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Abstract We study the physical implications of the dou-
bling of the algebra, an essential element in the construc-
tion of the noncommutative spectral geometry model, pro-
posed by Connes and his collaborators as offering a geo-
metric explanation for the standard model of the strong and
electroweak interactions. Linking the algebra doubling to the
deformed Hopf algebra, we build Bogoliubov transforma-
tions and show the emergence of neutrino mixing.

1 Introduction

Approaching the Planck energy scale one expects that the
notion of a continuous geometrical space ceases to be valid.
At such high energy scales the simple hypothesis that physics
can be described by the sum of the Einstein–Hilbert action
and the standard model (SM) action can no longer be valid.
The noncommutative spectral geometry (NCSG) model [1,2]
treats the SM as a low-energy phenomenological model
which, however, dictates the geometry of spacetime at high
energy scales. Hence, the aim of NCSG is to reveal the small-
scale structure of spacetime from our knowledge of experi-
mental particle physics at the electroweak scale. Following
this approach, to construct a quantum theory of gravity cou-
pled to matter we will consider the gravity–matter interaction
to incorporate the most crucial aspect of the dynamics.

At very high energy scales quantum gravity could imply
that spacetime is a strongly noncommutative manifold. For
energies a few orders of magnitude below the Planck scale,
however, it is conceivable that one consider that the algebra
of the coordinates can be given by a slightly noncommuta-
tive algebra [1–3] which, if appropriately chosen, can lead
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to the SM coupled to gravity [4–6]. This slightly noncom-
mutative manifold has been chosen to be the tensor product
of an internal (zero-dimensional) Kaluza–Klein (discrete)
space and a continuous (four-dimensional) spacetime. Thus,
the geometry close to but below the Planck scale is defined
by the product M×F of a continuum compact Riemannian
manifold M (for the spacetime) and a discrete finite non-
commutative space F (for the SM) composed by only two
points; such a geometry is called almost commutative.

This choice of the doubling of the algebra, which can
be interpreted as considering a geometric space formed by
two copies (branes) of a four-dimensional manifold, has deep
physical implications. As pointed out in Ref. [7], the doubling
of the algebra is required to accommodate gauge symmetries,
which are necessary to describe the SM, while the doubling of
the algebra is also related to dissipation, hence to information
loss, thus containing the seeds of quantization.

The purpose of this paper is to show that the doubling
of the algebra is also the main element to explain neutrino
mixing. Hence, our main motivation is to provide a physical
meaning to the mathematical construction of NCSG, a model
constructed to give a purely geometric explanation of the SM.
The issue of neutrino mixing is particularly important, since
it opens interesting perspectives on the physics beyond the
SM. Many experimental efforts are thus being made (see for
example: http://www.hep.anl.gov/ndk/hypertext/), and the
quantum field theory for neutrino mixing (and, in general,
for particle mixing) has been formulated [8–18], providing
the framework for various studies, also in conjunction with
dark energy and dark matter scenarios [19–24].

In what follows, we first give in Sect. 2 a brief presentation
of the NCSG elements that we will then use. We summarize
in Sect. 3 how neutrinos appear within this construction. In
Sect. 4 we relate the algebra doubling, which is a crucial
element of the NCSG model, to the Hopf noncommutative
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algebra and Bogoliubov transformations. In Sect. 5 we show
how the doubling of the algebra implies neutrino mixing. We
then close with our conclusions in Sect. 6.

2 Elements of NCSG

Noncommutative spectral geometry, as an approach to unifi-
cation, is based on three ansatzes, which we state now:

• At some energy level, close to but below the Planck
scale, geometry is described by the product of a four-
dimensional smooth compact Riemannian manifold, M,
with a fixed spin structure, by a discrete noncommutative
space, F , composed by only two points.
The noncommutativity of F can be expressed by a real
spectral triple (AF ,HF , DF ), where AF is an involu-
tion of operators on the finite-dimensional Hilbert space
HF of Euclidean fermions, and DF is a self-adjoint
unbounded operator in HF . The algebra AF contains all
information usually carried by the metric. The axioms of
the spectral triples imply that the Dirac operator of the
internal space, DF , is the fermionic mass matrix. The
Dirac operator is the inverse of the Euclidean propagator
of fermions. The spectral geometry for M × F is thus
given by

A = C∞(M)⊗ AF = C∞(M,AF ),
H = L2(M, S)⊗ HF = L2(M, S ⊗ HF )
D = DM ⊗ 1 + γ5 ⊗ DF ,

where C∞(M, C) is the algebra of smooth complex-
valued functions on M; L2(M, S) is the space of square
integrable Dirac spinors over M; DM is the Dirac oper-
ator ∂/M = √−1γ μ∇s

μ on M; and γ5 is the chirality
operator in the four-dimensional case.

