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Abstract In this paper, we consider a system of gravitat-
ing bodies in Kaluza—Klein models with toroidal compacti-
fication of the extra dimensions. To simulate the astrophys-
ical objects (e.g., our Sun and pulsars) with energy density
much greater than the pressure, we assume that these bod-
ies are pressureless in the external space, i.e., the space we
inhabit. At the same time, they may have nonzero parame-
ters wg—3) (@ = 4, ..., D) in the equations of state in the
extra dimensions. We construct the Lagrange function of this
many-body system for any value of ¥ = )5 w@&—3). More-
over, the gravitational tests (PPN parameters, perihelion and
periastron advances) require a negligible deviation from the
latent soliton value ¥ = —(D —3)/2. However, the presence
of pressure/tension in the internal space results necessarily in
the smearing of the gravitating masses over the internal space
and in the absence of KK modes. This looks very unnatural
from the point of view of quantum physics.

1 Introduction

The idea of multidimensionality of our Universe as required
by the theories of unification of the fundamental interactions
is one of the most breathtaking ideas of theoretical physics.
It originates with the pioneering papers by Kaluza and Klein
[1,2], and now the most self-consistent modern theories of
unification, such as superstrings, supergravity and M-theory,
are constructed in spacetimes with extra dimensions (see,
e.g., [3]). Different aspects of the idea of multidimensionality
are intensively used in numerous modern articles.
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Therefore, itis important to find experimental evidence for
the existence of the extra dimensions. For example, one of the
aims of the Large Hadronic Collider consists in detecting of
Kaluza—Klein (KK) particles which correspond to excitations
of the internal spaces (see, e.g., [4]). Such excitations were
investigated in a lot of articles (see, e.g., the classical papers
[5-7]). Quite recently, KK particles were considered, e.g., in
the papers [8,9].

On the other hand, if we can show that the existence of
the extra dimensions is contrary to observations, then these
theories are prohibited.

Much work was done in this direction including the study
of models with toroidal compactification. Obviously, any
gravitational theory modified with respect to general relativ-
ity (GR) can result in some observable deviations from GR.
A number of papers were devoted to the search of such devi-
ations. For example, the nonrelativistic gravitational poten-
tials in these theories can be different from the Newtonian
potentials [10-16]. In principle, this difference can be exper-
imentally observed [17]. The Parameterized Post-Newtonian
(PPN) formalism is a powerful tool for the determination of
gravitational theories consistent with experiments [18,19].

The relation to particle physics is another important point
of KK models. It was shown that multidimensional models
can give a reasonable explanation of the hierarchy problem
[10,11]. Next, it was indicated that such a framework can
be embedded in string theory [20]. On the other hand, the
interaction between KK states and ordinary matter can result
in new observable channels of reactions [10,11,20-24].

In our previous papers [19,25,26] devoted to KK models
with toroidal compactification of the extra dimensions, we
have shown that gravitating masses should have tension in
the internal space to be in agreement with gravitational exper-
iments in the Solar system. For example, black strings/branes
with the parameter @ = —1/2 in the equation of state in the
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internal space satisfy this condition. For this value of w, the
variations of the internal space volume are absent [27]. In the
dust-like case with w = 0, such variations generate a fifth
force, which leads to contradictions with the experimental
data.

It is worth noting that black strings/branes generalize the
known Schwarzschild solution to the multidimensional case
(see, e.g., [28-31] and the corresponding literature therein).
Obviously, any multidimensional theory should have such
solutions, as they must correspond to the observed astrophys-
ical objects. Black strings/branes have toroidal compactifi-
cation of the internal spaces. This compactification type is
the simplest among the possible ones. However, it makes
sense to investigate such models because they may help to
reveal new important properties for more physically reliable
multidimensional models. The ADD model [10] presents a
good example of it. Even if the authors use the localiza-
tion of the Standard model fields on a brane, they explore
the toroidal compactification of the internal space to get the
relation between the multidimensional and four-dimensional
gravitational constants [11]. That gives a possibility to solve
the hierarchy problem and to introduce the notion of large
extra dimensions. We will not use the brane approach for our
model, remaining within the standard Kaluza—Klein theory.
However, even in this case the large extra dimensions can be
achieved for KK models with toroidal compactification [16].

