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Abstract I apply FDR—a recently introduced four-
dimensional approach to quantum field theories (QFTs)—
to the computation of the NLO QCD corrections to H →
gg in the large top mass limit. The calculation involves
all key ingredients of QCD—namely ultraviolet, infrared,
and collinear divergences, besides αS renormalization—and
paves the way for successful use of FDR in massless one-
loop QFT computations. I show in detail how the correct
result emerges in FDR, and discuss the translation rules to
dimensional regularization.

1 Introduction

Many of the difficulties of higher-order calculations in QFT
can be traced back to the treatment, in the framework of
dimensional regularization (DR) [1], of the infinities aris-
ing in the intermediate steps of the computation. Ultravio-
let (UV), infrared (IR), and collinear (CL) divergences are
first dimensionally regulated, and then renormalized away—
in the UV case—or canceled by combining virtual and real
contributions, or reabsorbed in the collinear behavior of the
initial state parton densities. In order to attack the problem
numerically, it is often necessary to subtract and add back
approximations of the IR/CL singular structures. At one
loop, several well-tested subtraction procedures have been
introduced in the last two decades [2–8]. At two loops and
beyond, the situation is more involved, but progress is under
way [9–14].

The first obvious ingredient, which may lead to a signif-
icant simplification in the above picture, is a computational
procedure in which all parts of the calculation can be directly
treated in four dimensions. As for the virtual contribution,
the FDR approach has been recently introduced in refer-
ence [15], which allows a subtraction of the UV divergences
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at the level of the integrand, leaving a four-dimensional inte-
gration over the loop momenta. In the same work, the use of
FDR as an IR regulator in QED with massive fermions is also
suggested.

In this paper, I present the first application of the FDR
ideas in the context of fully massless QCD, where the issues
related to gauge invariance are much more subtle than in
the QED case. I concentrate, in particular, on the calculation
of the O(αS) gluonic corrections to the H → gg decay in
the mtop → ∞ limit, and re-derive the well-known fully
inclusive result [16,17]

Γ (H → gg) = Γ (0)(αS(M2
H ))

[
1 + 95

4

αS

π

]
, (1)

where

Γ (0)(αS(M2
H )) = G Fα2

S(M2
H )

36
√

2π3
M3

H (2)

is the lowest order contribution, with NF = 0 in αS(M2
H ),

since only gluons are considered.
Despite its simplicity, all key ingredients of massless QCD

are present in this process, such as the simultaneous occur-
rence of IR/CL divergences and UV renormalization. The
fact that the correct expression is reproduced shows that FDR
is a valid and consistent approach in massless QFTs, and it
gives confidence in its potential to simplify multi-leg/loop
computations.

The outline of the paper is as follows. Section 2 pro-
vides the set-up of the calculation. In Sect. 3, I review the
FDR treatment of the UV divergences and discuss its inter-
play with the IR and CL infinities. Section 4 presents the
FDR computation of the virtual part, while Sect. 5 deals
with the real contribution and its merging with the one-
loop piece. The connection between FDR and DR is dis-
cussed in Sect. 6 and the final conclusions are drawn in
Sect. 7.
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Fig. 1 Virtual and real
diagrams contributing to
H → gg(g) at O(α3

S). The gray
blobs in V6 and V7 represent
gluon wave-function corrections
and the dashed line stands for
the Higgs field. R1(pi , p j , pk)

corresponds to three diagrams
with permuted gluons

2 The model for H → gg

The effective interaction of one Higgs field H with two, three
and four gluons—mediated by an infinitely heavy top loop—
is described by the Lagrangian [18,19]

Leff = −1

4
AH Ga

μνGa,μν, (3)

where

A = αS

3πv

(
1 + 11

4

αS

π

)
(4)

and v is the vacuum expectation value, v2 = (G F
√

2)−1.
The corresponding Feynman rules are given in [20], and the
diagrams for the decay rate Γ (H → gg) are drawn in Fig. 1.

There are five graphs contributing to the virtual part ΓV —
without counting gluon wave-function corrections—and four
diagrams for the real radiation ΓR . In the following, I sepa-
rately compute, in FDR, the two pieces, showing how IR/CL
divergences drop in the sum

ΓV (H → gg) + ΓR(H → ggg). (5)

3 FDR versus infinities

The FDR subtraction of UV infinities is better illustrated
with an explicit example. Consider the one-loop quadrati-
cally divergent rank-two tensor
∫

d4q
qαqβ

D0 D1
, (6)

with

Di = q2 − di , di = M2
i − p2

i − 2(q · pi ), p0 = 0.

