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Abstract The standard Hawking formula predicts the com-
plete evaporation of black holes. Taking into account the
effects of quantum gravity, we investigate the tunneling of
fermions from a five-dimensional rotating black string. The
temperature is not only determined by the string, but also
affected by the quantum numbers of the emitted fermion and
the effect of the extra spatial dimension. The quantum cor-
rection slows down the increase of the temperature, which
naturally leads to a remnant in the evaporation.

1 Introduction

The semi-classical tunneling method is an effective way to
describe Hawking radiation [1,2]. Using this method, the
tunneling behavior of massless particles across the horizon
was adequately described in [3,4]. In this research, a vary-
ing background spacetime was taken into account. The tun-
neling rate was related to the change of the Bekenstein—
Hawking entropy and the temperature was higher than the
standard Hawking temperature. In the former research, the
standard temperatures were derived [5-10], which implies
complete evaporation of the black holes. Thus the varying
background spacetime accelerates the black holes’ evapo-
ration. This result was also demonstrated in other compli-
cated spacetimes [11-15]. Extending this work to massive
particles, the tunneling radiation of general spacetimes was
investigated in [16—18]. The same result was derived by the
relation between the phase velocity and the group velocity.
In [19,20], the standard Hawking temperatures were
recovered by fermions tunneling across the horizons. In the
derivation, the action of the emitted particle was derived by
the Hamilton—Jacobi equation [21]. This derivation is based
on the method of complex path analysis [22]. In this method,
we do not need the consideration that the particle moves along
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the radial direction [23-26]. This is different from the work
of Parikh and Wilczek [3,4].

The tunneling radiation beyond the semi-classical app-
roximation was discussed in [27-29]. Their ansatz is also
based on the Hamilton—Jacobi method. The key point is to
expand the action in powers of 7. Using the expansion, one
can get the quantum corrections over the semi-classical value.
The corrected temperature is lower than the standard Hawk-
ing temperature. The higher order correction entropies were
derived by the first law of black-hole thermodynamics.

Taking into account the effects of quantum gravity, the
semi-classical tunneling method was reviewed in the recent
work [30-32]. In [30,31], the tunneling of massless particles
through the quantum horizon of a Schwarzschild black hole
was investigated by the influence of the generalized uncer-
tainty principle (GUP). Through the modified commutation
relation for the radial coordinate, the conjugate momentum
and the deformed Hamiltonian equation, the radiation spec-
trum was derived including the quantum correction. The
thermodynamic quantities were discussed. In the fermionic
fields, with the consideration of the effects of quantum grav-
ity, the generalized Dirac equation in curved spacetime was
derived by the modified fundamental commutation relation
[33], which is [32]

[iyoao iy, (1 _ ,Bm2> +iy gn? (ajaf‘) 9
+ % (1 + pr%0;00 — ﬂm2>
iyt (1+ﬂh23jaf' —ﬁm2)]¢ —0. (1

This derivation is based on the existence of a minimum mea-
surable length. This length can be realized in a model of the
GUP

h
Axap = [1+Bap)? +B(p)?). @)

2
L,

where 8 = ﬂoh—z is a small value, By < 10** is a dimen-
sionless parameter and [, is the Planck length. Equation (2)
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was derived by the modified Heisenberg algebra [x;, p;] =
ind;j[1+ 8 p?], where x; and p; are position and momentum
operators, defined, respectively, as [33,34]

Xi = X0i,
pi = poi(1 + Bpd), 3)

pé =Y po;Poj,Xo; and po; satisfy the canonical commuta-
tion relations [xo;, po;j] = i%d;;. Thus the minimal position
uncertainty is gotten as

Ax = 1B/ 1+ B(p)2. “4)

which means that the minimum measurable length is Axg =
hia/B [33]. For Axg to have physical meaning, the condition
B > 0 must be satisfied. This was showed in [33]. Based
on the GUP, the black-hole’s remnant was first studied by
Adler et al. [35]. Incorporating Eq. (3) into the Dirac equa-
tion in curved spacetime, the modified Dirac equation was
derived [32]. Using this modified equation, the fermions’ tun-
neling from the Schwarzschild spacetime was investigated.
The temperature was showed to be related to the quantum
numbers of the emitted fermion. An interesting result is that
the quantum correction slows down the increase of the tem-
perature. It naturally is to lead to a remnant.