The main purpose of this paper is to construct the Lagrange
function for a many-body system in the case of models
with toroidal compactification. We need such a theory e.g.
to calculate the formula for the advance of the periastron
in the case of a binary system. The measurement of this
advance for the pulsar PSR B1913+16 was performed with
very high accuracy. Therefore, such measurements can be a
very good test for gravitational theories. From our previous
papers [19,25,26] we know that gravitating bodies should
have pressure/tension in the extra dimensions to satisfy the
observable data for the deflection of light and the experimen-
tal restrictions for the PPN parameter y. In this regard, the
question arises of the possibility of building a many-body
Lagrange function in the presence of pressure/tension in the
extra dimensions. To answer this question, we need the met-
ric’s components goo up to 0(1/cY), goa up to O(1/c?) and
gapupto O(1/ ¢?). It is worth noting that for the expressions
of the deflection of light and the PPN parameter v, it is suf-
ficient to calculate the metrics coefficients up to O(1/c?).
Obviously, the agreement with observations up to O (1/c?)
does not guarantee the agreement up to O (1/c*). Hence, we
calculate the metric’s coefficients in the required orders of
1/c. We demonstrate that the many-body Lagrange function
can be constructed for any value of ¥ where ¥ is a sum of the
parameters of the equations of state in the extra dimensions.
We demonstrate that the gravitational tests (PPN parame-
ter y, and perihelion/periastron advance) allow a very small
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deviation from the latent soliton value ¥ = —(D—3)/2 # 0.
We prove that nonzero X leads necessarily to the uniform
smearing of the gravitating masses over the internal space.
However, uniformly smeared gravitating bodies cannot have
excited KK states (KK particles). As we mentioned above,
KK particles were recently considered in the papers [8,9].
Here, the metric and form-field perturbations are studied
without taking into account the reason of such fluctuations.
Our present analysis clearly shows that the inclusion of
the matter sources, being responsible for the perturbations,
imposes strong restrictions on the model, e.g., leading to the
absence of KK particles. Until now, KK particles were not
detected in experiments at LHC. So, itis tempting to interpret
their absence in the light of our paper (i.e. due to the smear-
ing of the gravitating particles over the internal space). How-
ever, the absence of KK particles looks rather unnatural from
the point of quantum mechanics and statistical physics (see
below). Therefore, in our opinion, this is a big disadvantage
of the Kaluza—Klein models with toroidal compactification.

The paper is structured as follows. In Sect. 2, we obtain
the 1/¢%, 1/c® and 1/c¢* correction terms to the metric coef-
ficients for the considered many-body system. In Sect. 3, we
demonstrate that gauge conditions lead to a uniform smear-
ing of the gravitating bodies over the extra dimensions. The
Lagrange function for the many-body system is constructed
in Sect. 4. The formulas for the PPN parameters 8, y and the
perihelion and periastron advances are calculated in Sect. 5.
These formulas allow us to obtain experimental constraints
on the parameters of the model. The main results are sum-
marized in Sect. 6.