(7)

Its UV convergence can be improved by first deforming the
propagators by a vanishing amount μ21

Di → D̄i = Di − μ2, (8)

and then by repeatedly using the identity

1

D̄i
= 1

q̄2

(
1 + di

D̄i

)
, (9)

where

q̄2 = q2 − μ2. (10)

Note that the prescription in Eq. (8) avoids possible infrared
divergences in the r.h.s. of Eq. (9). The integrand in Eq. (6)
can then be rewritten as

qαqβ

D̄0 D̄1
= qαqβ

([
1

q̄4

]
+
[

d0 + d1

q̄6

]
+
[

d2
1

q̄8

]
+ d3

1

q̄8 D̄1

+ d0d1

q̄6 D̄1
+ d2

0

q̄4 D̄0 D̄1

)
, (11)

where the terms in square brackets are UV divergent but
depend only on μ2. The FDR definition of the integral in
Eq. (6) is obtained by integrating the expansion in Eq. (11),
after dropping the divergent pieces, and taking the physical
limit μ → 0:

Bαβ(p2
1, M2

0 , M2
1 ) =

∫
[d4q] qαqβ

D̄0 D̄1

≡ lim
μ→0

∫
d4q qαqβ

(
d3

1

q̄8 D̄1
+ d0d1

q̄6 D̄1
+ d2

0

q̄4 D̄0 D̄1

)
.

(12)

The r.h.s. of Eq. (12) corresponds to a well-defined four-
dimensional integral, in which all UV divergences are explic-
itly subtracted. Furthermore, IR and CL divergences get

1 −μ2 can be directly identified with the +i0 propagator prescription.
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Fig. 2 Gluon splitting IR/CL
singularities regulated by
massive (thick) gluons. The
one-gluon cut in a contributes to
the virtual part, the two-gluon
cut in b to the real radiation. c–f
represent typical cut-diagrams
contributing to H → gg(g)

(a) (b)

(c) (d)

(e) (f)

also regulated by the propagator deformation. The gauge-
invariance properties of this definition are discussed in detail
in [15,21]. In the rest of this section, I mostly concentrate
on CL and IR infinities, and, in particular, on the matching
between virtual and real contributions.

A convenient starting point to study the CL singularities
is the fully massless limit of Eq. (12):

Bαβ(0, 0, 0) = lim
μ→0

∫
d4q

qαqβd3
1

q̄8 D̄1

= −8pρ
1 pσ

1 pτ
1 lim

μ→0

∫
d4q

qαqβqρqσ qτ

q̄8 D̄1
= 0, (13)

which vanishes, after tensor decomposition, since p2
1 = 0.

Analogously, one proves that

Bα(0, 0, 0) =
∫

[d4q] qα

D̄0 D̄1
= 0,

B(0, 0, 0) =
∫

[d4q] 1

D̄0 D̄1
= 0. (14)

Those results coincide with DR—in which scale-less inte-
grals are zero [22]—and are due to a cancelation between two
ln(μ2) of CL and UV origin, respectively. For
example,

B(p2, 0, 0) = −iπ2 lim
μ→0

1∫
0

dx

×
[
ln(μ2 − p2x(1 − x)) − ln(μ2)

]
, (15)

where the first logarithm develops a CL singularity in the
limit p2 → 0.

Thus, the virtual CL infinities, generated by 1 → 2 split-
tings of massless particles, are naturally regulated by the
μ2-deformed propagators inside the loop, while the external
momenta remain massless, as illustrated in Fig. 2 a and c.
The real counterpart of this procedure is exemplified in
Fig. 2b and d, and corresponds to a phase space in which
all would be massless external particles are given a common
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mass μ and the internal ones stay massless. In other words,
one has to replace2

1

2(pi · p j )
→ 1

(pi + p j )2 (16)

in any possible singular denominator of the real matrix ele-
ment squared, integrate over the aforementioned massive
phase space, and take the limit μ → 0.

As for the IR divergences, the reasoning follows the same
lines. For example, the only IR/CL divergent scalar one-loop
three-point function generated by the cut in Fig. 2e is3

C(s) =
∫

[d4q] 1

D̄0 D̄1 D̄2
= lim

μ→0

∫
d4q

1

D̄0 D̄1 D̄2
, (17)

with

M2
0 = M2

1 = M2
2 = p2

1 = p2
2 = 0, s = −2(p1 · p2).

(18)

By denoting

μ0 = μ2

s
, (19)

one computes

C(s) = lim
μ→0

iπ2

2s
ln2

(√
1 − 4μ0 + 1√
1 − 4μ0 − 1

)

= iπ2

s

[
ln2(μ0) − π2

2
+ i π ln(μ0)

]
, (20)

which is indeed fully matched by the inclusive real contribu-
tion in Fig. 2f, as will be shown in Sect. 6.

In the following, I use the described approach to UV/CL/IR
infinities to compute ΓV (H → gg) and ΓR(H → ggg).