• The finite-dimensional algebra AF , which is the main
input, is chosen to be [25]

AF = Ma(H)⊕ Mk(C), (1)

with k = 2a and H being the algebra of quaternions. This
choice was made due to the three following reasons:
(1) the model should account for massive neutrinos and
neutrino oscillations, so it cannot be a left–right symmet-
ric model, like for instance C ⊕ HL ⊕ HR ⊕ M3(H); (2)
noncommutative geometry imposes constraints on alge-
bras of operators in the Hilbert space; and (3) one should
avoid fermion doubling.
The first possible value for the even number k is 2, cor-
responding to a Hilbert space of four fermions, but this
choice is ruled out by the existence of quarks. The next
possible value is k = 4, leading to the correct number of
k2 = 16 fermions in each of the three generations. This

is the most economical choice [26] that can account for
the SM.

• The action functional is dictated by the spectral action
principle, which affirms that the bosonic part of the action
functional depends only on the spectrum of the Dirac
operator D and which is of the form

Tr

(
f

(D
�

))
, (2)

where f is a positive even function of the real variable; it
falls to zero for large values of its argument. The param-
eter� fixes the energy scale. Thus, the action functional
sums up eigenvalues of the Dirac operator which are
smaller than the cutoff scale�. Since the bosonic action
only depends on the spectrum of the line element, i.e. the
inverse of the Dirac operator, the operator D contains all
information as regards the bosonic part of the action.

The trace, Eq. (2), is then evaluated with heat kernel tech-
niques and is given in terms of geometrical Seeley–deWitt
coefficients an . Since f is a cutoff function, its Taylor expan-
sion at zero vanishes. Therefore, its asymptotic expansion
depends only on the three momenta f0, f2, and f4, which
are related to the coupling constant at unification, the gravita-
tional constant, and the cosmological constant, respectively.
In this sense, the choice of the test function f plays only a
limited rôle. Hence,

Tr

(
f

(D
�

))
∼ 2�4 f4a0 + 2�2 f2a2 + f0a4, (3)

where

fk =
∞∫

0

f (u)uk−1du.

The gravitational Einstein action is thus obtained by the
expansion of the action functional.

The coupling with fermions is obtained by adding to the
trace, Eq. (2), the term

Tr
1

2
〈Jψ,Dψ〉, (4)

where J is the real structure on the spectral triple and ψ is
an element in the space HF .

In the presence of gauge fields A, there is a modification
in the metric (within noncommutative geometry, one does
not focus on gμν but on the Dirac operator instead), leading
to inner fluctuations of the metric,

D → DA = D + A + ε′ J AJ−1, (5)

where A is a self-adjoint operator of the form

A =
∑

j

a j
[
D, b j

]
, a j , b j ∈ A,
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J is an antilinear isometry, and ε′ ∈ {−1, 1}. Applying the
action principle to DA one obtains the combined Einstein–
Yang–Mills action. Thus, the fermions of the SM provide the
Hilbert space of a spectral triple for a suitable algebra, while
the bosons arise as inner fluctuations of the corresponding
Dirac operator.

In conclusion, the full Lagrangian of the SM, minimally
coupled to gravity, is obtained as the asymptotic expansion
(in inverse powers of�) of the spectral action for the product
geometry M × F . This geometric model can explain the
SM phenomenology [4,6,26,27]. Moreover, since this model
lives by construction at very high energies, it can provide a
natural framework to address early-universe cosmological
issues [28–36].