2 Metric coefficients in the weak field approximation

To construct the Lagrange function of a system of N massive
bodies in (D + 1)-dimensional spacetime, we define first the
nonrelativistic gravitational field created by this system. To
do so, we need to get the metric coefficients in the weak field
limit. The general form of the multidimensional metric is

, 2
ds> = gikdxldxk = g00 (dxo)

+2goﬂdx0dx“ + guvdxtdx", (1
where we have the Latin indices i,k = 0,1,..., D and
the Greek indices w,v = 1,..., D. We make the natural

assumption that in the case of the absence of matter sources
the spacetime is Minkowski spacetime: ggo = noo = 1,
gop = Now = 0, guv = Nuv = —6,y. In our paper, we
consider in detail the case where the extra dimensions have
the topology of tori. In the presence of matter, the metric is
not the Minkowskian one, and we investigate it in the weak
field limit. It means that the gravitational field is weak and the
velocities of the test bodies are small compared with the speed
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of light c. In the weak field limit the metric is only slightly
perturbed from its flat spacetime value. We will define the
metric (1) up to 1/c? correction terms. Because the coordi-
nate x* = ct, the metric coefficients can be expressed as
follows:

800 ~ 1+ hoo + foo, &opu = hop + fou,
uv X =8y + hyy, )

where hix ~ O(1/c?), foo ~ O(1/c*) and fo, ~ O(1/c?).
In particular, hgg = 2¢/c> where ¢ is the nonrelativistic
gravitational potential. To get these correction terms, we
should solve (in the corresponding orders of 1/c) the multi-
dimensional Einstein equation

28pGp 1
= ( ik — D_lgikT)s 3)

Ry = o

where Sp = 27P/2/T'(D/2) is the total solid angle (the
surface area of the (D — 1)-dimensional sphere of the unit
radius), Gp is the gravitational constant in the (D = D+ 1)-
dimensional spacetime. We consider a system of N discrete
massive (with rest masses mp, p = 1,..., N) bodies. We
suppose that the pressure of these bodies in the external three-
dimensional space is much less than their energy density. This
is a natural approximation for ordinary astrophysical objects
such as our Sun. For example, in GR, this approach works
well for calculating the gravitational experiments in the Solar
system [32]. In the case of pulsars, the pressure is not small
but still much less than the energy density, and the pressure-
less approach was used in GR to get the formula of the perias-
tron advance [33]. Therefore, gravitating bodies are pressure-
less in the external/our space. On the other hand, we suppose
that they may have pressure in the extra dimensions. There-
fore, the nonzero components of the energy-momentum ten-
sor of the system can be written in the following form:

Tikzﬁczuiuk, i,k=0,...,3, “4)
Ti&:ﬁczuiu&, i=0,....3;, a=4,...,D, (5)
7% = —pa-38*’ + pu’uf, @ p=4,....,D, (6)

where the (D + 1)-velocity u' = dx' /ds and

N b 1-12 dx! gxm
Yo [E0Pe] U mpy e oo s =% ()

p=1

F;

where x,, is the D-dimensional radius vector of the pth par-
ticle. In what follows, the Greek indices o, 8 = 1,2, 3;
o, B =4,...,D and u, v still run from 1 to D. In the extra
dimensions we assume that the equations of state are

P@a-3) = ®@a-3pc. ®)

If all parameters w@—3y = 0, then we come back at the
model considered in our paper [19]. Here, massive bodies
have dust-like equations of state in all spatial dimensions. If

all w@g—3) = —1/2 (tension in the extra dimensions), then
these equations of state correspond to black strings (in the
case of one extra dimension, i.e. D = 4) and black branes
(for D > 4) [28-31]. If the parameters satisfy the condition
Y w@E-3 = X = —(D—3)/2, then this case corresponds to

lgtent solitons [26]. Obviously, black strings/branes satisfy
this condition.

Now, we will solve the Einstein equation (3) in the cor-
responding orders of 1/c. Obviously, for wg-3y = 0,@ =
4, ..., D, we should reproduce the results of the paper [19].
Because our calculations generalize the ones in [19], we skip
some evident details.