In this paper, taking into account the effects of quan-
tum gravity, we investigate fermions’ tunneling from a five-
dimensional rotating black string. The key point in this paper
is to construct a tetrad and five gamma matrices. The result
shows that in the frame of quantum gravity, the temperature
is affected not only by the quantum numbers of the emitted
fermion, but also by the effect of the extra compact dimen-
sion. The quantum correction slows down the increase of the
temperature. A remnant is naturally observed in the evapo-
ration process.

In Sect. 2, we perform the dragging coordinate transforma-
tion on the metric and construct five gamma matrices; then we
investigate the fermion’s tunneling from the five-dimensional
rotating string. A remnant is observed. Section 3 is devoted
to our conclusion.

2 Tunneling radiation under the influence
of the generalized uncertainty principle

The Kerr metric describes a rotating black-hole solution of
the Einstein equations in four dimensions. When we add an
extra compact spatial dimension to it, the metric becomes

A in”
a5 =~ (d@r—asin’ odp)’ + 3122 [adt— (2 +a?)dg]”
02
+o %+ p2d0? + g, )
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where A = r2 —2Mr +a® = (r — ry)(r—ro), ,02 =r24
a®cos? 0, g.. is usually set to 1. The above metric describes
arotating uniform black string. ry = M ++/M?2 — a? are the
locations of the event (inner) horizons. M and a are the mass
and angular momentum in units of mass of the string, respec-
tively. A fermion’s motion satisfies the generalized Dirac
equation (1). To investigate the tunneling behavior of the
fermion, it can directly choose a tetrad and construct gamma
matrices from the metric (5). The metric (5) describes a rotat-
ing spacetime. The energy and mass near the horizons are
dragged by the rotating spacetime. It is not convenient to dis-
cuss the fermion’s tunneling behavior. For the convenience of
constructing the tetrad and gamma matrices, we perform the
dragging coordinate transformation d¢ = dg — Qdz, where

2 2 _
o (r +a A)a )

(r2+ az)2 — Ad?sin?0’

on the metric (5). Then the metric (5) takes the form

ds?

1
—F(r)df®+ T dr? 4 g9ed6” + g4 dep* +g.dz*

,
Ap? 2 p* 2 2

= a2 + 2 dr? +g..d
(r2 +a%)? — Aa?sin’ 0 A 8zt

2352 sin” 6 2, 232 2.2 2
+ p*do +—2[(r +a?)2—Ad®sin 9]d¢. %)
o

Now the tetrad is directly constructed from the above metric.
Itis

¢ = diag (ﬁ 1/VG, /206, /289 «/5) : ®)

The gamma matrices are easily constructed as follows:

1 (0 I 0 o?
o~ 0 — 00
’ ﬁ(—l 0)’ rTvE <020>’
0 o3 / 0 ol
' = ¢ — olod
14 \/E (0,3 O ) ) V4 8 (U] 0 ) (9)
-1 0
z— &4
While measuring the quantum property of a spin-1/2 fermion,
we can get two values. They correspond to two states with

spin up and spin down. The wave functions of two states of
a fermion in the metric (7) of the spacetime take on the form

A
10 iI 10 10
vy =| g | xp g?(,r, . $.2) ), (10)
0
0
C i
V) = 0 eXP(gQ(t,r,@,(/),z)), (11)
D
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where A, B, C, D are functions of (¢, r, 6, ¢, z), and I is the
action of the fermion, and 1 and | denote the spin up and
spin down, respectively. In this paper, we only investigate the
state with spin up. The analysis of the state with spin down is
parallel. To use the WKB approximation, we insert the wave
function (10) and the gamma matrices into the generalized
Dirac equation (1). Dividing by the exponential term and
considering the leading terms yield four equations. They are