3 Neutrinos within the NCSG model

In the context on NCSG, neutrinos appear naturally as Majo-
rana spinors (so that neutrinos are their own antiparticles),
for which the mass terms in the Lagrangian can be written as

1

2

∑
λκ

ψ̄λLSλκ ψ̂κR + 1

2

∑
λκ

ψ̄λLSλκψ̂κR,

where the subscripts L,R stand for left-handed and right-
handed states, respectively. The off-diagonal parts of the
symmetric matrix Sλκ are the Dirac mass terms, while the
diagonal ones are the Majorana mass terms.

Within NCSG, one can show [2] the existence of a Dirac
operator DF for the algebra

AF = {(λ, qL, λ,m)|λ ∈ C, qL ∈ H,m ∈ M3(C)}
∼ C ⊕ H ⊕ M3(C),

with off-diagonal terms. In particular, one can show [2] that
there exist 3 × 3 matrices (3 for the number of generations)
ϒe, ϒν,ϒd , ϒu and a symmetric 3 × 3 matrix (3 for the
number of generations) ϒR, such that DF is of the form

DF (ϒ) =
(

S T �

T S

)
. (6)

S is a linear map

S = Sl ⊕ (Sq ⊗ 13),

with 13 the identity 3 × 3 matrix and

Sl =

⎛
⎜⎜⎝

0 0 ϒ�ν 0
0 0 0 ϒ�e
ϒν 0 0 0
0 ϒe 0 0

⎞
⎟⎟⎠, Sq =

⎛
⎜⎜⎝

0 0 ϒ�u 0
0 0 0 ϒ�d
ϒu 0 0 0
0 ϒd 0 0

⎞
⎟⎟⎠;

the subscripts q and l stand for quarks and leptons, respec-
tively. The � denotes adjoints and S̄ = S̄l ⊕ (13 ⊗ S̄q) act on
H f̄ by the complex conjugate matrices; we have splitted HF

according to HF = H f ⊕ H f̄ . Finally, T a is linear map, so
that T (νR) = ϒRν̄R.

The presence of the symmetric matrix ϒR in the Dirac
operator of the finite geometry F accounts for the Majo-
rana mass terms, whileϒν is the neutrino Dirac mass matrix.
Hence, the restriction of DF (ϒ) to the subspace of HF with
the (νR, νL, ν̄R, ν̄L) basis can be written as a matrix [2]:

⎛
⎜⎜⎝

0 M�
ν M�

R 0
Mν 0 0 0
MR 0 0 M̄�

ν

0 0 M̄ν 0

⎞
⎟⎟⎠, (7)

where Mν = (2M/g)Kν with

2M =
[

Tr(ϒ�νϒν + ϒ�eϒe + 3(ϒ�uϒu +ϒ�dϒd)

2

]1/2

, (8)

Kν is the neutrino Dirac mass matrix and MR the Majorana
mass matrix.

The equations of motion of the spectral action imply that
the largest eigenvalue of MR is of the order of the unification
scale. The Dirac mass Mν turns out to be of the order of the
Fermi energy, and thus it is much smaller. In conclusion, by
the way the NCSG model has been built, it can account for
neutrino mixing and the seesaw mechanism.

In the next section we will discuss the links between the
NCSG doubling of the algebra and the deformed Hopf alge-
bra and we will show how to obtain the Bogoliubov transfor-
mations from linear combinations of deformed coproducts
in the Hopf algebra. The neutrino mixing in the context of
NCSG will then be discussed in Sect. 5. Mixing will appear
to be implied by the doubling of the algebra which is the
core of the Connes construction. The neutrino mixing thus
appears to be a manifestation of the spectral geometry nature
of the construction.

4 Algebra doubling, Hopf noncommutative algebra,
and Bogoliubov transformations

Let us consider [2] the finite geometry F described by

F = (AF ,HF , DF , JF , γF ),

where JF is an antilinear isometry and γF is the Z/2-grading
on MF . The pair (JF , γF ) satisfies

J 2
F = 1, JFγF = −γF JF .