4 The virtual part ΓV (H → gg)

The calculation is greatly simplified by Eqs. (13) and (14). In
fact, only the diagrams V1 and V2 in Fig. 1 contribute—as in
DR—and the gluon wave function corrections vanish. One
computes

ΓV (H → gg) = −3
αS

π
Γ (0)(αS) M2

H Re

[
C(M2

H )

iπ2

]
.

(21)

This simple expression is obtained after a standard Passarino–
Veltman [23] decomposition, the only subtlety being the
FDR treatment of μ2 [15,21]: for consistency with Eq. (8),

2 See Fig. 2b.
3 The FDR integration corresponds to a normal integration, in this case,
because C(s) is UV finite.

a q2 appearing in the numerator of a diagram should also be
deformed,

q2 → q̄2, (22)

and integrals involving μ2, such as

B̃(p2
1, M2

0 , M2
1 ) =

∫
[d4q] μ2

D̄0 D̄1
, (23)

require the same integrand expansion as if μ2 = q2. For
example, from Eq. (12),

B̃(p2
1, M2

0 , M2
1 )

= lim
μ→0

∫
d4q μ2

(
d3

1

q̄8 D̄1
+ d0d1

q̄6 D̄1
+ d2

0

q̄4 D̄0 D̄1

)

= iπ2

2

(
M2

0 + M2
1 − p2

1

3

)
. (24)

The final result follows by inserting Eq. (20) into (21),

ΓV (H → gg) = 3

2

αS

π
Γ (0)(αS)

(
π2 − ln2 M2

H

μ2

)
. (25)

5 The real radiation ΓR(H → ggg) and the fully
inclusive result

The unpolarized matrix element squared, derived from the
real emission diagrams in Fig. 1, reads

|M |2 = 192 παS A2
[

s3
23

s12s13
+ s3

13

s12s23
+ s3

12

s13s23

+ 2(s2
13 + s2

23) + 3s13s23

s12
+ 2(s2

12 + s2
23) + 3s12s23

s13

+ 2(s2
12 + s2

13) + 3s12s13

s23
+ 6(s12 + s13 + s23)

]
, (26)

where si j = (pi + p j )
2. This expression is obtained from

the massless result with the replacement 2(pi · p j ) → si j , in
accordance with Eq. (16). As described in Sect. 3, in order to
match the virtual IR/CL singularities, |M |2 should be inte-
grated over a massive three-gluon phase space with p2

i = μ2,
which can be parametrized as

∫
d
3 = π2

4s

∫
ds12ds13ds23 δ(s − s12 − s13 − s23 +3μ2),

(27)

where
√

s is the Higgs mass. It is convenient to introduce the
dimensionless variables

x = s12

s
− μ0, y = s13

s
− μ0, z = s23

s
− μ0, (28)
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with μ0 given in Eq. (19), in terms of which, using the
condition,

x + y + z = 1, (29)

all IR/CL divergent bremsstrahlung integrals can be reduced
to the following ones:

I (s) =
∫
R

dxdy
1

(x + μ0)(y + μ0)
,

Jp(s) =
∫
R

dxdy
x p

(y + μ0)
(p ≥ 0), (30)

where the integration region reads, in the fully inclusive case,

∫
R

dxdy ≡
1−2

√
μ0∫

3μ0

dx

y+∫
y−

dy, (31)

with

y± = 1

4(x + μ0)

[
(1 − μ0)

2 − (R0 ∓ R1)
2
]

− μ0,

R0 =
√

(x − μ0)2 − 4μ2
0, R1 =

√
(1 − x)2 − 4μ0.

(32)

Thus

ΓR(H → ggg) = 3
αS

π
Γ (0)(αS)

×
(

1

4
+ I (M2

H ) − 3

2
J0(M2

H ) − J2(M2
H )

)
. (33)

Finally, one computes, up to terms which vanish in the limit
μ0 → 0,

I (s) = ln2(μ0) − π2

2
(34)

and

Jp(s) = − 1

p + 1
ln(μ0) +

1∫
0

dx x p [ln(x) + 2 ln(1 − x)]

= − 1

p + 1
ln(μ0)− 1

p + 1

⎡
⎣ 1

p + 1
+2

p+1∑
n=1

1

n

⎤
⎦ (p ≥ 0),

(35)

so that

ΓR(H → ggg) = 3

2

αS

π
Γ (0)(αS)

×
(

ln2 M2
H

μ2 − π2 + 73

6
− 11

3
ln

M2
H

μ2

)
. (36)

Adding this to Eq. (25), and accounting for the finite renor-
malization term in Eq. (4), one obtains

Γ (H → gg) = Γ (0)(αS)

[
1 + αS

π

(
95

4
− 11

2
ln

M2
H

μ2

)]
.