First, to get the metric correction terms of the order
o(l/ c?), the energy-momentum tensor components (4)—(6)
are approximated as

T ~ Tyg ~ pc?, T ~ Tip ~ 0@-3) pc? Sap>
TO ~ Ty, ~0, T ~ T, ~0,

T =T gy ~ pc*(1 — %), )
where
D
L= a3 (10)
a=4

and we introduced the rest-mass density

N
p(X) = Zmp8(x—xp). (1)

p=l1

Then, from the Einstein equation we get

26(x)
hoo = =5 hou =0, (12)
-3 20(x)
hap = S 13
P D24z 2 (13
L a)((;,_3)(D —D+1-%2 2¢(x) )
hag = D-—2+x 2 Vap (1

where the function ¢(x) satisfies the D-dimensional Poisson
equation,

D—-2+%

AD(p(X) = 2SDGDﬁ

p(X). (15)
We recall that x is the D-dimensional radius vector. It is
worth noting that if wg—3y =0, Va = X =0, then we
reproduce the results of the paper [19]. On the other hand,
if all wg—3) = —1/2, then h&f; = 0, and that should be the
case for black strings/branes [26].

Next, we should obtain the O (1/c*) and O (1/c?) metric
correction terms foo and fo,,, respectively. In this case, the
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energy-momentum components read

T | 93D —44+3% ? 16
et Gy Yaa (10
Toy ~ —pcv’, (17)
Top ~ p0°0P, T35~ pvo? (18)
~ o ] ¢
T&B X pc {w(&_3)3&‘3 |:1 + C_2
D-% -2[wg-3»D—-1)+1-3]
X
D—-2+4+%
v? v¥vh 19
22 + 2 |’ (19)
and the trace
(D-%)(1-%)
T~ pc(1—% A -
pc( )+ Pe—Fp— S
02
+p(X — 1)7- (20)
Then from the Einstein equation we get
2 2 2 ’
foo®) = Z @) + 6—4; p(X = Xp)¢'(xp)
1 D-X
+ 4m2¢p(x X))V, 1)
and
2 I
Jou(x) = —;D_—Mip:(pp(x — Xp) V),
1 82f
—-_——— 22
3 0taxH 22)
where the function f satisfies the following equation:
Apf =¢(x). (23)

3 Gauge conditions and smearing

It should be noted that to calculate the Ricci tensor compo-
nents in the corresponding orders of 1/c, we use the standard
gauge condition (see, e.g., Eq. (105.10) in [32])

1
R (h{?—zhf(sf‘) =0, i,k=0,1,...,D, (24)

where h* = n*"h,,;. Hence,

h) = n%hoo = hoo, B = " hye = —hy. (25)

@ Springer

Therefore,
2¢(x) 1-X 20(x)
hd = , WP =— sh., 26
0 c? o D—-24+4Y% 2 ¢ (26)
] o@-3)(D—1)+1—-% 2¢(x) 3
[ 88 27
o D-2+% 2 ¢ @7
2T — 1) 20(x
h = ( ) 2¢( )’ 28)
D-24+% (2

Let us check that these solutions satisfy the condition (24).
For i = 0, we get immediately

1 1 1
k [ ok 0 l
ak (ho — 5}1180) = 80 (ho — zhl> = 0+ 0 (C—3> .

(29)
For i = B we have
9 hk—lhl(Sk =39 “—lhlaa
k B oITB ) T B IR
1-X 1-X 2a 0. 20
S| TD_21zs T D_2ix |27 (30

that is, the condition is automatically satisfied. Fori = 8 we
obtain

1 S
k_ _ k) _ 4. a _ _plea
Ok (h 2h 8[5) = 0g (hﬂ zhlaﬂ)

BT =0, (31
D—2+% 2 Gh

In order to satisfy this condition, we should demand either
WG_z) = 0 or 85<p = 0. Because we consider the general
case w(5_3) # 0, we must choose the latter condition. More-
over, the gravitational tests require nonzero W(3_3) (see Sect.
5). Therefore, the presence of nonzero pressure/tension in the
extra dimensions results in metric coefficients which do not
depend on the coordinates of the internal space, i.e. the grav-
itating masses should be uniformly smeared over the extra
dimensions. In this case, the rest-mass density (11) should
be rewritten in the form p(x) — p(r) = ) pm PO —
r,)/ [ 1z a@—3), where r, is the three-dimensional radius
vector of the pth particle in the external space, a@g—3) are
the periods of the tori (i.e. I—[& a(g—3) is the volume of the
internal space). Then Eq. (15) is reduced to the ordinary
three-dimensional Poisson equation

