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Abstract A localized particle in Quantum Mechanics is
described by a wave packet in position space, regardless of
its energy. However, from the point of view of General Rela-
tivity, if the particle’s energy density exceeds a certain thresh-
old, it should be a black hole. To combine these two pictures,
we introduce a horizon wave function determined by the par-
ticle wave function in position space, which eventually yields
the probability that the particle is a black hole. The existence
of a minimum mass for black holes naturally follows, albeit
not in the form of a sharp value around the Planck scale, but
rather like a vanishing probability that a particle much lighter
than the Planck mass may be a black hole. We also show that
our construction entails an effective generalized uncertainty
principle (GUP), simply obtained by adding the uncertainties
coming from the two wave functions associated with a parti-
cle. Finally, the decay of microscopic (quantum) black holes
is also described in agreement with what the GUP predicts.

1 Introduction and motivation

Understanding all the physical aspects in the gravitational
collapse of a compact object, and how black holes form,
remains one of the most intriguing challenges of contempo-
rary theoretical physics. After the seminal papers of Oppen-
heimer et al. [1,2], the literature on the subject has grown
immensely, but many issues are still open in General Rel-
ativity (see, e.g. Refs. [3,4], and references therein), not to
mention the conceptual and technical difficulties one faces
when the quantum nature of the collapsing matter is taken
into account. Assuming that quantum gravitational fluc-
tuations are small, one can describe matter by means of
Quantum Field Theory on a curved background space-time,
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an approach which has produced remarkable results but is
unlikely to be directly applicable to a self-gravitating system
representing a collapsing object.

A general property of the Einstein theory is that the grav-
itational interaction is always attractive and we are thus not
allowed to neglect its effect on the causal structure of space-
time if we pack enough energy in a sufficiently small volume.
This can occur, for example, if two particles (for simplic-
ity of negligible spatial extension and total angular momen-
tum) collide with an impact parameter b shorter than the
Schwarzschild radius corresponding to the total center-mass
energy E of the system, that is1,

b � 2 �p
E

mp
≡ RH. (1)

This hoop conjecture [5] has been checked and verified the-
oretically in a variety of situations, but it was initially for-
mulated for black holes of (at least) astrophysical size [6–8],
for which the very concept of a classical background metric
and related horizon structure should be reasonably safe (for
a review of some problems, see the bibliography in Ref. [9]).
Whether the concepts involved in the above conclusion can
also be trusted for masses approaching the Planck size, how-
ever, is definitely more challenging. In fact, for masses in that
range, quantum effects may hardly be neglected (for a recent
discussion, see, e.g. Ref. [10]) and it is reasonable that the
picture arising from General Relativistic black holes must
be replaced to include the possible existence of new objects,
generically referred to as “quantum black holes” (see, e.g.
Refs. [11–13]).

The main complication in studying the Planck regime is
that we do not have any experimental insight thereof, which

1 We shall use units with c = kB = 1, and always display the Newton
constant G = �p/mp, where �p and mp are the Planck length and mass,
respectively, so that h̄ = �p mp.
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makes it very difficult to tell whether any theory we could
come up with is physically relevant. We might instead start
from our established concepts and knowledge of nature, and
push them beyond the present experimental limits. If we set
out to do so, we immediately meet with a conceptual chal-
lenge: how can we describe a system containing both Quan-
tum Mechanical objects (such as the elementary particles of
the Standard Model) and classically defined horizons? The
aim of this paper is precisely to introduce the definition of a
wave function for the horizon that can be associated with any
localized Quantum Mechanical particle [14]. This tool will
allow us to put on quantitative ground the condition that dis-
tinguishes a black hole from a regular particle. We shall also
see that our construction naturally leads to an effective Gen-
eralized Uncertainty Principle (GUP) [15–19] for the particle
position, and a decay rate for microscopic black holes.