(37)

All CL/IR ln(μ2) and ln2(μ2) cancel in Eq. (37), so that
the remaining μ is directly interpreted as the renormaliza-
tion scale. This is a typical procedure in FDR: since the UV
infinities are subtracted from the very beginning, the unphysi-
cal left-over μ dependence is eliminated, on the perturbative
level one is working at, by a finite renormalization, which
fixes the bare parameters in terms of the observables [24].
This is obtained, in the case at hand, by simply replacing
Γ (0)(αS) → Γ (0)(αS(μ2))4 in Eq. (37). Then the logarithm
is reabsorbed in the gluonic running of the strong coupling
constant,

αS(M2
H ) = αS(μ2)

1 + αS
2π

11
2 ln

M2
H

μ2

, (38)

and Eq. (1) follows.

6 FDR versus DR

In this section, I discuss the transition rules between FDR
and DR. This is particularly important in QCD, where NLO
calculations have to be matched with the running of αS and
parton densities, conventionally derived in DR. I consider
UV, CL, and IR divergences in turn, showing the equivalence
of FDR with the dimensional reduction [25] version of DR,
widely used in supersymmetric theories.

I start by establishing the connection between the 1/ε DR
regulator and the ln(μ2) appearing in FDR. As for the UV
infinities, it is sufficient to compare the FDR and DR variants
of any divergent integral. For instance, the DR counterpart
of Eq. (15) (with p2 �= 0) reads

∫
dnq

1

q2(q + p)2 = iπ2

1∫
0

dx [ − ln(−p2x(1 − x))],

(39)

where

n = 4 + ε and  = −2

ε
− γE − ln π. (40)

Thus, DR and FDR UV regulators are linked through the
simple MS replacement

 → ln(μ2). (41)

4 αS(μ2) has to be computed in the MS scheme, as explained in the
next section.
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CL virtual singularities follow the same pattern, as can
be inferred from the exact UV/CL cancelation in Eqs. (13)
and (14). As a consistency check, the DR version of Jp reads

J DR
p (s)= (πs)

ε
2

Γ
(
1 + ε

2

)
∫

dx dy dz
x p

y
δ(1−x−y−z)(xyz)

ε
2

= − 1

p + 1
( − ln(s)) − 1

p + 1

⎡
⎣ 1

p + 1
+ 2

p+1∑
n=1

1

n

⎤
⎦ ,

(42)

which indeed coincides with Eq. (35) if  = ln(μ2).
Finally, the ln2(μ2) terms—generated by overlapping

IR/CL singularities—drop, together with the full constant
part, when adding virtual and fully inclusive real contribu-
tions, which can be traced back to the following relation:

Re

[
C(s)

iπ2

]
= 1

s
I (s) (43)

between Eqs. (20) and (34). An easy calculation shows that
the same happens in DR. In fact

Re

[
1

iπ2

∫
dnq

1

q2(q + p1)2(q + p2)2

]

= 1

s
(πs)

ε
2 Γ

(
1 − ε

2

) [ 4

ε2 − 2

3
π2
]

, (44)

where p2
1 = p2

2 = 0 and s = −2(p1 · p2), and

I DR(s) = (πs)
ε
2

Γ
(
1 + ε

2

)
∫

dx dy dz
1

xy
δ(1−x−y−z)(xyz)

ε
2

= (πs)
ε
2 Γ

(
1 − ε

2

) [ 4

ε2 − 2

3
π2
]

. (45)

In summary, Eq. (41) is the only relation needed between
the two regulators. However, an important difference between
DR and FDR follows from self-contractions of metric tensors
coming from the Feynman rules. In DR gαβgαβ = n, while
gαβgαβ = 4 in FDR. This, together with Eq. (41), and the
FDR treatment of μ2 discussed in Sect. 4, makes explicit the
equivalence between FDR and dimensional reduction in the
MS scheme. Having established this, all the well-known tran-
sition rules between dimensional reduction and DR [26,27]
can be directly applied to FDR. In the case of Eq. (37), it
turns out that the expression is the same in both dimensional
reduction (or FDR) and DR. Therefore, the correct strong
coupling constant to be used is the customary αS(μ

2) in
the MS scheme, proving that the FDR result coincides with
Eq. (1).

7 Conclusions

I have presented an FDR calculation of the gluonic QCD
corrections to H → gg in the large top effective theory,

demonstrating that ultraviolet, collinear, and infrared diver-
gences can be simultaneously and successfully regulated in
four dimensions. I have proved the equivalence, at the one-
loop level, of dimensional reduction and FDR, making the lat-
ter approach attractive also in supersymmetric calculations,
where the fermionic and bosonic sectors must share the same
number of degrees of freedom.

The advantage of directly working in the four-dimensional
Minkowsky space is expected to lead to considerable sim-
plifications in higher-order QFT computations, especially in
connection with numerical techniques. This issue, together
with the extension of FDR to more loops, is currently under
study.
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