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Abstract The strong coupling constant ghb BPS
c BV

c
is cal-

culated using the three-point QCD sum-rule method. We
use correlation functions to obtain these strong coupling
constants with contributions of both BPS

c and BV
c mesons

as off-shell states. The contributions of two gluon conden-
sates as a radiative correction are considered. The results
show that ghb BPS

c BV
c

= 8.80 ± 2.84 GeV−1 and ghb BV
c BPS

c
=

9.34±3.12 GeV−1 in the BPS
c and BV

c off-shell state, respec-
tively.

1 Introduction

Measurements of masses, total widths and transition rates
of heavy quark bound states serve as important benchmarks
for the predictions of QCD-inspired potential models, non-
relativistic QCD, lattice QCD and QCD sum rules [1]. The
hb mesons are bound states of bb quarks. The system is
approximately non-relativistic due to the large b quark mass,
and therefore the quark–antiquark QCD potential can be
investigated via b̄b spectroscopy. These mesons are inter-
mediate states between Y (3S) to ηb(1S) with the processes
Y (3S) → π+π−π0hb, and they decay to the ground state
γ ηb. The hb(1P) state is a spin-singlet P-wave bound state
of bb quarks, which was observed for the first time by the
Belle collaboration with a significance of 5.5σ [2]. It has
been conjectured that this meson often decays into an inter-
mediate two-body state of B mesons, then undergoes final
state interactions. This meson (hb(1P)) is used to study of
the P-wave spin–spin (or hyperfine) interaction. Therefore,
theoretical calculations on the physical parameters of this
meson and their comparison with experimental data should
give valuable information as regards the nature of hyperfine
interaction. However, most of the theoretical studies deal with
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the non-perturbative QCD calculations. The mass and lep-
tonic decay constant of hb(1P) mesons have been calculated
[3]. These physical parameters help us to calculate the other
physical parameters, i.e., the rates of various decay modes
and the coupling constants.

In this work, we evaluate the strong coupling constant,
ghb BPS

c BV
c

within the framework of three-point QCD sum

rules. We consider contributions of both BV
c and BPS

c mesons
as off-shell states. The contributions of the bare loop diagram
and the two-gluon condensate diagrams as radiative correc-
tions are evaluated. We assume that hb is on-shell, and that
it may decay to the intermediate BV

c and BPS
c mesons. In

this regard, the coupling constants help us to describe the
intermediate state of two-body decay of the meson into the
BV

c and BPS
c mesons when one of these mesons is off-shell.

The intermediate states decay into the final states with the
exchange of virtual mesons. Indeed, without understanding
the mechanism of intermediate states, we are not able to ana-
lyze the results of the ongoing experiments properly.

Here, we use the same technique for the study of the cou-
plings such as D∗ Ds K , D∗

s DK [4,5], D0 Ds K , Ds0 DK [6],
D∗Dπ [7] , Ds D∗K , D∗

s DK [8], Bs0 BK , Bs1 B∗K [9–11],
D�

s DK ∗ [12] and ηb B B∗ vertex from QCD sum rules [13],
B∗

s BK [14], B1s B∗K [15,16], B∗ B∗ρ [15,16].
The present work is organized as follows: In Sect. 2,

we introduce the QCD sum-rule technique where analyti-
cal expressions of the ghb BV

c BPS
c

strong coupling constant are
obtained. Section 3 is devoted to the numerical analysis and
a discussion.

2 QCD sum rules for the form factors

In this section, we present a QCD sum-rule calculation for the
form factor of the hb BV

c BPS
c vertex. The three-point corre-

lation function associated with the hb BV
c BPS

c vertex is given
by
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�
BPS

c
μν (p′, q) = i2

∫
d4xd4 yeip′.x eiq.y

×
〈
0

∣∣∣∣T
(

j
BV

c
ν (x) j BPS

c (y) j hb
μ (0)

)∣∣∣∣ 0

〉
, (1)

where the BPS
c is an off-shell state, and

�
BV

c
μν (p′, q) = i2

∫
d4xd4 yeip′.x eiq.y

×
〈
0

∣∣∣∣T
(

j BPS
c (x) j

BV
c

ν (y) j hb
μ (0)

)∣∣∣∣ 0

〉
, (2)

where the BV
c is an off-shell state, q is the transferred momen-

tum, and T is the time-ordering operator.
We describe each meson field in terms of the quark field

operators as follows:

j
BV

c
ν (x) = c(x)γνb(x)

j BPS
c (y) = c(y)γ5b(y)

j hb
μ (0) = b(0)γμγ5b(0)

(3)

The above correlation functions need to be calculated in
two different ways: on the theoretical side, they are evaluated
with the help of the operator-product expansion (OPE), where
the short- and large-distance effects are separated; on the phe-
nomenological side, they are calculated in terms of hadronic
parameters such as masses, leptonic decay constants, and
form factors. Finally, we aim to equate the structures of the
two representations.