Asp(r) = 4Gy Y myp8(r —r)) (32)
p

with the solution

o) = — Z Gump

—rp|

Z op(r — (33)
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where Gy is the Newtonian gravitational constant:

4Gy — 2Sp(D —2+X) ép. (34)
(D -DJ[lzaa-3
Hereafter, r, r,, are radius vectors in three-dimensional exter-
nal space.
In the case of the smearing, Eq. (23) has the following
solution:

Gy
—szp|r—r,,|, (35)
p

fr) =

where we used the well-known equation Azr = 2/r in the
three-dimensional flat space. Because

d [dr —rp] 0 x“—xg 1
ar\ ax T\ r—r,)  r—r,?

o

« XD SO GB By (o
X —vp|r—rp|—|r_—rp|;(x —xp)(—vp) ,

(36)

we get for foy:

an =

Gy mp <3D—2—Z

D=3+ T vz —l—ng(npvp)) ,

(37)

2¢3 > It —r,

where we introduce the three-dimensional unit vector in the
direction from the pth particle to a point with the radius
vector r:
x% — Xy
ny = ——, (38)
P Ir —rp]
and (npvp) = 3 4 npvp
It should be noted that, to get the formula (22), we used
the following gauge condition:

art  1anl
O L0 (39)

where fé‘ = %" for = — Sfou- In the case of smearing, this
condition is reduced to

B iz
a 1 0h
ﬁ _ (40)
axP 2 9x0
where we recall that o, 8 = 1,2,3 and u,v = 1,..., D.
Taking into account the following auxiliary equations:
B
ad 1 n'p
= — , 41
axPir —rp| Ir —rp? @1
ad n,v n,v
X o () = et @)
5 ax Ir —rp] [r — 1
d 1 n,v,)
_ B (43)
alr—r,l |r—r,l?

we can easily see that the condition (40) is satisfied:

aff 1 onl
axP 2 ax0
Gy |3D-2—-% (m,vy) (n,vy)
_263{1) 2+):Z Ple—r,? Z ”|r—r|2
2D -73)

(npvy)
—2+EZ p|r_prp|2}_o (44)

Because the presence of pressure/tension in the extra dimen-
sions requires the uniform smearing of the gravitating masses
over the internal space, we provide the metric coefficients in
this case:

2 2¢?
o~ 1t w(r) <p4(r)
C
ZGN m Z my
4 Ir —r, Ir, — 1yl
p q#p
2
D-% G mpv
_ N L (45)
D-2+% ¢* Ir—rpl
3D—-2—-X Gy
8= oy 2C3Z|I‘—l‘p| P
Gy my
263 2ajr—r, P @) (46)
1—% 20(r)
A1+ — T ) 47
gaﬂ < + D—2+2 Cz C{ﬂa ( )
wG-3)(D—1)+1-% 2¢(r)

where the potential ¢(r) is given by (33).

Therefore we have shown, in this section, that, to be com-
patible with the gravitational tests, the gravitating masses
should be uniformly smeared over the internal space. This
conclusion has the following important effect. Suppose that
we have solved for the considered particle the multidimen-
sional quantum Schrodinger equation and found its wave
function W (x). In general, this function depends on all spa-
tial coordinates x = (r,y), where y are the coordinates in
the internal space, and we can expand it in appropriate eigen-
functions of the compact internal space, i.e. in the Kaluza—
Klein modes. The ground state corresponds to the absence
of these particles. In this state the wave function may depend
only on the coordinates r of the external space. The classical
rest-mass density is proportional to the probability density
|W|2. Therefore, the requirement that the rest-mass density
depends only on the coordinates of the external space means
that the particle can be only in the ground quantum state, and
KK excitations are absent. This looks very unnatural from
the point of view of quantum and statistical physics, because
a nonzero temperature must result in excitations.