B
—ﬁaJ — BVG( — pm®)d, I + AJg%(1 — pm*>)d, 1

—Am(1—Bm*—BQ)+BBVG Q0,1 —AB\/g% Q0.1 =0,
(12)
%8,[ —AVG(1 - Bm2)a,1 — Bg=(1 — pm®)d. 1
—Bm(1—pm*—BQ)+ABVG Qd,1+Bp/g%Qd.1 =0,
(13)

-B (i,/g%a@] + g¢¢3¢1> (1-Bm*—BQ) =0, (14)
—A (i,/g99391 + g¢¢a,,,1> 1-Bm>=B0) =0, (15)

where Q0 = g (3, 1)2 + g% (9p1)® + g% (3951)° +
g% (8,1)2. 1t is difficult to get the expression of the action
from the above equations. Considering the property of the
spacetime, we carry out separation of the variables as

I=—(w—jt+Wr)+00,¢) +Jz, (16)

where w is the energy of the emitted fermion, j is the angular
momentum and J is a conserved momentum corresponding
to the compact dimension. Equations (14) and (15) are irrel-
evant to A, B. Inserting Eq. (16) into them yields

i\/g%93© + /9?3508 =0, (17)

which implies that ® is a complex function other than the
constant solution. In the former research, it was found that
the contribution of ® could be canceled in the derivation of
the tunneling rate. Using Eq. (17), the important relation is
easily gotten of

§"(3,0)* + g%?(3,©)* = 0. (18)

Now our interest is in the first two equations. Inserting Eq.
(16) into Egs. (12) and (13), canceling A and B and neglecting
the higher order terms of 8, we get

A@W)* + B@,W)* +C =0, (19)
where

A =2BG’F,

B =—[1-4Bg% (3.1)*] GF, (20)

C=[1-2m*—-2Bg% (3.)*] (m*— g% @, DHF+(B,1)*.

Solving the above equation at the event horizon yields the
imaginary part of the radial action. Based on invariance under
canonical transformations, we adopt the method developed
in [39-41]. The tunneling rate is

[ 1
I' oc exp —glm¢prdr]

1 .
—glm (/ ptdr —/pi"dr)]

- 2 -
= exp :Fglm/pf“t’lndr]. 21

= exp

In the above equation, 55 prdr is invariant under canonical
transformations. Here let us write p, = 9, W. Thus the solu-
tions of Im [ p;""™dr are determined by Eq. (19), which
is

Im f prdr = 2ImWwO!"

f\/(E—jsz)2+<1—2ﬁm2—2ﬂgzzﬂ>(m2—gzzﬂ>F
=2Im [ dr
GF(1—4Bg%J?)

—iQ)?
o ]

F
—iQ 2 2
=27 (= j& )5 +a7) [1+BEW.0,r, )], (22)
ry —r—
where g% = 1, Q4 = % is the angular velocity at

r2 +a?
the event horizon. E(/, 6, ;;, J) is a complicated function
of J,0,ry, j; therefore, we do not write it down here. We
should have E(J,0,r4, j) > 0. If we adopt Eq. (22) to
calculate the tunneling rate, we will derive a twice higher
Hawking temperature, which was showed in [36-38]. This
is not in consistence with the standard temperature. With
careful observations, Akhmedova et al. [39—41] found that
the contribution coming from the temporal part of the action
was ignored. When they took into account the temporal con-
tribution, the factor of 2 in the temperature was resolved.

To find the temporal contribution, we use Kruskal coor-
dinates, (T, R). The region exterior to the string (r > r4) is
described by

T = " sinh(k1),

(23)
R = &"t"* cosh(k 1),
where r. = r + ﬁ In % — 2%_ In == is the tortoise
ry—r—
2(ri+a?)
at the outer (inner) horizons. The description of the interior
region is given by

coordinate, and k+ = denote the surface gravity

T = "™ cosh(xyt), 24)
R = " sinh (k. 1).