Then consider the product of the finite noncommutative
geometry F , with the spectral triple associated with the com-
mutative geometry of a compact four-dimensional Rieman-
nian spin manifold of spacetime M. Note that for a com-
pact spin four-manifold M, the associated spectral triple is
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(C∞(M), L2(M, S), ∂/M). The product geometry M × F
is the real spectral triple [2] (see also Sect. 2)

(A,H,D, J, γ ) = (C∞(M), L2(M, S), ∂/M, JM, γ5)

⊗ (AF ,HF , DF , JF , γF )

defined as

(A,H,D, J, γ ) = (A1,H1,D1, J1, γ1)

⊗ (A2,H2,D2, J2, γ2) (9)

with

A = A1 ⊗ A2, H = H1 ⊗ H2,

D = D1 ⊗ 1 + γ1 ⊗ D2,

γ = γ1 ⊗ γ2, J = J1 ⊗ J2,

(10)

and

J 2 = −1, [J,D] = 0,
[
J1, γ1

] = 0, {J, γ } = 0, (11)

where square and curl brackets denote commutators and anti-
commutators, respectively. Note that the resulting geometry
(A,H, D, J, γ ) is of KO-dimension 10 = 2 modulo 8. The
difference between the two algebras A1 and A2 is that in
one the multiplication is made ‘row by column’, while in the
other one multiplication is made ‘column by row’. These two
algebras are related through the conjugation operator [2].

The doubling map, given in Eq. (9), which is the main
element of Connes’ NCSG, is intimately related to the non-
commutative Hopf algebra characterized by the deformed
coproduct map. This can be seen by introducing the (stan-
dard) notation

a ⊗ 1 ≡ a1, 1 ⊗ a ≡ a2,

with

{ai , a j } = 0 = {ai , a†
j }, i �= j, i, j = 1, 2,

and observing that the prescription to work in the NCSG
two-mode space H = H1 ⊗ H2 is provided by the Hopf
noncommutative coproduct operators given by [37]

�aq = aq ⊗ q H + q−H ⊗ aq ,

�a†
q = a†

q ⊗ q H + q−H ⊗ a†
q ,

�H = H ⊗ 1 + 1 ⊗ H,

�N = N ⊗ 1 + 1 ⊗ N .

(12)

The noncommutative Hopf algebra is thus embedded in
Connes’ construction. Note that noncommutativity is guar-
anteed by the so-called ‘deformation’ parameter q. The H
and N are operators of the algebra (see below). In Eq. (12),
we have also used the notation of the q-deformed hq(1 | 1)
fermionic Hopf algebra for the operators aq and a†

q . We
indeed recall that the algebra h(1 | 1) is generated by the
set of operators {a, a†, H, N } with

{a, a†} = 2H, [N , a] = −a,
[

N , a†
]

= a†, (13)

and [H, ·] = 0, with H a central operator, constant in each
representation. The deformed algebra Hopf algebra hq(1 | 1)
embedded in Connes’ construction is defined by

{aq , a†
q}= [2H ]q ,

[
N , aq

]=−aq ,
[

N , a†
q

]
=a†

q , (14)

where [H, ·] = 0, with Nq ≡ N and Hq ≡ H , while [x]q is
defined by

[x]q = qx − q−x

q − q−1 . (15)

The Casimir operator Cq is given by Cq = N [2H ]q − a†
qaq .

In the fundamental representation we have H = 1/2 and
the Casimir operator is thus zero, Cq = 0. Note that the q-

deformed coproduct definition is such that
[
�aq ,�a†

q

]
=

[2�H ]q , etc., namely the q-coproduct algebra is isomorphic

with the one defined by Eq. (14). Requiring a, a† and aq , a†
q

to be adjoint operators implies that q can only be of mod-
ulus 1; hence q ∼ ei
. In the fundamental representation
h(1 | 1) and hq(1 | 1) coincide, as happens in the spin 1/2
representation; the differences appear only at the level of the
corresponding coproducts (and in the higher spin represen-
tations). Also note that for consistency with the coproduct
isomorphism, the Hermitian conjugation of the coproduct
must be supplemented by the inversion of the two spaces H1

and H2 in the two-mode space H.
In conclusion, we have seen that the noncommutative (q-

deformed) Hopf algebra is embedded in the NCSG construc-
tion whose central ingredient is the doubling map A →
A1 ⊗ A2.

