux of the magnetic field H = (0, 0, H) =
∇ × A = Bδ(x)δ(y) through the surface of an infinitely
thin solenoid (the radius R → 0). Thus, there appears an
interaction potential of the electron spin magnetic moment
with the magnetic field in the form −seBδ(r)/r , which is
singular and must influence the behavior of the solutions at
the origin. The ‘spin’ potential is invariant under the changes
e → −e, s → −s, and it hence suffices to consider only the
case e = −e0 < 0 and e0 B ≡ μ > 0; μ is the magnetic
flux� in units of the elementary magnetic flux�0 ≡ 2π/e0.
Then the potential is attractive for s = −1 and repulsive for
s = 1. For cosmic strings � = e/Q, where Q is the Higgs
charge [5–7].

The eigenfunctions of the Hamiltonian (1) are [31]

�(t, r) = 1√
2πr

(
f1(r)
f2(r)eisϕ

)
exp(−i Et + ilϕ), (3)

where E is the fermion energy, and l is an integer. The wave
function � is an eigenfunction of the operator J with eigen-
value j = l + s/2 and

ȟF = E F, F =
(

f1(r)
f2(r)

)
, (4)

where

ȟ = isσ2
d

dr
+ σ1

l + μ+ s/2

r
+ σ3m, μ ≡ e0 B. (5)

Thus, the problem is reduced to that for the radial Hamilto-
nian ȟ in the Hilbert space of doublets F(r) square-integrable
on the half-line.

As was shown in [30,31] any doublets F(r), G(r) of the
Hilbert space H = L2(0,∞) must satisfy

lim
r→0

G†(r)iσ2 F(r) = 0. (6)

Then, for ν = |l + μ+ s/2| �= n/2, n = 1, 2, . . . the linear
independent solutions of (4) needed are [30]

U1(r; E) = A(kr)1/2
(

2m

k

)ν
�(1/2 + ν)e−i π4 (1−s)

×
(√

E + m Jν−s/2(kr)√
E − m Jν+s/2(kr)

)

(7)

and

U2(r; E) = B(kr)1/2
(

2m

k

)−ν
�(1/2 − ν)ei π4 (1+s)

×
(√

E + m J−ν+s/2(kr)

−√
E − m J−ν−s/2(kr)

)

, (8)

with the asymptotic behavior at r → 0:

U1(r; E) = (mr)ν
(

1 + s
1 − s

)
+O(rν+1), r → 0,

U2(r; E) = (mr)−ν
(

1 − s
1 + s

)
+O(r−ν+1), r → 0,

where A, B are complex constants, k = √
E2 − m2, and

Jμ(z) are the Bessel functions. Also we have

V1(r; E) = U1(r; E)+ 1

4sλ
ω(E)U2(r; E), (9)

where ω(E) = Wr(U1, V1) is the Wronskian:

ω(E) = Wr(U1, V1) = �(2ν)�[−ν + (1 − s)/2]
�(−2ν)�[ν + (1 − s)/2]

(2λ)−2ν

m−2ν 4sλ

≡ w̃(E)

�(−2ν)
, (10)
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where λ = √
m2 − E2. The doublet V1 also can be repre-

sented via the MacDonald functions:

V1(r; E) = C(mr)1/2
(m

λ

)ν−1/2 2

�(1/2 − ν)

×
(

Kν−s/2(λr)
sKν+s/2(λr)

)
, (11)

where C is a complex constant. We note that

ν(±l, s = 1, μ) = ν(±l + 1, s = −1, μ). (12)

Any doublet of the domain D(h) must satisfy

(F†(r)iσ2 F(r))|r=0 = ( f̄1 f2 − f̄2 f1)|r=0 = 0. (13)

D(h) is the space of absolutely continuous doublets F(r)
regular at r = 0 with hF(r) belonging to L2(0,∞).