Performing the integration over x and y of Eq. (1) we get

�
BPS

c
μν (p′, q) =

〈
0

∣∣∣∣ j
BV

c
ν

∣∣∣∣ BV
c (p′, ε′)

〉 〈
0

∣∣∣ j BPS
c

∣∣∣ BPS
c (q)

〉 〈
BV

c (p′, ε′)
∣∣BPS

c (q)
∣∣ hb(p, ε)

〉 〈
hb(p, ε)

∣∣∣ j hb
μ

∣∣∣ 0
〉

(q2 − m2
BPS

c
)(p2 − m2

hb
)(p′2 − m2

BV
c
)

+ · · · (4)

In order to finalize the calculation of the phenomenological
side, it is necessary to know the effective Lagrangian for the
interaction of the vertex hb BV

c BPS
c , which is given as follows:

L = ghb BV BPS BPS
{
(∂αhσ )(∂α BV

σ ) − (∂βhα)(∂α BV
β )

}
(5)

where h is the axial-vector meson field (hb(1P) field), BV

is the vector meson field and BPS is the pseudoscalar meson
field.

The matrix elements of the Eq. (4) can be related to the
hardronic parameters as follows:

〈
0

∣∣∣∣ j
BV

c
ν

∣∣∣∣ BV
c (p′, ε′)

〉
= m BV

c
fBV

c
ε′
ν

〈
0

∣∣∣ j BPS
c

∣∣∣ BPS
c (q)

〉
= i

m2
BPS

c

mb + mc
fBPS

c〈
BV

c (p′, ε′)
∣∣∣BPS

c (q)

∣∣∣ hb(p, ε)
〉

= ig
BPS

c
hb B B[(p.p′)(ε.ε∗′) − (p.ε∗′)(p′.ε)]〈

hb(p, ε)

∣∣∣ j hb
μ

∣∣∣ 0
〉
= mhb fhbε

∗
μ

(6)

where ghb B B is the strong coupling constant when BPS
c is

off-shell and ε and ε′ are the polarization vectors associated
with hb and BV

c , respectively. Substituting Eq. (6) in Eq. (4)
and using the summation over polarization vectors via

ενε
∗
θ = −gνθ + qνqθ

m2
BPS

c

, (7)

ε′
jε

′∗
μ = −g jμ + p j pμ

m2
BV

c

, (8)

the phenomenological or physical side for the BV
c off-shell

result is found to be

�
BV

c
μν (p′, q) = −g

BV
c

hb B B(q2)
m BV

c
fBV

c

m2
BPS

c
mb+mc

fBPS
c

mhb fhb

(q2 − m2
BV

c
)(p2 − m2

hb
)(p′2 − m2

BPS
c

)
(p.p′)gμν + · · · (9)

and “· · · ” represents the contribution of the higher states and
continuum.

We compare the coefficient of the (p.p′)gμν structure
from different approaches of the correlation functions for
further calculation.

In addition, a similar expression of the physical side of
the correlation function for the BPS

c off-shell meson is the
following:

�
BPS

c
μν (p′, q) = −g

BPS
c

hb B B(q2)
m BV

c
fBV

c

m2
BPS

c
mb+mc

fBPS
c

mhb fhb

(q2 − m2
BPS

c
)(p2 − m2

hb
)(p′2 − m2

BV
c
)

×(p.p′)gμν + · · · (10)

In the following, we calculate the correlation functions on
the QCD side using the deep Euclidean space case (p2 →
−∞ and p′2 → −∞). Each invariant amplitude �i

μν(p′, q)

where i stands for BPS
c or BV

c consists of perturbative (bare
loop, see Fig. 1), and non-perturbative parts (the contribu-
tions of two-gluon condensate diagrams; see Fig. 2) as

123



Eur. Phys. J. C (2014) 74:2691 Page 3 of 6 2691

Fig. 1 a, b Bare loop diagram
for the BPS

c and BV
c off-shell,

respectively

b c
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Fig. 2 Two-gluon condensate
diagram as a radiative
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�i
μν(p′, q) = (

�per + �nonper
)
(p.p′)gμν. (11)

The perturbative and gluon condensate contributions can
be defined in terms of a double dispersion integral as

�per = − 1

4π2

∫
ds′

∫
ds

ρ(s, s′, q2)

(s − p2)(s′ − p′2)
+subtraction terms, (12)

where ρ(s, s′, q2) is the spectral density. It is aimed to evalu-
ate the spectral density by considering the bare loop diagrams
(a) and (b) in Fig. 1 for BV

c and BPS
c off-shell, respectively.

