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Abstract We present a stochastic method for the calcula-
tion of baryon three-point functions that is more versatile than
the typically used sequential method. We analyze the scal-
ing of the error of the stochastically evaluated three-point
function with the lattice volume, and we found a favorable
signal-to-noise ratio suggesting that our stochastic method
can be used efficiently at large volumes to compute hadronic
matrix elements.

1 Introduction

Hadron structure calculations in lattice QCD have emerged
as a powerful tool for providing comparison with and guid-
ance for experiments, see e.g., Refs. [1-4]. Examples include
moments of generalized parton distribution functions as well
as form factors. Lattice computations of such quantities have
been carried out at several values of the lattice spacing allow-
ing the continuum limit to be taken. In addition, small, some-
times even physical, values of the pion mass have been
employed in the calculation of these quantities, leading to an
improved understanding of their quark mass dependence and
how they approach the physical point. Unfortunately, stud-
ies of excited state contributions [5-9] suggest that for some
quantities these effects can play an important role as a sys-
tematic uncertainty that affects hadronic three-point function
computations. Safely accounting for these effects requires
large statistics, hence methods to speed up these calculations
are highly desirable.

The progress in nucleon matrix element calculations on
the lattice has prompted an effort to go beyond the sim-
plest observables and to pursue a larger variety of interesting
hadronic quantities. The evaluation of more observables will

#e-mail: vincent.drach@desy.de

b e-mail: Karl.Jansen@desy.de

deepen our knowledge of the hadron structure and provides
a more comprehensive test of QCD. However, using the con-
ventional sequential method [10] to calculate these matrix
elements, it is necessary to perform a new computation of
the needed quark propagators for each observable of inter-
est.! This then leads to a high computational demand if many
physical quantities are being sought.

In this paper, we describe an alternative approach, based
on a stochastic method, that allows us to obtain a large class
of observables with only a single computation of the propa-
gators. To this end, we employ stochastically computed all-
to-all propagators. Since a calculation based on a stochastic
evaluation of propagators may lead to very noisy results, we
perform a detailed study to determine whether the stochastic
noise can be controlled with a moderate number of stochastic
sources. We determine the signal-to-noise ratio as a function
of the lattice size to test whether our stochastic method can
be used in large volumes, such as 483 x 96, which are used
in contemporary lattice computations. These questions are
addressed specifically for the example of the axial charge ga
of the nucleon. We would like to emphasize that we do not
perform an analysis of systematic effects, since our goal is
solely to test the stochastic method.

During the course of our work, a similar stochastic
approach was employed in the calculation of meson three-
point functions [11], where a (heavy) all-to-all propagator is
estimated stochastically. There it was found that the stochas-
tic method is competitive and in some cases even supe-
rior to the sequential one. Of course, it is not guaranteed
that the same conclusions hold for baryon matrix elements,

! The sequential method allows one to compute either the matrix ele-
ment of a single hadron or the matrix elements of a single current with
one sequential inversion. In particular, a new computation of propaga-
tors has to be performed, when computing matrix elements of another
hadron (fixed sink method) or another current (fixed current method).
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since those are subject to a stronger exponentially decreasing
signal-to-noise ratio [12].

This paper is organized as follows: in Sect. 2 we outline
our stochastic method, in Sect. 3 we present the results of
this method and compare to those obtained by the fixed sink
method, and we summarize our findings in Sect. 4.

2 Stochastic method for baryon three-point functions

Quantities that are needed for investigating hadron structure
can be extracted by computing matrix elements of baryons
with local operators. In lattice QCD, these baryon matrix
elements are obtained from baryon three-point functions in
Euclidean space-time that are of the form

> e P Ee Y (B(X, )| O, 1) B(0)). M)
X,y
0G. 1) = 4G, Dlq(, 7). 2)

I' represents a combination of y-matrices and covariant
derivatives, and we have used translational invariance to set
the source point to zero. Naively one would need an all-to-all
propagator from every lattice point (¥, t) to all points (X, 1)
for the evaluation of the above three-point function, which
is, of course, prohibitively expensive to calculate. Such a
demanding computation can be circumvented by applying
the sequential method to perform the summation over the
spatial coordinates of either the sink or the current [10]. For
the example of the fixed sink method, the momentum as well
as the time slice of the sink is fixed and an additional inver-
sion for each flavor is needed. An alternative approach is to
estimate the all-to-all propagator stochastically, which is the
method that we explore in this paper.