We are now ready to show that the q-deformed coproduct
turns out to be related to the Bogoliubov transformations, a
key ingredient in the neutrino mixing formalism (see Sect. 5).
By resorting to the result of Ref. [37], let us define the oper-
ators Aq and Bq , as

Aq ≡ �aq√
[2]q

= 1√
[2]q

(ei
a1 + e−i
a2),

Bq ≡ 1

i
√

[2]q

δ

δ

�aq = 1√

[2]q
(ei
a1 − e−i
a2),

(16)

obtained from Eq. (12) with q = q(
) ≡ ei2
. The anti-
commutation relations read

{Aq , A†
q} = 1, {Bq , B†

q } = 1,

{Aq , Bq} = 0, {Aq , B†
q } = tan 2
.

(17)

Let us then construct the operators

a(
) = 1√
2
(A(
)+ B(
)),

ã(
) = 1√
2
(A(
)− B(
)),

(18)
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where

A(
) ≡
√

[2]q

2
√

2

[
Aq(
) + Aq(−
) + A†

q(
) − A†
q(−
)

]
,

B(
) ≡
√

[2]q

2
√

2

[
Bq(
)+Bq(−
)−B†

q(
)+B†
q(−
)

]
.

(19)

Hence,

a(
) = U (
) a1 − i V (
) a†
2,

ã(
) = U (
) a2 + i V (
) a†
1,

(20)

with

{a(
), ã(
)} = 0,

and

U 2(
)+ V 2(
) = 1, U (
) = cos
, V (
) = sin
.

The only nonzero anticommutation relations are

{a(
), a†(
)} = 1, {ã(
), ã†(
)} = 1. (21)

Equation (20) is the Bogoliubov transformation of the
pair of creation and annihilation operators (a1, a2) into
(a(
), ã(
)). Equations (18)–(20) show that the
Bogoliubov-transformed operators, a(
) and ã(
), are lin-
ear combinations of the coproduct operators defined in terms
of the deformation parameter q(
) and their 
-derivatives.
Notice in Eq. (20) the antilinearity of the tilde conjugation
cO → c∗Õ, which reminds us of the antilinearity of the J
isometry introduced in Sect. 2.1

It is worth noting that, besides our discussion of neu-
trino mixing, Bogoliubov transformations are also relevant
for quantum aspects of the theory. Indeed, they are known
to describe the transition among unitarily inequivalent rep-
resentations of the canonical (anti)commutation relations in
quantum field theory (QFT) at finite temperature and are,
therefore, a key tool in the description of the non-equilibrium
dynamics of symmetry-breaking phase transitions [38–41].
Here we have shown that Bogoliubov transformations are
encoded in the very same structure of the algebra doubling
of the Connes construction. This links the NCSG construc-
tion with the non-equilibrium dynamics of the early universe
as well as with elementary particle physics.

In the next section we show that the noncommutative Hopf
algebra embedded in the NCSG construction rules the neu-
trino mixing phenomenon which is thus ‘implied’ by the
same construction.

1 For more details on this and other features of the q-deformed Hopf
algebra and the Bogoliubov transformation, we refer the reader to
Refs. [37,38].

5 Neutrino mixing

Our aim here is to show how Bogoliubov transformations,
and thus the noncommutative Hopf algebraic structure which
has been shown above to be embedded in the NCSG construc-
tion, may explain neutrino mixing. Hence, neutrino mixing
can find its natural setting in the NGSG construction. Our
discussion is based on the quantum field theory algebraic
structure and is, therefore, of general character, regardless of
the number of Euclidean dimensions. Thus, our result applies
to Dirac neutrinos [10–17] as well as to Majorana neutri-
nos [18], and in principle to other cases of particle mixing
(such as meson mixing and quark mixing), too [42]. For con-
creteness, we refer below to Majorana neutrinos [18].

In the context of NCSG, neutrinos appear naturally as
Majorana spinors (neutrinos are their own antiparticles).
Connes and his collaborators have derived their model after a
Wick rotation to Euclidean signature [2]. Since, unlike Dirac
spinors, Majorana spinors do not have a Euclidean version,
one may think that there is a problem in the context of NCSG
model for massive neutrinos. However, as discussed in detail
in Ref. [2], one can use a formalism based on the Pfaffian and
Grassmann variables to obtain a substitute for the formalism
of Majorana spinors in the Euclidean setup.