We use the Cutkosky method to calculate these bare loop dia-
grams and replace the quark propagators of Feynman inte-
grals with the Dirac delta function:

1

q2 − m2 → (−2π i)δ(q2 − m2). (13)

The results of the spectral density are found to be

ρBPS
c (s, s′, q2)

= Nc

λ3/2(s, s′, q2)

{
2m2

bmcs − mcs
(

2mc2+q2+s − s′)

+2m3
b(q

2+s′)−mb

(
2m2

c +q2+s−s′) (q2 + s′))
}

,

(14)

and

ρBV
c (s, s′, q2)

= Nc

λ3/2(s, s′, q2)

{
2m2

bmcs − mcs (2mc2+q2 + s − s′)

+2m3
b(q

2+s′)−mb

(
2m2

c +q2+s−s′) (q2 + s′))
}

,

(15)

where λ(a, b, c) = a2 + b2 + c2 − 2ac − 2bc − 2ab and the
number of colors is Nc = 3. The physical region in the s and
s′ plane is described by the following inequality:

− 1 ≤ f i (s, s′) = s
(−2m2

b + 2m2
c + q2 + s − s′)

λ1/2
(
m2

b, m2
b, s

)
λ1/2(s, s, q2)

≤ 1,

(16)

where i indicates the two states of the BPS
c and BV

c off-shell
meson.

The diagrams for the contribution of the gluon conden-
sate in the case that BPS

c is off-shell are depicted in (a), (b),
(c), (d), (e), and (f) in Fig. 2. All diagrams are calculated
in the Fock–Schwinger fixed-point gauge [17–19] where we
assume xμ Aa

μ = 0 for the gluon field Aa
μ. Then, the vacuum
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gluon field is

Aa
μ(k′) = − i

2
(2π)4Ga

ρμ(0)
∂

∂k′
ρ

δ(4)(k′), (17)

where k′ is the gluon momentum.
In this calculation, we need to solve the following two

types of integrals:

I0[a, b, c] =
∫ d4

k

(2π)4

1[
k2−m2

b

]a [
(p + k)2−m2

b

]b [
(p′ + k)2 − m2

c

]c
,

Iμ[a, b, c] =
∫ d4

k

(2π)4

kμ[
k2−m2

b

]a [
(p + k)2−m2

b

]b [
(p′+k)2−m2

c

]c
,

(18)

where k is the momentum of the spectator quark b. These inte-
grals can be calculated by switching to Euclidean space-time
and using the Schwinger representation for the Euclidean
propagator:

1

(k2 + m2)n
= 1

�(n)

∞∫

0

dα αn−1e−α(k2+m2) . (19)

The Borel transformation is as follows:

Bp̂(M2)e−αp2 = δ

(
1

M2 − α

)
, (20)

where M is Borel parameter.
We integrate over the loop momentum and the two param-

eters that we have used in the exponential representation of
propagators [18]. We also apply double Borel transforma-
tions over p2 and p′2. The results after the Borel transforma-
tions are as follows:

Î0(a, b, c) = i
(−1)a+b+c

16π2 �(a)�(b)�(c)

×(M2
1 )2−a−b(M2

2 )2−a−c U0(a + b + c − 4, 1 − c − b),

Î0μ(a, b, c) = Î1(a, b, c)pμ + Î2(a, b, c)p′
μ, (21)

where

Î1(a, b, c) = i
(−1)a+b+c+1

16π2 �(a)�(b)�(c)

×(M2
1 )2−a−b(M2

2 )3−a−c U0(a + b + c − 5, 1 − c − b),

Î2(a, b, c) = i
(−1)a+b+c+1

16π2 �(a)�(b)�(c)

×(M2
1 )3−a−b(M2

2 )2−a−c U0(a + b + c − 5, 1 − c − b),

(22)

and M2
1 and M2

2 are the Borel parameters. The function
U0(α, β) is as follows:

U0(a, b) =
∞∫

0

dy(y + M2
1 + M2

2 )a yb

× exp

[
− B−1

y
− B0 − B1 y

]
,

where

B−1 = 1

M2
1 M2

2

[
m2

c M4
1 +m2

b M4
2 +M2

2 M2
1

(
m2

b+m2
c − q2)] ,

B0 = 1

M2
1 M2

2

[(
m2

b+m2
c

)
M2

1 +2M2
2 m2

b

]
,

B1 = m2
b

M2
1 M2

2

. (23)