@ Springer
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4 Lagrange function for a many-body system

Let us construct now the Lagrange function of the many-
body system described above. To perform it, we will follow
the procedure described in [32] (see §106). The Lagrange
function of a particle p with mass m, in the gravitational
field created by the other bodies is given by the expression

L dsp
= —mpC——
p p dt
w wov\ 1/2
_ 2 Up UpVp
= (s +2 D0 % Do BE)

(49)

where the metric coefficients are taken at r = r,. We should
keep in mind that in the case of smeared gravitating masses
(smeared over the extra dimensions), the components of the
velocity in the extra dimensions are equal to zero: v}, =

v;‘j, vg) = (vg, 0). It is convenient to rewrite the metric
coefficients (45)—(47) in the following form:

I 4 1 1
2 yO(O) += e V(g())’ 80a ~ C_37’00u

1
8ap ~ <_1 + C_z)/(ot)> 804/3 s

where the meaning of the functions y is evident. Then, we
get

dsp 1
~ (1) 2
W ~ C !1 + 2 I:VOO UP:I

1 2
+2 I yéo)+22y0av +Zy(a)5a,3vpv£
ap

1 2
(D 2
T 8ct [VOO N UP] } ) (50)

Substituting the explicit form of the metric coefficients
(45)—(47), we obtain

goo ~ 14+ —

2 4
mpv mpv
P P

P P

mpm
prts
+ Gy
2 8c2 ;\r—rﬂ
mpymgm
pmsimg
202 szlr—ryﬂr—r |
2 Mpmsitg
_fG __Tp7sTg
2 N;ZSIr—ryHrs—rql

1
[ (D, £)v242 (b(D, >:)+2) vf,

— (D, X)(vgvp) — (nsVs)(nsz)i| . (51

Ly = —mpc2+
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Here, we use the following abbreviations:

D—-X 1-%
OB =p oy Y=gy
3D—-2-%

We recall that in the expression (51) r = r), and all infinite
terms should be cast out. For our purposes, it is sufficient to
consider the case of two particles. Then, for particle ‘1°, we
have the following expression:

2
mimy 1 , mim;
Li=f(v))+ G - —Gy—=—=
! o) Mr—r 22 Nir—mp?
1 2 m1m2

2N — ey — 1o
2 1 2
a(D, 2)vi+2 [ b(D, )45 v

1 Gymimy
2¢% |r—r;|

— (D, X)(viva) — (nsz)(nle):| , (53)

where f(vl) =m v2/2 + my v4/(8c2) and we drop the term
—mj C2 .

The total Lagrange function of the two-body system
should be constructed so that it leads to the correct values
of the forces 0L,/ 8r|r=r acting on each of the bodies for
a given motion of the others [32]. To achieve it, we first will
differentiate L with respect to r, setting r = r afterwards.
Then we should integrate this expression with respect to ry.
Following this prescription and taking into account the useful
auxiliary relation

0 1 Gy mimy 8 1
c2 Ir; — 1| dr|r — o]

1
——G3mim -
( 2¢2 TN Gy T2

1
=52 Glemz(ml-i-mz)

1
_ 54
ary [rp — a2’ o
we obtain from (53) the two-body Lagrange function

2
Gymimy Glemz(m1 +my)

2 -
L? =T} v3) + p >
12 2c r12

Gymima

2 2
o [a(D. 2)u3 + Q6(D, ) + 1) ]