Let us introduce the Lagrangian

L(x) = ψ̄m(x)(i∂/− Md)ψm(x)

= ψ̄ f (x)(i∂/− M)ψ f (x), (22)

where we use the notation x ≡ (x, t), while ψT
m = (ν1, ν2)

denotes the neutrino fields with nonvanishing masses m1 and
m2, respectively, and ψT

f = (νe, νμ) stands for the flavor
neutrino fields. We denote Md = diag(m1,m2) and

M =
(

me meμ

meμ mμ

)
,

the mass matrices. For simplicity, we consider only two
neutrinos; extension to three neutrino fields can easily be
done [8,9]. The mixing transformations connecting the fla-
vor fields ψ f to the fields ψm are

νe(x) = ν1(x) cos θ + ν2(x) sin θ,

νμ(x) = −ν1(x) sin θ + ν2(x) cos θ.
(23)

The field quantization setting is the standard one; the ψm

fields are free fields in the Lehmann–Symanzik–
Zimmermann (LSZ) formalism of QFT and their explicit
expressions in terms of creation and annihilation operators,
α and α†, are

νi (x) =
∑

r=1,2

∫
d3k

(2π)
3
2

eik·x [
ur

k,i (t)α
r
k,i + vr−k,i (t)α

r†
−k,i

]
,

(24)
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where ur
k,i (t) = e−iωk,i t ur

k,i , v
r
k,i (t) = eiωk,i tvr

k,i , while r is

the helicity index and ωk,i =
√

k2 + m2
i with i = 1, 2. Note

that the operator anticommutation relations and the spinor
wave functions’ orthogonality and completeness relations are
the standard ones and we do not report them here for brevity.

Let Gθ (t) denote the generator of the field mixing trans-
formations Eq. (23):

νe(x) = G−1
θ (t)ν1(x)Gθ (t),

νμ(x) = G−1
θ (t)ν2(x)Gθ (t).

(25)

It is given by

Gθ (t) = exp

[
θ

2

∫
d3x

(
ν

†
1(x)ν2(x)− ν

†
2(x)ν1(x)

)]
. (26)

Due to the canonical anticommutation rules one can write
Gθ (t) = ∏

k Gk
θ (t). Moreover, in the reference frame where

k = (0, 0, |k|), we have Gk
θ (t) = ∏

r Gk,r
θ (t), with

Gk,r
θ (t) = exp

{
θ

[
U∗

k(t)α
r†
k,1α

r
k,2 − Uk(t)α

r†
−k,2α

r−k,1

− εr V ∗
k (t)α

r−k,1α
r
k,2+εr Vk(t)α

r†
k,1α

r†
−k,2

]}
, (27)

where εr = (−1)r and

Uk(t) ≡ |Uk| ei(ωk,2−ωk,1)t ,

Vk(t) ≡ |Vk| ei(ωk,2+ωk,1)t .
(28)

For our purpose it is not essential to give here the explicit
expression of |Uk| and |Vk|; the important point is that

|Uk|2 + |Vk|2 = 1, (29)

which guarantees that the mixing transformations preserve
the canonical anticommutation relations, i.e. they are canoni-
cal transformations. Equation (29) shows that one can always
put |Uk|2 ≡ cos2
k and |Vk|2 ≡ sin2
k. Using Eq. (27)
we define the flavor annihilation operators:

αr
k,e ≡ G−1

θ αr−k,1Gθ (t)

= cos θαr
k,1 + sin θ

(
U∗

k (t)α
r
k,2 + εr Vk(t)α

r†
−k,2

)
,

αr
k,μ ≡ G−1

θ αr−k,2Gθ (t)

= cos θαr
k,2−sin θ

(
U∗

k (t)α
r
k,1+εr Vk(t)α

r†
−k,1

)
(30)

and similar relations for the flavor creation operators.
Note that the Bogoliubov coefficients Uk and Vk are

related to the noncommutative coproduct maps discussed in
Sect. 4 [cf., e.g., Eq. (20)]. In this connection, we remark that
the noncommutative coproduct maps are related, not to the
mixing angle θ , but to the Bogoliubov angles
k. Moreover,
inspection of Eq. (30) shows that the mixing transformations
for the creation and annihilation operators produce ‘nested’
operator rotation and time-dependent Bogoliubov transfor-
mations with coefficients Uk(t) and Vk(t). Since deformed