The circumflex of Î in the equations is used for the result of
integrals after the double Borel transformation. After lengthy
calculations, the following expressions for the two-gluon
condensate contributions are obtained:

�
BPS

c
nonper = 16(6m3

b(2I1(1, 4, 1)+3I1(4, 1, 1)+ I2(1, 4, 1))

−6m2
bmc(I1(4, 1, 1)+ I2(1, 4, 1))

+mb(6m2
c(2I1(1, 1, 4)+ I2(1, 1, 4))

−2I1(1, 2, 2)+6I1(1, 3, 1)+6I1(2, 1, 2)

−2I1(2, 2, 1) + 6I1(3, 1, 1) − I2(1, 2, 2)

+6I2(1, 3, 1)+3I2(2, 1, 2)− I2(2, 2, 1))

+mc(−6m2
c I2(1, 1, 4)−6I2(1, 1, 3)

+I2(1, 2, 2)−3I2(2, 1, 2)+ I2(2, 2, 1))) (24)

�
BV

c
nonper =−16(−mb(I (2, 1, 2)+ I (2, 2, 1)−12m2

c I1(1, 1, 4)

−6I1(1, 2, 2)−6I1(1, 3, 1)

+2I1(2, 1, 2)+2I1(2, 2, 1)−6I1(3, 1, 1)

−6m2
c I2(1, 1, 4)−3I2(1, 2, 2) − 6I2(1, 3, 1)

+I2(2, 1, 2) + I2(2, 2, 1)) + 6m3
b(2I1(1, 4, 1)

+3I1(4, 1, 1)+ I2(1, 4, 1))−6m2
bmc(I1(4, 1, 1)

+I2(1, 4, 1))+mc(−6m2
c I2(1, 1, 4)−6I2(1, 1, 3)

−3I2(1, 2, 2)+ I2(2, 1, 2)+ I2(2, 2, 1))). (25)

After applying the Borel transformation to both the phys-
ical and the theoretical sides, we equate the coefficients of
the (p.p′)gμν structure from both sides (physical and QCD
sides). The results related to the sum rules for the correspond-
ing form factors are found to be
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gi
hb BPS

c BV
c
(q2) = 2(q2 − m2

i )(mb + mc)

fhb fBPS
c

fBV
c

m2
BPS

c
mhb m BV

c

e
m2

hb
M2 e

m2
( j)

M ′2

×

⎡
⎢⎢⎣ 1

4 π2

s0∫

4m2
b

ds

s′
0∫

(mb+mc)2

ds′ρi (s, s′, q2)

× θ [1 − ( f i (s, s′))2]e −s
M2 e

−s′
M ′2 + �i

nonper

⎤
⎥⎥⎦ , (26)

where i and j are either BPS
c or BV

c , where (i �= j).

3 Numerical analysis

In this study, we calculate the form factor with both the M̄ S
and the pole masses. The values given in the Review of Parti-
cle Physics are m̄c(m̄2

c) = 1.275±0.025 GeV and m̄b(m̄2
b) =

4.18 ± 0.03 GeV [20], which correspond to the pole masses
mc = 1.65 ± 0.07 GeV and mb = 4.78 ± 0.06 GeV [21,22].
A summary of the other input parameters is given in Table 1.

The sum rules contain auxiliary parameters, namely the
Borel mass parameters M2, M ′2 and the continuum thresh-
old (s0 and s′

0). The standard criterion in QCD sum rules
is that the physical quantities are independent of the aux-
iliary parameters. Therefore, we search for the intervals
of these parameters so that our results are almost insensi-
tive to their variations. One more condition for the inter-
vals of the Borel mass parameters is the fact that the afore-
mentioned intervals must suppress the higher states, con-
tinuum and contributions of the highest-order operators. In
other words, the sum rules for the form factors must con-
verge. As a result, we get 25 GeV2 ≤ M2 ≤ 30 GeV2 and
20 GeV2 ≤ M ′2 ≤ 25 GeV2 for both BPS

c and BV
c off-shell

associated with the hb BPS
c BV

c vertex.
We depict the dependence of the strong coupling con-

stants on the Borel parameters for BV
c off-shell in Figs. 3 and

4. These figures indicate the weak dependence of the form
factor of BV

c off-shell in terms of the Borel mass parameters
in the chosen intervals. We find a stable behavior of the cou-
pling constant in terms of the Borel mass parameters for the
BPS

c off-shell case and we find it unnecessary to show the
other figures.