— (D, D)(1V2) = (v va) | (55)

where (v}, v3) = Y2 mav2/2 4+ Y2 mav?/(8c?) and
ri2 = |rp — rp|. It can be easily seen that dL;/0r|,—,, =
8L(12) /0r;. In the same way we can construct the two-body

Lagrange function L;z) from the Lagrange function L, for
particle 2’:
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. Gymimy  Gmyma(my + m»)
LY =F(v3.v2) + o

r2 2c2r122
Gymima 2 )
SN [a(D, )07 + 26(D, T) + 1) 02
2¢2r12
— (D, D)(Miv2) — v @ava) | (56)

It is worth noting that both LEZ) and Lg) are reduced to
the Lagrange function of the two-body system in [32] if we
assume that D =3, ¥ = 0.

Obviously, the Lagrange functions L§2) and ng) should
be symmetric with respect to permutations of particles 1 and
2 and should coincide with each other. This requires the fol-
lowing condition:

a(D, X)) =2b(D, X))+ 1, (57)

which is satisfied identically for any value of X. Therefore,
we construct the two-body Lagrange function for any value
of the parameters of the equation of state in the extra dimen-
sions.

5 Gravitational tests

It can easily be seen that the components of the metric in
the external/our space (45)—(47) as well as the two-body
Lagrange functions (55) and (56) exactly coincide with the
corresponding expressions in General Relativity for the value
Y= Z& w@-3) = —(D — 3)/2, i.e. the latent soliton case
[26]. Black strings and black branes are particular cases of
it. Therefore, the known gravitational tests in this case give
the same results as for GR. In other words, we get good
agreement with observations. It is interesting to obtain an
experimental restriction on deviation from this value. For
this purpose, we write ¥ in the following form:
D -3

z:—TJre (58)

and find the experimental limitations on €.

PPN parameters

To get the parameterized post-Newtonian parameters
(PPN) g and y, we consider the case of one particle at rest.
Then we can easily obtain from Eqs. (45) and (47)

R >
- D-2+7%’
i.e. the PPN parameter 8 exactly coincides with the value in
the GR. There are strong experimental restrictions on the
value of y. The tightest constraint on y comes from the
Shapiro time-delay experiment using the Cassini spacecraft,
namely y — 1 = (2.1 +2.3) x 107 [33-35]. In our case
4e
D—1

p=1 v (59)

y—l=-

(60)

Therefore, the Shapiro time-delay experiment results in the
following limitation:

le] < x 107, ©61)

Perihelion shift of Mercury
For a test body orbiting around the gravitating mass m,

the perihelion shift for one period is given by the formula
[33,36]

5 _1(2+2 s 6 Gym
¢—3 v-F c2a(l — €2)
1
= - (2+2y — B) YGr, (62)

3

with a and e being the semi-major axis and the eccentricity of
the ellipse, respectively. §1/gr is the value for GR. In the case
of Mercury this calculated value is equal to 42.98 arcsec per
century [33,37]. This predicted relativistic advance agrees
with the observations to about 0.1% [33]. Substituting the
PPN parameters (59) in this formula, we obtain the advance
in our case:

1 D-%

S =
V=3Dp25 %

SYGR & (1 5) SYGR-

(63)

S 3(D—1)

Obviously, to be in agreement with the observation in a way
not worse than GR, the parameter ¢ should satisfy the con-
dition

3(D—-1)

le] < x 1073, (64)

Therefore, this limitation is less strong than (61).