coproducts are a basis of the Bogoliubov transformations, we
have thus shown that the field mixing ultimately rests on the
algebraic structure of the deformed coproduct in the noncom-
mutative Hopf algebra embedded in the algebra doubling of
NCSG. Indeed, for vanishing value of |Vk|, i.e. for vanishing

k for any k, and thus |Uk|2 = 1, there is only the field rota-
tion [cf. Eqs. (27) and (30)], not the mixing phenomenon.
Of course, the field rotation in the ν1–ν1 plane is a unitary
transformation out of which no ‘new’ quantum number, such
as the flavor (lepton) number of νe and νμ, can be generated,
as it instead happens in the field mixing case. This result, as
already mentioned above, holds for the mixing of any particle
considered: Dirac and Majorana neutrinos, quark or meson
mixing.

We can finally express the flavor fields in terms of these
flavor annihilation and creation operators as [8–17]

νσ (x)=
∑

r=1,2

∫
d3k

(2π)
3
2

eik·x [
ur

k, j (t)α
r
k,σ + vr−k, j (t)α

r†
−k,σ

]
,

(31)

with σ, j = (e, 1), (μ, 2).
The flavor vacuum annihilated by the operators αr

k,σ , σ =
e, μ, is defined by the action of the mixing generator on the
vacuum |0〉1,2 annihilated by the operators αr

k,i , i = 1, 2,
(αr

k,1|0〉1,2 = 0 = αr
k,2|0〉1,2) as

|0(θ, t)〉e,μ ≡ G−1
θ (t)|0〉1,2. (32)

The expectation value of the number operator αr†
k,iα

r
k,i , i =

1, 2, in such a vacuum state |0(θ, t)〉e,μ is nonzero, i.e.,

e,μ〈0(t)|αr†
k,iα

r
k,i |0(t)〉e,μ = |Vk(t)|2 sin2(θ), i = 1, 2,

(33)

which expresses that the flavored vacuum is a condensate (of
couples) of i-neutrinos, i = 1, 2, hence its nonperturbative
nature. We see that the expectation value of the number oper-
ator vanishes in the |Vk(t)| → 0 limit, i.e. in the commutative
limit where the Bogoliubov transformations are eliminated
[cf. Eq. (30)]. We remark that the space of the neutrino fla-
vored states is unitarily inequivalent to the space of the mass
neutrino eigenstates. Indeed, in the limit of the volume V
going to infinity, one obtains

1,2〈0|0(t)〉e,μ → 0, as V → ∞ for any t, (34)

which shows that |0(t)〉e,μ and |0(t)〉1,2 are unitarily inequiv-
alent representations of the canonical anticommutator rela-
tions. In the absence of mixing (θ = 0 and/or m1 = m2)
the orthogonality between |0(t)〉e,μ and |0(t)〉1,2 disappears.
Equation (34) can only hold in the QFT framework, since uni-
tarily inequivalent representations exist, contrarily to what
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happens in quantum mechanics (QM), where the von Neu-
mann theorem states the unitary equivalence of the repre-
sentations of the canonical anticommutation relations. Equa-
tion (34) also expresses the nonperturbative nature of the field
mixing mechanism.

The single (mixed) particle flavored state is given by

|αr
k,σ (t)〉 ≡ α

r†
k,σ (t)|0(t)〉e,μ = G−1

θ (t)αr†
k,i |0〉1,2, (35)

where σ, i = e, 1 or μ, 2. States with particle number higher
than 1 are obtained similarly by operating repeatedly with
the creation operator αr†

k,σ . The momentum operator for the
free fields is

Pi =
∑

r=1,2

∫
d3k k

(
α

r†
k,iα

r
k,i − α

r†
−k,iα

r−k,i

)
, (36)

with i = 1, 2. For mixed fields, one has Pσ (t) =
G−1
θ (t)Pi Gθ (t), namely

Pσ (t) =
∑

r=1,2

∫
d3k k

(
α

r†
k,σ (t)α

r
k,σ (t)