The paper is organized as follows: in the next section, we
introduce the main ideas that define the horizon wave func-
tion associated with any localized Quantum Mechanical par-
ticle; in Sect. 3, we then apply the general construction to the
particularly simple case of a particle described by a Gaussian
wave function at rest in flat space-time, for which we explic-
itly obtain the probability that the particle is a black hole,
we recover the GUP and a minimum measurable length, and
estimate the decay rate of a black hole with mass around the
Planck scale; finally, in Sect. 4, we comment on our findings
and outline future applications.

2 Horizon Quantum Mechanics

Given a matter source, say a spherically symmetric “parti-
cle”, General Relativity and Quantum Mechanics naturally
associate with it two length scales: the Schwarzschild radius
and the Compton–de Broglie wavelength, respectively. We
shall, therefore, start by briefly reviewing these concepts and
then propose how to extend the former into the realm of
Quantum Mechanics, where the latter is born.

2.1 Spherical trapping horizons

The appearance of a classical horizon is relatively easy to
understand in a spherically symmetric space-time. Let us first
recall that we can write a general spherically symmetric met-
ric gμν as

ds2 = gi j dxi dx j + r2(xi )(dθ2 + sin2 θ dφ2), (2)

where r is the areal coordinate and xi = (x1, x2) are coordi-
nates on surfaces where the angles θ and φ are constant. The
location of a trapping horizon, a surface where the escape

velocity equals the speed of light2, is then determined by the
equation [20]

0 = gi j ∇i r ∇ j r = 1 − 2 M

r
, (3)

where ∇i r is the covector perpendicular to the surfaces of
constant area A = 4π r2. The function M = �p m/mp is
the active gravitational (or Misner–Sharp) mass, representing
the total energy enclosed within a sphere of radius r . For
example, if we set x1 = t and x2 = r , the function m is
explicitly given by the integral of the classical matter density
ρ = ρ(xi ) weighted by the flat metric volume measure,

m(t, r) = 4π

3

r∫

0

ρ(t, r̄) r̄2 dr̄ , (4)

as if the space inside the sphere were flat. Of course, it is,
in general, very difficult to follow the dynamics of a given
matter distribution and verify the existence of surfaces sat-
isfying Eq. (3), but we can say an horizon exists if there are
values of r such that

RM = 2 M(t, r) ≥ r, (5)

which generalizes the hoop conjecture (1) to continuous
energy densities (in fact, the horizon radius saturates the
above inequality, i.e. RH = r ).

Note that the above equation does not lead to any mass
threshold for the existence of a black hole, since M is not
limited from below in the classical theory, and the area of the
trapping surface can be vanishingly small. However, if we
consider a spin-less point-like source of mass m, Quantum
Mechanics introduces an uncertainty in its spatial localiza-
tion, typically of the order of the Compton length:

λm � �p
mp

m
= �2

p

M
. (6)

Assuming that quantum physics is a more refined description
of classical physics, the clash of the two lengths RH and λm

implies that the former only makes sense provided that it is
larger than the latter,

RH � λm ⇒ m � mp, (7)

or M � �p. Note that this argument employs the flat space
Compton length (6), and it is likely that the particle’s self-
gravity will affect it. However, it is still reasonable to assume
that the condition (7) holds as an order of magnitude estimate.

Overall, the common argument that quantum gravity
effects should become relevant only at scales of order mp

or higher now appears questionable, since the condition (7)
implies that such a system can be fairly well described in

2 More technically, a trapping surface is the location where the diver-
gence of outgoing null congruences vanishes.
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classical terms. This is indeed at the core of the idea of
“classicalization” given in Ref. [21,22] and, before that, of
gravitationally inspired GUPs [15–19,23]. In particular, fol-
lowing the canonical steps that lead to the construction of
Quantum Mechanics, the latter are usually assumed to hold
as fundamental principles for the reformulation of Quantum
Mechanics in the presence of gravity. Note that gravity would
reduce to a “kinematical effect” encoded by the modified
commutators for the canonical variables. In the following,
we shall instead start from the introduction of an auxiliary
wave function that describes the horizon associated with a
given localized particle, and we show that a modified uncer-
tainty relation follows consequently.