If ν > 1/2 there exist only solutions belonging to the
continuous spectrum (7). If 0 < ν < 1/2 Eq. (13) is not
satisfied and its left-hand side

( f̄1 f2 − f̄2 f1)|r=0 = 4sλ(c̄1c2 − c̄2c1). (14)

Therefore the adjoint operator h∗ is not symmetric and we
need to construct the nontrivial self-adjoint extensions of the
initial symmetric operator h0. By means of the linear trans-
formation

c1,2 → c± = c1 ± ic2 (15)

Equation (14) is reduced to the quadratic diagonal form

( f̄1 f2 − f̄2 f1)|r=0 = −i4sλ(|c+|2 − |c−|2) (16)

with the inertia indices (1, 1), which means that the defi-
ciency indices of the symmetric operator h0 for 0 < ν < 1/2
are (1, 1). Equation (13) will be satisfied for any c− related
to c+ by

c− = eiθc+, 0 ≤ θ ≤ 2π, 0 ∼ 2π. (17)

The angle θ parameterizes the self-adjoint extensions hθ of
the symmetric operator h0. These self-adjoint extensions are
different for various θ except for two equivalent cases θ = 0
and θ = 2π . If we denote ξ = tan(θ/2), then the relation
(17) is equivalent to

c2 = −ξc1, −∞ ≤ ξ = tan
θ

2
≤ +∞, −∞ ∼ +∞.

(18)

The values of ξ = ±∞ are equivalent; they imply c1 = 0 so
we can consider only ξ = ∞. Hence, in the range 0 < ν <

1/2 there is a one-parameter U (1)-family of the operators
hθ ≡ hξ with the domain Dξ ,

hξ :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Dξ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

F(r) : F(r) are absolutely continuous in (0,∞), F, hF ∈ L2(0,∞),

F(r) = C

[
(mr)ν

(
1 + s
1 − s

)
− ξ(mr)−ν

(
1 − s
1 + s

)]
, r → 0, −∞ < ξ < +∞,

F(r) = C(mr)−ν
(

1 − s
1 + s

)
+ O(r1/2), r → 0, ξ = ∞

hξ F = ȟF,

(19)

where C is a complex constant. Then

Uξ (r; E) = U1(r; E)− ξU2(r; E) (20)

and

V1(r; E) ≡ Vξ = Uξ (r; E)+ 1

4sλ
ωξ (E)U2(r; E) (21)

with

ωξ (E) = Wr(Uξ , Vξ ) = ω(E)+ 4sλξ, (22)

where ω(E) is determined by (10). For −∞ < ξ < ∞, the
energy eigenstates (doublets) in the range |E | ≥ m are

F(r) = U1(r; E)− ξU2(r; E),

where U1(r; E) and U2(r; E) are determined by (7) and (8)
with 0 < ν < 1. The operator h0 is not determined as
a unique self-adjoint operator and so an additional speci-
fication of its domain, given with the real parameter ξ (the
self-adjoint extension parameter), is required in terms of the
self-adjoint boundary conditions. It is well to note that the
self-adjoint boundary conditions permit an integrable singu-
larity in the wave functions at the origin. Physically, they
show that the probability current density is equal to zero at
the origin.

The spectrum of the radial Hamiltonian is determined by
[25,31]

dσ(E)

dE
= 1

π
lim
ε→0

Im
1

ωξ (E + iε)
, (23)

where the generalized function ωξ (E + iε) is obtained by
analytic continuation of the corresponding Wronskian in the
complex plane of E . It coincides with the corresponding
function ω(E) on the real axis of E . It can be verified that
in the range |E | > m the functions ω(E) and ωξ (E) are
continuous, complex-valued, and not equal to zero for real
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E ; the spectral function σ(E) exists and is absolutely con-
tinuous. Thus, the energy spectrum in the range |E | ≥ m
is continuous. In the range |E | < m(−m < E < m) the
functions ω(E) and ωξ (E) are real and lim

ε→0
ω−1
ξ (E + iε)

can be complex only at the points where ωξ (E) = 0 and the
energy spectrum of bound states is determined by roots of
this equation. The Wronskians as functions of the complex
E have two cuts (−∞,−m] and [m,∞) in the complex plane
of E , so we determine the first (second) sheet with Reλ > 0
(Reλ < 0) on the real axis of E . The real bound states are
situated on the first (physical) sheet.

3 Relativistic bound fermion states in 2+1 dimensions

For negative ξ there exists a bound state. The bound-state
energy Eξ (ν, s) is implicitly determined by the equation
ωξ (E) = 0, i.e.

�(2ν)� (−ν + (1 − s)/2)

�(−2ν)� (ν + (1 − s)/2)

(λ)−2ν

m−2ν = ξ. (24)

Let us write

μ = [μ] + β ≡ n + β, (25)

where [μ] ≡ n denotes the largest integer ≤ μ, and 1 > β ≥
0. Hence n = 0, 1, 2, . . . forμ > 0 and n = −1,−2,−3, . . .
for μ < 0. Since the signs of e and B are fixed it is enough
to consider only the case μ > 0. One can assume that a
bound state exists due to the interaction of the fermion spin
magnetic moment with the AB magnetic field.