A generic three-point function of a baryon B is defined as

C§B) (7
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Zp is the baryon interpolating field and A and A’ summa-
rize the indices depending on the quantum numbers of the
baryon B, which are appropriately contracted with the func-
tion ;f\i),. The insertion time of the operator is denoted by 7.
For illustration, let us now consider the three-point function
of a proton and the operator dI'd. We use the interpolat-

Fig. 1 Diagrammatic
illustration of the sequential
method through the sink (left)
and the stochastic method

ing field Z,, possessing the quantum numbers of the proton,
namely,

TP (R, 1) = eul (7, 1) <<d"()?, t))TCy5 (X, t)),

where C = iypy» is the charge conjugation operator. In terms
of quark propagators, the connected piece of this three-point
function reads
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where x = (X, t) and y = (¥, t), and where the up (down)
quark propagator is denoted by S (§©). Pis an appropriate
spin projector, which we will specify later.

The sequential method with fixed sink makes use of the
fact that we can perform the sum over X in Eq. (1) by an
additional inversion. Then a generalized propagator for fixed
time slice, projector IP, and sink momentum p’ is obtained, as
indicated by the shaded area in the left diagram of Fig. 1. This
renders the explicit calculation of an all-to-all propagator
unnecessary.

Our alternative method uses a stochastic estimate of the
all-to-all propagator appearing in three-point functions like
Eq. (3). Such an estimate is obtained via

—Zn,(y, D0 1) ST MG D o), @)

pe, )=y M NG D), %) n(F)
X
where M is the Dirac matrix. In the above equations, we have

suppressed Dirac and color indices. 1, is a random source
obeying

(right)

@ Springer




Eur. Phys. J. C (2014) 74:2692

Page30f6 2692

Ns
! Ng— 00
Ns ; Mra.a @b (V) = 8xy8apbup.

The stochastic method is diagrammatically illustrated in the
right diagram of Fig. 1. Using the stochastic estimate, we can
decompose the double sum in Eq. (3) into the product of two
single sums, which is significantly computationally cheaper
than the naive double sum and reads
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where x = (X,¢) and y = (¥, t). We have suppressed the
average over the number of stochastic samples, cf. Eq. (4),
and used the ys Hermiticity property of the Dirac matrix to
obtain the above expression. As before, we use superscripts
to denote the quark flavor.

The drawback of the stochastic method is that we have to
average over a sample of Ng stochastic sources. This requires
Ns inversions compared to just 12 (one inversion per Dirac
and color index) in the sequential method. However, a major
benefit of this method is its flexibility, since we do not need
to fix the spin projector or the sink momentum, nor even the
sink time slice, in principle.

3 Assessment of the stochastic method

To test the applicability of the stochastic method, we need to
determine how large Ng must be to keep the stochastic noise
under control. This depends on the observable of interest.
To be concrete, we compute a relatively simple benchmark
observable of nucleon structure, namely, the nucleon axial
charge ga, using our stochastic method. This quantity can
be obtained from a nucleon matrix element of the isovector
axial current. For the evaluation of matrix elements of the
nucleon, we need to introduce the zero momentum nucleon
two-point function,

Moy =>"Tr B 1+ ) <I(N)()?, ) i<N>(0)>} .

We then examine the ratio R, of the nucleon three-point
and two-point correlation functions,

)
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In the limit of large Euclidean time separations, Ry, con-
verges to ga up to the renormalization factor Z,

ZARg, (t,T) —> ga fort — oo,

T —>ooand (t — 1) > o0.

In this paper, we use the value of the renormalization constant
Za = 0.757(3) determined non-perturbatively [13,14].

In order to demonstrate that the stochastic method can
indeed produce results with areasonable computational effort
and is potentially competitive with the sequential method, we
performed a benchmark calculation with Ny = 24141 fla-
vors of quarks. We employed twisted mass fermions at maxi-
mal twist with a lattice spacing of a ~ 0.082 fm, determined
from the nucleon mass [14], a pion mass of m, ~ 370 MeV,
and avolume of L3 ~ (2.6 fm)3.In Fig.2, weshow Ry, (¢, T)
obtained using the stochastic method as a function of the
insertion time 7 for a fixed source—sink separation r = 12a.
We make a comparison with the value R, (t = 12a, T = 6a)
obtained using the sequential method. For different values of