The continuum thresholds s0 and s′
0 are not arbitrary, but

they are correlated to the energy of the first excited state with
the same quantum number as the interpolating current. Thus,

25 26 27 28 29 30
0.0

0.5

1.0

1.5

2.0

2.5

3.0

M 2 GeV2

g
Q

2
G

eV

Fig. 3 g
BPS

c
hb BV

c BPS
c

(Q2 = 5 GeV2) as a function of the Borel mass M2.

The continuum thresholds s0 = (106.08, 108.16, 110.25) GeV2, s′
0 =

(45.3, 46.66, 48.3) GeV2 and M ′2 = 20 GeV2 are used. The green,
blue and purple lines are for the minimum central and maximum values
of s0 and s′

0

20 21 22 23 24 25
0.0

0.5

1.0

1.5

2.0

2.5

3.0

M·2 GeV2

g
Q

2
G

eV

Fig. 4 g
BPS

c
hb BV

c BPS
c

(Q2 = 5 GeV2) as a function of the Borel mass M2.

The continuum thresholds s0 = (106.08, 108.16, 110.25) GeV2, s′
0 =

(45.3, 46.66, 48.3) GeV2 and M2 = 25 GeV2 are used. The green, blue
and purple lines are for minimum central and maximum values of s0
and s′

0

we choose the following regions for the continuum thresholds
in the s0 and s′

0 channels:

(
mhb + 0.4

)2 ≤ s0 ≤ (m + 0.6)2 (27)

in the s channel for both off-shell cases, and
(

m BPS
c

+ 0.4
)2 ≤ s′

0 ≤
(

m BPS
c

+ 0.6
)2

(28)
(

m BV
c

+ 0.4
)2 ≤ s′

0 ≤
(

m BV
c

+ 0.6
)2

(29)

Table 1 Values of pole masses
of quarks and decay constants
used in the calculation

m BPS
c

[20] m BV
c

[21] mhb [20] fBV
c

[21] fBPS
c

[23] fhb [3]

6.2745 ± 0.0018 6.331 ± 0.017 9.8993 ± 0.001 0.415 ± 0.031 0.40 ± 0.025 0.094 ± 0.01
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Table 2 Values of A, B, and C for the fit function for the BPS
c and BV

c
off-shell cases

BV
c off-shell BPS

c off-shell

A 2.30 ± 0.50 2.43 ± 0.51

B 0.035 ± 0.008 0.033 ± 0.008

C −0.31 ± 0.01 −0.36 ± 0.11

for the BPS
c and BV

c off-shell cases, respectively, in the s′
0

channel.
As a final remark, we should say that we follow the stan-

dard procedure in the QCD sum rules where the continuum
thresholds are supposed to be independent of the Borel mass
parameters and of q2. However, this standard assumption
seems not to be accurate, as mentioned in Ref. [24].

Our further numerical analysis shows that the dependence
of the form factors on q2 with the definite values of the aux-
iliary parameters fits with the following function:

gi
hb BV

c BPS
c

(Q2) = AeB Q2 + C (30)

where Q2 = −q2, i stands for the BPS
c and BV

c off-shell
cases, and the value of A, B, and C are shown in Table 2.

By definition, the coupling constant is the value of
gi

hb BV
c BPS

c
(Q2) at the Q2 = −m2

meson [6], where mmeson is

the mass of the on-shell mesons.
Substituting Q2 = −m2

BPS
c

and Q2 = −m2
BV

c
in Eq. (30),

the g
BPS

c

hb BV
C BPS

c
= 8.80 ± 2.84 GeV−1 and g

BV
c

hb BV
c BPS

c
= 9.34 ±

3.12 GeV−1 are obtained for the BPS
c and BV

c off-shell cases,
respectively. The average value of the ghb BV

c BPS
c

strong cou-
pling constant is found to be

ghb BV
c BPS

c
= (9.07 ± 2.93) GeV−1 (31)

Note that roughly 80 % of the errors in our numerical
calculation arise from the variation continuum thresholds in
intervals shown in Eqs. (27), (28), and (29), and the remain-
ing 20 % occur as a result of the quark masses when one
proceeds from the M̄ S to the pole-scheme mass parameters,
the input parameters.

In conclusion, we calculate the strong coupling constant
ghb BV

c BPS
c

using the three-point QCD sum rules. Our results

show that the average value of the strong coupling constant is
ghb BV

c BPS
c

= (9.93 ± 2.7) GeV−1. Furthermore, the errors in
our numerical calculations depend on continuum threshold
and variation of the quark masses in different mass schemes.
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