We define particle bound states as the states that tend to the
boundary of the continuous spectrum E = m upon adiabat-
ically slow switching of the external field (see, for instance
[32,33]). For l + n = 0, μ = β > 0 the only (particle)
bound state s = −1 satisfies the self-adjoint condition (19).
We rewrite (24) for this case as follows:

�(1 − 2β)�(1/2 + β)

�(2β − 1)�(3/2 − β)

(m

λ

)2β−1 = ξ, 1/2 > β > 0

(26)

and

�(2β − 1)�(3/2 − β)

�(1 − 2β)�(1/2 + β)

(m

λ

)1−2β = ξ, 1 > β > 1/2.

(27)

It is easy to see that these equations hold for l +n = −1, s =
1. Since K−γ (z) = Kγ (z) it is seen from Eq. (11) that the
bound fermion states with l + n = 0, s = −1 or l + n =
−1, s = 1 are doublets represented via the two MacDonald
functions K1−β(λr) and Kβ(λr).

It follows from Eqs. (26) and (27) that an adiabatic
increase of the magnetic flux μ between the integers n →

n + 1 lifts the energy level E = m → E = −m [5] on
the physical sheet Reλ > 0) and E = −m → E = m
on the second (unphysical) sheet Reλ < 0). The second
sheet is below the first one. The given bound-state energy
is decreased (increased), E = m → E = −m for Reλ > 0
(E = −m → E = m for Reλ < 0), upon adiabatic increase
of the flux� between the integers n → n+1 and is increased
(decreased), E = −m → E = m (E = m → E = −m),
upon adiabatic increase of� between n +1 → n +2. There-
fore, any bound-state energy is a periodic function of the
magnetic flux similar to the case of the fermion motion in
the AB potential along a closed circle [34]; it is repeated
every time we change μ by an integer. It is interesting that
the induced current due to vacuum polarization in the AB
field is a finite periodical function of the magnetic flux [35].

For ξ = −1 any curve E(β) is symmetric upon reflection
with respect to the point β = 1/2, E = 0. One also can see
that there exists at β = 1/2 a normalizable state with E = 0;
for ξ it lies in the middle of the gap 2m. The wave function
of this (particle) state is

F(r) = D(mr)1/2
(

1
s

)
K1/2(mr). (28)

We give a few comments.

1. In the range of parameters 0 > ξ > −∞ the constructed
self-adjoint Hamiltonians hξ have real localized solutions
(fermionic bound state); physically they exist if the addi-
tional potential (in our case, sμδ(r) type) is attractive.

2. We define antiparticle bound states as the states that tend
to the boundary of the lower continuum, E = −m, upon
adiabatically slow switching of the external field. Then,
we can treat an antiparticle as a particle with opposite
signs for e, s, E , and we see that the Dirac Hamiltonian
(5) possesses a conjugation symmetry.
Jackiw and Rebbi [36] observed that, in a time-inversion,
charge-conjugation symmetric theory of one-dimensional
Dirac fermions interacting with a solitonic background
field (a kink), the effective Hamiltonian possesses conju-
gation symmetry. Because of this symmetry an isolated
nondegenerate, charge-self-conjugate, zero-energy state
(zero mode) lying in the middle of the gap 2m exists
[36–38] and the vacuum of the model must acquire a
half-integer fermionic charge [36]. In the presence of a
vector potential, the Dirac Hamiltonian does not exhibit
a charge-conjugation symmetry since a charge coupling
treats particles and antiparticles differently. So the exis-
tence of fermion states with zero energy does not neces-
sarily imply a fractional fermion number [39]. The pres-
ence of a magnetic field breaks time-inversion invariance.
In the case considered, the wave function (a doublet) of
the antiparticle Fa is related to that of the particle F
by means of the charge-conjugation operator given by
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the Pauli matrix C = σ3, i.e. if F is a solution of the
Dirac equation (4) with (l + μ), s and energy E , then
Fa = σ3 F∗ is also a solution of the same equation, but
with −(l + μ),−s,−E . For ξ = −1 the antiparticle
energy as a function of β is equal to zero at β = 1/2, and
the wave function of the antiparticle state with Ea = 0
is Fa(r) = σ3 F∗(r), where F(r) is determined by (28).
Therefore, the AB vector potential can yield bound states
and localized spin-polarized charged zero modes [39,40].
Since Fa(r) does not coincide with F(r) the fermionic
charge stays integer.