=
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—
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Fig. 2 Plateau region of the ratio Ry, (t = 12a, 7) obtained from the
stochastic method on one Ny = 2 4+ 1 + 1 ensembles with a pion mass
of my; ~ 370 MeV and a lattice spacing a ~ 0.082 fm. We use Ng = 2,
four and six spin-color-diluted stochastic time-slice sources, with the
source located at the sink. The source—sink separation is 12a and we
compare to the standard sequential method, of which we show the ratio
Rg, (t = 12a, © = 6a) with the light gray band. The dark gray band
indicates the PDG value [15]
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T close to the middle of the plateau the picture is similar.
We use spin-color-diluted random Z (4) vectors as stochastic
sources,

773()?, t) = Sa,aosa,aogt,loﬁ()?):

ap € {0, 1,2}, ape€{0,1,2,3}, 7(X) € Z4).

We have used a fixed number of gauge field configura-
tions Ngauge = 460 in both our stochastic and sequential
approaches. Our observation is that using at most Ng = 4
spin-color-diluted stochastic noise vectors per configuration
for the estimate of the all-to-all propagator is sufficient to
reach the same statistical accuracy as with the sequential
method.

In terms of inversions, Ng = 1 corresponds to using the
same number of inversions as in the sequential method, i.e.,
(4 x 12) per gauge field configuration, for every additional set
of stochastic sources we need (2 x 12) additional inversions to
obtain the forward and back propagators, respectively. Thus
this method would require four times more inversions. We
would like to remark, however, that in the stochastic approach
we can compute the correlation functions of proton and neu-
tron without additional inversions, in contrast to the sequen-
tial method. In addition, we used three operators k = 1,2, 3
in Eq. (5), and correspondingly three spin projectors for the
stochastic method, again without the need of additional inver-
sions when using the stochastic method. Our observation is
that this procedure reduces the statistical error by about a
factor /6, corresponding to a factor of about 6 in statistics.
We would like to remark, however, that this effective gain in
statistics is rather specific for gao and will change for other
observables.

Having demonstrated that it is in fact possible to compute
ga using the stochastic method with a reasonable computa-
tional effort compared to the sequential method, we would
like to know how the situation changes when the volume is

e |/a=24
— - - - sequential

Aga(Ns)/ga(Ns)
000 005 0.10 015 020 025 0.30
Il

Ns

Fig. 3 Thefilled circles show the relative error on the value obtained for
gA as a function of the number of spin-color-diluted stochastic sources
Ng per gauge field configuration. In the left panel we show results for
a lattice extent of L /a = 24, and in the right panel we show results for
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varied. A potential danger of our stochastic method is that
the number of stochastic sources required to reach the same
precision as the sequential method may increase rapidly as
the volume increases.

To study the volume effects, we use Ny = 2 flavors of
maximally twisted mass fermions, instead of the Ny = 2+1+
1. We expect that the stochastic noise should not noticeably
depend on the number of dynamical flavors, and that, for the
Nr = 2 case, there exists a series of four different volumes
at the same value of the lattice spacing, a &~ 0.082 fm [16]
and a pion mass, m, ~ 370 MeV [17]. These volumes are
V = L3 x T, where L/a = 16, 20, 24, 32, and the temporal
extent of the lattice is 7 = 2L in all cases. This enables us
to thoroughly study the volume dependence of the stochastic
method over a relatively large range of spatial volumes, from
about (1.4 fm)? to (2.8 fm)3. This corresponds to 1.95
mzL 5 3.9.

We performed an analysis using the stochastic method on
a fixed number of gauge field configurations Ngauge = 200 at
each of the four volumes. The source—sink separation is fixed
to 12a in all cases, which corresponds to about 1.067 fm.

In Fig. 3, we show the relative error of go as a func-
tion of the number of stochastic sources for two of the
four volumes, L/a = 24 and L/a = 32, where also the
sequential method has been applied. For both volumes, a
convergence towards the error of the sequential method can
be seen, which looks better for the larger volume, where
the error is close to the error of the sequential method for
Ns = 4, to be conservative. This confirms the observation
in the Ny = 2 + 1 + 1 calculation mentioned above, which
was done at about the same physical volume. The error of
the error is not shown, but it is roughly of order 10 % of the
error.