− α
r†
−k,σ (t)α

r−k,σ (t)
)
, (37)

for σ = e, μ with Pe(t) + Pμ(t) = P1 + P2 ≡ P and
[P,Gθ (t)] = 0. The total momentum is of course conserved,
[P, H ] = 0, with H denoting the Hamiltonian. The expec-
tation value of the flavor vacuum of the momentum operator
Pσ (t) vanishes at all times:

e,μ〈0(t)|Pσ (t)|0(t)〉e,μ = 0, σ = e, μ. (38)

The state |αr
k,e〉 ≡ |αr

k,e(0)〉 is an eigenstate of the momen-
tum operator Pe(0) at time t = 0, Pe(0)|αr

k,e〉 ≡ k|αr
k,e〉. At

time t �= 0 the normalized expectation value for the momen-
tum in such a state is

Pe
k,σ (t) ≡ 〈αr

k,e|Pσ (t)|αr
k,e〉

〈αr
k,e|Pσ (0)| f αr

k,e〉
= |{αr

k,e(t), α
r†
k,e(t

′)}|2 + |{αr†
−k,e(t), α

r†
k,e(t

′)}|2,
for σ = e, μ.

Note that Pe
k,σ (t) behaves actually as a ‘charge oper-

ator’. Indeed, the operator αr†
k,iα

r
k,i − α

r†
−k,iα

r−k,i is the
fermion number operator. Therefore, the explicit calculation
of Pe

k,σ (t) provides the flavor charge oscillation. We obtain

Pe
k,e(t) = 1 − sin2 2θ

×
[
|Uk|2 sin2 ωk,2 − ωk,1

2
t + |Vk|2 sin2 ωk,2 + ωk,1

2
t

]
,

Pe
k,μ(t) = sin2 2θ

×
[
|Uk|2 sin2 ωk,2 − ωk,1

2
t + |Vk|2 sin2 ωk,2 + ωk,1

2
t

]
.

(39)

Notice that in the absence of the condensate contribution,
i.e. in the |Vk| → 0 limit (|Uk| → 1), the usual QM Pon-
tecorvo approximation of the oscillation formula is obtained.
In the same limit, the noncommutative structure of the Hopf
coproduct algebra (and the related Bogoliubov transforma-
tion) is lost. The nonperturbative structure of the quantum
field is thus essential for the NCSG construction.

6 Conclusions

We have shown that neutrino mixing is naturally embed-
ded within the NCSG model. This result has been obtained
from the doubling of the algebra A = A1 ⊗ A2 acting
on the space H = H1 ⊗ H2. In fact, by considering the
neutrino mixing, we have seen in Section V that the trans-
formation linking mass annihilation and creation operators
with the flavor ones is a rotation combined (‘nested’) with
Bologiubov transformations [cf. Eq. (30)]. This transforma-
tion is the seed of the mixing annihilation and creation oper-
ators leading to the unitarily inequivalence between the two
vacuum states, i.e. mass vacuum and flavor vacuum. In Sec-
tion IV we have shown that the Bogoliubov transformed oper-
ators, a(
) and ã(
), are linear combinations of the coprod-
uct operators defined in terms of the deformation parameter
q(
) and its
-derivatives, obtained from the doubled alge-
bra A = A1 ⊗A2. Neutrino mixing is thus intimately related
to the algebra doubling and, as such, it is intrinsically present
in the NCSG of model.

We stress that Bogoliubov transformations act on oper-
ators, so our discussion is framed in the quantum operator
formalism. Thus, the doubling of the algebra in Connes’ con-
struction appears to be grounded in the QFT Hopf deformed
algebra, and in turn this has been shown to involve field mix-
ing. Having to do with fields introduces crucial features in the
formalism. On the one side, it means that we have an infinite
number of degrees of freedom (therefore, we have to consider
the continuum or the infinite volume limit). On the other side,
as emerges from the discussion presented above, the alge-
bra doubling, through the Bogoliubov transformations, com-
bines the positive frequency part of the field operator with
the negative frequency one, leading to the noncommutative
features.

It has been shown in Ref. [7] that the gauge structure of
the Standard Model is implicit in the algebra doubling, a key
ingredient of the NCSG construction. In the present paper
we have established the link between the algebra doubling
and the field mixing, concluding that the Standard Model as
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derived from the NCSG model includes neutrino mixing by
construction.
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reproduction in any medium, provided the original author(s) and the
source are credited.
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