3. The behavior of the lowest particle energy level near the
upper boundary E = −m of the lower continuum in the
relativistic AB problem differs from the one in the cut-
off Coulomb problem. In the (cutoff) Coulomb problem,
the lowest electron energy level can dive into the lower
continuum [−m,−∞), then turn into a resonance that
can be described as a quasistationary state with ‘com-
plex energy’ (directly associated with the creation of an
electron–positron pair) [41] (see also [42]); when the
bound-state pole disappears from the physical sheet the
quasistationary state pole resides on the second (unphys-
ical) sheet.

We see that there are no particle bound states diving into
the lower continuum, no quasistationary states with ‘complex
energy’ in the relativistic AB problem (there is not particle
creation); also only fermionic bound states with real E can
appear on the second sheet.

4 Bound fermion states in the Aharonov–Casher
problem

The Dirac–Pauli equation for a neutral fermion with mass m,
an AMM M in the form of the Schrödinger equation for the
case of fermion motion in an electric field reads

i
∂�

∂t
= HD P� (29)

with the Hamiltonian

HD P = α · P + i Mγ E + βm. (30)

Here P = −i∇ is the canonical momentum operator, � is a
bispinor, γ μ = (γ 0, γ ),α are the Dirac matrices, and E is
the electric field strength.

Introducing the function

� = �ne−imt (31)

and representing �n in the form

�n =
(
φ

χ

)
, (32)

where φ and χ are spinors, we obtain an equation for the
neutral fermion in the electric field of an electrically charged
homogeneous long straight thin thread directed along the z
axis in the nonrelativistic approximation in the form

i
∂φ

∂t
= (P − E × M)2 − M2E2 + M∇ · E

2m
φ, (33)

where M = Mσ , σ are the Pauli matrices and the term ∇ · E
is equal to 4π times the electric field charge density.

In the AC field configuration

Ex = ax

r2 , Ey = ay

r2 , Ez =0, Er = a

r
, Eϕ=0, (34)

is the electric field for an electrically charged homogeneous
long straight thin (a zero radius) thread and a/2 is the total
surface charge density. We also assume that the projection
of the fermion momentum on the z axis is equal to zero.
The radial component of the (macroscopic) electric field is
determined by the mean surface charge density as ∇ · E =
4πρ, and the expression ρ = aδ(r)/4πr , therefore, well
approximates ρ. We seek the solutions of (33) in the polar
coordinates in the form

φ(t, r, ϕ) = exp(−i Ent)
∞∑

l=−∞
Fl(r) exp(ilϕ)ψ, (35)

where En is the particle energy, l is an integer, and ψ is a
constant spinor. The Hamiltonian of a neutral fermion in the
AC background contains only the matrix σ3, and the wave
function φ therefore depends only on the number ζ char-
acterizing the conserved spin projection on the z axis, and
its eigenvalue ζ = ±1 can be substituted for the opera-
tor σ3 in (33). After this substitution, the spin part of the
wave function ψ becomes inessential, and we need to con-
sider only the scalar coordinate function φ depending on ζ
(see, e.g., [43]). Thus, the radial Dirac–Pauli equation for the
neutral fermion with AMM in the electric field of a thread
oriented perpendicular to the plane of fermion motion in
3+1 dimensions in the nonrelativistic approximation coin-
cides with the nonrelativistic equation in the AB problem and
reads [18,16]

hn Fl(r) = En Fl(r), hn = − 1

2m

×
(
∂2

∂r2 + 1

r

∂

∂r
− (l + Maζ )2

r2 − Ma
δ(r)

r

)
.

(36)

Here En is related to E by E = m + En, |En| � m. We also
note that the analogous singular term (∼ δ(r)/r ) also appears
in the quadratic Dirac equation in the AB problem; there it
includes the spin parameter in the form of an additional delta-
function interaction of the spin with the magnetic field. The
additional term must influence the behavior of the solutions
at the origin and it can be taken into account by means of
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boundary conditions at the point r = 0. In the nonrelativistic
AC problem the boundary condition (13) can be given by
[16] (see also [44,45])

( f̄ ′ f − f̄ f ′)|r=0 = 0, (37)

where f (r) ≡ Fl(r)/
√

r and f̄ is the complex conjugate
function f . Here we restrict ourself to considering the case
γ = |l + ζMa| < 1 when bound states can exist. Then, for
each l in the range 0 < γ < 1, there is a one-parameter
U (1)-family of self-adjoint Hamiltonians hn