To connect these two patches across the horizon, we need
to rotate the time 7 as t — ¢ — ik %. As pointed out in
[39-41], this rotation would lead to an additional imagi-
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nary contribution coming from the temporal part, namely
Im(E Aoy = %nEKJr, where E = w — jQ4. Thus the
total temporal contribution is Im(E At) =  Ex . Therefore,
the tunneling rate is

I' o exp [—% <Im(EAt) + Im % prdr)i|

@ jQO +a) [ 1 _ .
YT |:1+§,3u(.],9,r+,])i|.

(25)

= —4n

This is the expression of the Boltzman factort and it implies
for the temperature

T — h(rg —r-)
4n(rk +a) [+ 388, 0,14, )]
1
=T |:1 — EﬂE(], 0,ry, j)} , (26)
h(ry—r_)

where Ty = is the standard Hawking temperature

47 (r2 +a?)
of the Kerr string; it shares the expression of the temperature
with the four-dimensional Kerr black hole. It shows that the
corrected temperature is determined by the mass, angular
momentum and extra dimension of the string, but also it is
affected by the quantum numbers (energy, mass, and angular
momentum) of the fermion. Therefore, the properties of the
emitted fermion affect the temperature when the effects of
quantum gravity are taken into account.

When a = 0, the metric (5) is reduced to the Schwarz-
schild string metric. Then the imaginary part of the radial
action (22) is reduced to

Im ?{ prdr = 2nwry [1 ny <2w2 +3m2)2 4 JZ/Z)] .
27

Adopting the same process, we get the temperature of the
Schwarzschild string:

h
r= dry [1 4 B (w0 + 3m2 /4 + J2/4)]
_ h 2 2 2
_W[l—ﬂ(w +3m /4+J/4)]. (28)

It shows that the effect of the extra dimension and the quan-
tum numbers (energy, mass, and angular momentum) of the
fermion affect the temperature of the Schwarzschild string.
It is obvious that the quantum correction slows down the
increase of the temperature. Finally, the string cannot evap-
orate completely and in the end there is a balanced state. In
this state, a remnant is left. The extra dimension plays the
role of an impediment during the evaporation. When J = 0,
Eq. (28) describes the temperature of the four-dimensional
Schwarzschild black hole. The remnant was derived as >
M, /Bo, where M, is the Planck mass and f is a dimension-
less parameter accounting for quantum gravity effects [32].

@ Springer

3 Conclusion

In this paper, we investigated the fermion’s tunneling from
the five-dimensional Kerr string spacetime. To incorporate
the influence of quantum gravity, we adopted the generalized
Dirac equation derived in [32]. The corrected temperature is
not only determined by the mass, angular momentum, and
extra dimension, but also it is affected by the quantum num-
bers of the emitted fermion. The quantum correction slows
down the increase of the temperature. Finally, a balanced
state appears. In this state, the string cannot evaporate com-
pletely and a remnant is left. This can be seen as a direct
consequence of the generalized uncertainty principle.

Acknowledgments This work is supported by the National Natural
Science Foundation of China with Grant No. 11205125.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.

Article funded by SCOAP? and licensed under CC BY 4.0

References

. P. Kraus, F. Wilczek, Nucl. Phys. B 437, 231 (1995)

. P. Kraus, F. Wilczek, Nucl. Phys. B 433, 403 (1995)

M.K. Parikh, F. Wilczek, Phys. Rev. Lett. 85, 5042 (2000)

M.K. Parikh, Phys. Lett. B 546, 189 (2002)

S.W. Hawking, Commun. Math. Phys. 43, 199 (1975)

T. Damour, R. Ruffini, Phys. Rev. D 14, 332 (1976)

W.G. Unruh, Phys. Rev. D 14, 870 (1976)

. S.P. Robinson, F. Wilczek, Phys. Rev. Lett. 95, 011303 (2005)