Periastron shift of the relativistic binary pulsar PSR
B1913+16

A much stronger limitation can be found from the mea-
surement of the periastron shift of the relativistic binary pul-
sar. First, the advance of periastron in these systems is many
orders of magnitude bigger than for the Mercury. Second,
the measurements are extremely accurate. For example, for
the pulsar PSR B1913+16 the shift is 4.226598 4 0.000005
degree per year [38]. For such systems the pulsar and com-
panion have comparable masses. In the case of GR, the solu-
tion for the orbital parameters yields mass estimates for the
pulsar and its companion, m; = 1.4398 &£ 0.0002M and
my = 1.3886 + 0.0002 M, respectively. It is worth noting
that these are calculated values (not observable!) which are
valid for GR. Because two bodies have comparable masses
(and one of them cannot be considered as a test body), to get
a formula for the advance we need a two-body Lagrangian.
Then, following problem 3 in §106 [32] we get for our two-
body Lagrangians (55) and (56) the desired formula in the
form of (63) with the well-known GR expression

67 Gy (my + mo)

) =
vor cZa(l — €2)

(65)
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In future, independent measurements of masses m and m
will allow us to obtain a restriction of high accuracy on the
parameter .

6 Summary

In this paper, we have constructed the Lagrange function for
a two-body system in the case of Kaluza—Klein models with
toroidal compactification of the extra dimensions. The case
of more than two bodies is straightforward. We supposed that
gravitating bodies are pressureless in the external space. This
is a natural approximation for ordinary astrophysical objects
such as the Sun. For example, this approach works well for
calculating the gravitational experiments in the Solar system
[32]. In the case of pulsars, the pressure is not small but still
much less than the energy density. Hence, the pressureless
approach is used in General Relativity to get the formula (65)
which is in very good agreement with the observations of the
advance of the periastron of the pulsar PSR B1913+16.

With respect to the internal space, we supposed that grav-
itating masses may have nonzero parameters wg—3) (@ =
4, ..., D) of the equations of state in the extra dimensions.
We have shown that the Lagrange function of this many-body
system can be constructed for any value of the parameter
=) 50@a-3)-

To construct the many-body Lagrangian, as well as to get
the formulas for the gravitational tests, we obtained the met-
ric’s components goo up to 0(1/64), 8goa Up to 0(1/c3),
and gog up to O(1/ c?). These expressions exactly coin-
cide with the corresponding formulas in GR for the value

Y =) ;wa-3 = —(D —3)/2. This is the latent soli-
ton case [26]. Black strings/branes are particular cases of
it with all wg—3y = —1/2Va. Obviously, the known grav-

itational tests (PPN parameters, perihelion/periastron shift)
in this case give the same results as for GR. On the other
hand, we used these tests to get the restrictions on the devi-
ation from the latent soliton value. At present, the strongest
restriction follows from the time delay of radar echoes (the
Cassini spacecraft mission). The two-body Lagrange func-
tion allowed us to get the formula for the advance of the
periastron. In future, when the masses of the binary pulsar
system PSR B1913+16 will be measured (rather than calcu-
lated using the formula of GR), the advance of this periastron
can be used to get the restriction with very high accuracy. All
obtained limitations indicate a very small deviation from the
latent soliton value. Therefore, the pressureless case ¥ = 0
in the internal space is forbidden, in full agreement with the
results of the paper [19]. This conclusion does not depend
on the size of the extra dimensions. The physical reason of
it is that in the case of toroidal compactification, only in the
case of latent solitons the variations of the total volume of
the internal space are absent [27].

@ Springer

One more important result obtained in this paper is worth
noting. As we have shown above [25-27], the tension in the
internal spaces is the necessary condition to satisfy the grav-
itational experiments in KK models with toroidal compact-
ification. In our paper, we have proven that the presence of
pressure/tension in the internal space necessarily leads to the
uniform smearing of the gravitating masses over the inter-
nal space. For example, black strings/branes have tension in
the internal space (see, e.g., [39]). Therefore, they should
be smeared. However, uniformly smeared gravitating bodies
cannot have excited KK states (KK particles), which looks
unnatural from the point of view of quantum mechanics and
statistical physics. In our opinion, this is a big disadvantage
of the Kaluza—Klein models with toroidal compactification.
It is of interest to check this property for models with other
types of compactification (e.g. Ricci-flat, spherical). This is
the subject of our subsequent study.
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