ξ parameterized
by (18) with the domain Dn

ξ

hn
ξ :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dn
ξ =

⎧
⎨

⎩

f (r), f ′(r) are absolutely continuous in (0,∞); f, hn
ξ f ∈L2(0,∞),

f (r)= A[(mr)γ −ξ(mr)−γ ]+O(r), r → 0, −∞<ξ <+∞,

f (r)= A(mr)−γ , r → 0, ξ=∞
hn
ξ f = ȟn f,

(38)

where A is a complex constant. It is obvious that the functions
f (r) are Bessel functions of the order ±γ . Then, calculating
the corresponding Wronskian we obtain

ω(En) = �(1 + γ )

�(1 − γ )

(
2m

λ

)2γ

, (39)

where λ = √−2m En . By analytic continuation of (39) in the
complex plane of En we obtain the function ωξ (En + iε).
Now the Wronskian as a function of the complex En has
a cut (0,∞) in the complex plane of En and the first (sec-
ond) sheet is determined, Re

√−2m En > 0 (Re
√−2m En <

0). Real bound states are situated on the first (physical)
sheet.

It can be verified that in the range En > 0 the functions
ω(En) and ωξ (En) are continuous, complex-valued, and not
equal to zero for real En ; the function σ(En) exists and
is absolutely continuous. Thus, the energy spectrum in this
range is continuous. One can show there also exists a bound
state (with En < 0) in the range of parameters −∞ < ξ < 0)
for 0 < γ < 1 and its energy is determined by

�(1 + γ )

�(1 − γ )

(√−En

2m

)−2γ

= −ξ. (40)

The bound-state energy is the same on the first and sec-
ond sheets; it is given by (compare with formula (90) in
[19])

En = −2m

(
−ξ �(1 − γ )

�(1 + γ )

)−1/γ

. (41)

The wave function of the bound state is N
√

mr Kγ
(
√−2m Enr) where N is a normalization factor. Since signs

of M and a are fixed it is enough to consider only the (attrac-
tive) case Ma < 0 and because of the bound states existing

for γ < 1 we must have Ma < −1. It is seen that there are
bound states with ζ = ±1 for l = 0 and with ζ = 1(−1) for
l = 1(−1). We denote −Ma ≡ c > 0; we rewrite (41) for
these cases as follows:

E0
n =−2m

(
−ξ �(1−c)

�(1+c)

)−1/c

, l =0, 0<c<1, (42)

E±1
n =−2m

(
−ξ �(c)

�(2−c)

)1/(c−1)

, l =±1, 0<c<1.

(43)

It is evident that E0
n(c) = E±1

n (c = 1 − b), 1 > b > 0.
This means that an adiabatic increase of c in the interval (0, 1)
lifts the levels E0

n(c) on the first (physical) sheet and E±1
n (c)

on the second (unphysical) sheet in the opposite direction.
The second sheet is below the first one.

The special case γ = 0 can be of some interest (the anal-
ogous case was considered in [17,44] for the nonrelativis-
tic AB problem in 2+1 dimensions). One can show that for
|ξ | = ∞ the energy spectrum is continuous and nonnegative
and also that for −∞ < ξ < 0 there exists (in addition to
the continuous part of the spectrum) one negative level

E0 = −4me2(ξ−C), (44)

where C = 0.57721 is the Euler constant [46]. The wave
function of the bound state for γ = 0 is N

√
mr K0

(
√−2m E0r).

5 Summary

By constructing a one-parameter self-adjoint extension of the
Dirac Hamiltonian with the AB potential in 2+1 dimensions,
we have studied the bound states of fermions in this back-
ground. It has been shown that for negative values of the
extension parameter ξ , the spectrum of self-adjoint Dirac
Hamiltonians, in addition to its continuous part, has one
bound level. Therefore, the AB vector potential can bind rel-
ativistic charged massive fermions in 2+1 dimensions. The
bound-state energy depends upon the extension parameter
and is a periodical function of the AB magnetic flux. It is
of interest that the AB vector potential can yield localized
spin-polarized charged zero modes.

We also have studied the AC problem in the context of
the nonrelativistic limit of the Dirac–Pauli equation in 3+1
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dimensions. We show that the AC background can bind non-
relativistic neutral massive fermions, we determine the range
of extension parameter in which fermion bound states exist,
and we find their energies as well as wave functions.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
Funded by SCOAP3 / License Version CC BY 4.0.
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