. S.Iso, H. Umetsu, F. Wilczek, Phys. Rev. Lett. 96, 151302 (2006)

. P. Mitra, Phys. Lett. B 648, 240 (2007)

. E.C. Vagenas, Phys. Lett. B 533, 302 (2002)

. M. Arzano, A.J.M. Medved, E.C. Vagenas, JHEP 0509, 037 (2005)

. S.Q. Wu, Q.Q. Jiang, JHEP 0603, 079 (2006)

. S.Z. Yang, Chin. Phys. Lett. 22, 2492 (2005)

. Y.P. Hu, J.Y. Zhang, Z. Zhao, Int. J. Mod. Phys. D 16, 847 (2007)

. 1.Y. Zhang, Z. Zhao, JHEP 0510, 055 (2005)

. 1.Y. Zhang, Z. Zhao, Nucl. Phys. B 725, 173 (2005)

. Q.Q. Jiang, S.Q. Wu, X. Cai, Phys. Rev. D 73, 064003 (2006)

. R. Kerner, R.B. Mann, Class. Quant. Grav. 25, 095014 (2008)

. R. Kerner, R.B. Mann, Phys. Lett. B 665, 277 (2008)

. M. Angheben, M. Nadalini, L. Vanzo, S. Zerbini, JHEP 0505, 014
(2005)

22. K. Srinivasan, T. Padmanabhan, Phys. Rev. D 60, 024007 (1999)

23. R.Li, J.R. Ren, Phys. Lett. B 661, 370 (2008)

24. R.D. Criscienzo, L. Vanzo, Europhys. Lett. 82, 60001 (2008)

25. Q.Q. Jiang, Phys. Rev. D 78, 044009 (2008)

26. K. Lin, S.Z. Yang, Phys. Rev. D 79, 064035 (2009)

27. R. Banerjee, B.R. Majhi, JHEP 0806, 095 (2008)

28. B.R. Majhi, Phys. Rev. D 79, 044005 (2009)

29. D. Singleton, E.C. Vagenas, T. Zhu, J.R. Ren, JHEP 1008, 089

(2010)

30. K. Nozari, S. Saghafi, JHEP 1211, 005 (2012)

31. K. Nozari, S.H. Mehdipour, JHEP 0903, 061 (2009)

32. D. Chen, H. Wu and H. Yang, Fermions tunnelling with effects of

quantum gravity. arXiv:1305.7104 [gr-qc]

R

PO DD = m m m e
—_— O 000NN W= OO


http://arxiv.org/abs/arXiv:1305.7104

Eur. Phys. J. C (2014) 74:2687

Page 50f5 2687

33.
34.
35.

36.

37.
38.

A. Kempf, G. Mangano, R.B. Mann, Phys. Rev. D 52, 1108 (1995)
S. Das, E.C. Vagenas, Phys. Rev. Lett. 101, 221301 (2008)

R.J. Adler, P. Chen, D.I. Santiago, Gen. Relativ. Gravit. 33, 2101
(2001)

E.T. Akhmedov, V. Akhmedova, T. Pilling, D. Singleton, Int. J.
Mod. Phys. A 22, 1705 (2007)

B.D. Chowdhury, Pramana 70, 593 (2008)

E.T. Akhmedov, V. Akhmedova, D. Singleton, Phys. Lett. B 642,
124 (2006)

39.

40.

41.

V. Akhmedova, T. Pilling, A. de Gill, D. Singleton, Phys. Lett. B
666, 269 (2008)

E.T. Akhmedov, T. Pilling, D. Singleton, Int. J. Mod. Phys. D 17,
2453 (2008)

V. Akhmedova, T. Pilling, A. de Gill, D. Singleton, Phys. Lett. B
673, 227 (2009)

@ Springer



	Dirac particles' tunneling from five-dimensional rotating black strings influenced by the generalized uncertainty principle
	Abstract 
	1 Introduction
	2 Tunneling radiation under the influence  of the generalized uncertainty principle
	3 Conclusion
	Acknowledgments
	References