We show the combined statistical and stochastic error of
gA obtained using the stochastic method with Ng = 8 for four

o
[ .|
o
o ® |/a=32
N~ - - - sequential
o
> o
z 37
S
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o T e ° °
< o© ° ° °
0
O_a
o
o
O_;
°© T T T T T T T T
1 2 3 4 5 6 7 8
Ns

L/a = 32. The dashed lines represent the error when using the sequen-
tial method. A fixed number of gauge field configurations Ngauge = 200
was used with a pion mass of m, ~ 370 MeV and a lattice spacing of
a ~ 0.082 fm
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Fig. 4 The filled circles show the error of ga using the stochastic
method with a fixed number of stochastic sources Ng = 8 on a fixed
number of gauge fields Ngauge = 200 for four different lattice sizes. The
pion mass is m, ~ 370 MeV, and the lattice spacing is a &~ 0.082 fm.
The dashed lines indicate a scaling proportional to V~/2 and V~!, and
they are solely meant to guide the eye. The error of the error is not much
bigger than the symbol size, hence we do not show it. Please note the
double logarithmic scale

different volumes in Fig. 4. In order not to be subject to a sys-
tematic error, we do not fit the ratio given in Eq. (5) using an
estimated plateau range t between source and sink. Instead,
we take the renormalized ratio Ry, (f = 12a, T = 6a) and its
error in the middle between source and sink as our estimate
for ga, where contributions from excited states are expected
to be the smallest. For the larger volumes the error scales
like the one of the sequential method, V=03 [18]. Therefore,
the plot is consistent with the error being dominated by the
gauge noise for larger volumes, which we have demonstrated
above, see Fig. 3. Thus, this method appears to work as well
or even better at the larger volumes typically employed in
exact — =

1.3

12& stochastic N=4 —e— -
11| b
1} % 1
09 f % —
08 g 1
07| ?

0.6 b
0.5 % x
04 .

0.3 | | | | | | |
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Q%(GeV)

GA

Fig. 5 Comparison of Ga(Q?) and G p(Qz) computed with the
stochastic and standard sequential method (referred as exact in the leg-
end). For the stochastic estimate, we use a fixed number of stochastic
sources Ns = 4, and we use one projector for the proton correlators.

current calculations, an observation which, of course, needs
to be verified for other quantities and different physical situ-
ations.

The suitability of the method is demonstrated in Fig. 5
where we compare the nucleon axial form factors G A(0?)
and G ( 0?) [14] computed using the standard approach and
our new method. For this comparison, we use the same num-
ber of configurations and one projector. Since we use four
stochastic noises diluted in color and spin, the computation
is four times more expensive producing errors that are com-
parable to the exact case. However, the new method allows
us to compute the three-point functions of the neutron as well
as for three different projectors for free; thus, compensating
for the increases cost. This compared with the fact that one
can consider different final states, e.g., a nucleon carrying
momentum, for free makes the new method more versatile.

4 Conclusion

We have applied a stochastic method for the calculation of
nucleon matrix elements using spin-color-diluted time-slice
sources. We have taken the case of the nucleon axial charge
as a typical example of a three-point function to explore the
method. The conclusion for our test case is that the error is
comparable to the error of the sequential method already at
a moderate number of stochastic sources, namely, four spin-
and color-diluted time-slice stochastic sources, when using
the same number of gauge field configurations. In this par-
ticular case, we have effectively increased the statistics used
in the stochastic method by a factor 6 through averaging over
neutron and proton correlators and using three different cur-
rents, which does not require the computation of new prop-
agators. Moreover, our results indicate that the convergence

10 exact —#—
9r stochastic N=4 —e— -
g i
7 L i
6 f L 1

8 st : |
4 ; 1
3 | i
2 | 'y . f
0 s s s s s s s

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Q%(GeV)
The computation is performed using Ny = 2 + 1 + 1 configurations

fixed to Ngauge = 500 with a pion mass of m, ~ 370 MeV and a lattice
spacing of a ~ 0.082 fm
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behavior in the number of stochastic sources, Ng, appears to
improve when the volume is increased.

Since the stochastic method needs O (10) more inversions
(we needed Ns = 4 for ga, but this may be different for
other matrix elements) it is competitive with the sequential
method when one computes O(10) more types of matrix ele-
ments. In the case of ga, the increase in computational effort
is easily compensated for by computing six different matrix
elements with three different spin projections for the proton
and the neutron. Thus, even with the additional computa-
tional overhead, the great versatility of the stochastic method
explained in this paper outweighs the sequential method
when many baryon matrix elements or form factors are
computed.
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