2.2 Horizon wave function

Let us first formulate the construction in a somewhat gen-
eral fashion. For simplicity, we shall only consider quan-
tum mechanical states representing spherically symmetric
objects, which are both localized in space and at rest in
the chosen reference frame. The particle is consequently
described by a wave function ψS ∈ L2(R3), which we
assume can be decomposed into energy eigenstates,

|ψS 〉 =
∑

E

C(E) |ψE 〉, (8)

where the sum represents the spectral decomposition in
Hamiltonian eigenmodes,

Ĥ |ψE 〉 = E |ψE 〉, (9)

and the actual Hamiltonian H needs not be specified yet3.
The expression of the Schwarzschild radius in Eq. (1) can be
inverted to obtain

E = mp
RH

2 �p
, (10)

and we then define the (unnormalized) “horizon wave func-
tion” as ψ̃H(RH) = C(mp RH/2 �p), whose normalization is
fixed by assuming the scalar product

〈ψH|φH 〉 = 4π

∞∫

0

ψ∗
H(RH) φH(RH) R2

H dRH. (11)

We could now simply say that the normalized wave function
ψH yields the probability that an observer would detect a
horizon of areal radius r = RH associated with the particle
in the quantum stateψS. Such a horizon would be necessarily
“fuzzy”, like the position of the particle itself, but giving such
a claim experimental meaning does not appear to be very
simple.

3 This is where, for instance, the self-gravity of the particle may enter.

A more precise use of the notion of the horizon wave func-
tion can, however, already be outlined. For example, having
defined the wave function ψH associated with a given ψS,
the probability density that the particle lies inside its own
horizon of radius r = RH will be given by

P<(r < RH) = PS(r < RH) PH(RH), (12)

where

PS(r < RH) = 4π

RH∫

0

|ψS(r)|2 r2 dr (13)

is the probability that the particle is inside a sphere of radius
r = RH, and

PH(RH) = 4π R2
H |ψH(RH)|2 (14)

is the probability that the sphere of radius r = RH is a hori-
zon. Finally, the probability that the particle described by the
wave function ψS is a black hole will be obtained by inte-
grating (12) over all possible values of the horizon radius,
namely

PBH =
∞∫

0

P<(r < RH) dRH. (15)

It is this final probability we now proceed to clarify with
an example, along with a derivation of a GUP and some
predictions for the decay of a quantum black hole.

3 Gaussian packet at rest in flat space

Assuming that the space-time is flat, our construction can be
exemplified by describing the massive particle at rest in the
origin of the reference frame with the spherically symmetric
Gaussian wave function

ψS(r) = e− r2

2 �2

�3/2 π3/4 , (16)

where we shall usually assume that the width � is given by
the Compton length (6) of the particle

� = λm � �p
mp

m
. (17)

The above packet corresponds to the momentum space wave
function

ψS(p) = e− p2

2
2


3/2 π3/4 , (18)

where p2 = �p· �p is the square modulus of the spatial momen-
tum, and the width


 = mp
�p

�
� m. (19)
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Fig. 1 Probabilities PH in Eq. (14) (dashed line) and PS in Eq. (23)
(solid line) for m = mp/2 (upper panel) and m = 2 mp (lower panel),
assuming m ∼ �−1

For the energy of the particle, we can simply assume the
relativistic mass-shell relation in flat space

E2 = p2 + m2, (20)

and, upon inverting the expression of the Schwarzschild
radius (1), we obtain the unnormalized wave function

ψ̃H(RH) = �3/2 e
�2 m2

2 �2p m2
p e

− �2p R2
H

8 �4p

π3/4 �
3/2
p m3/2

p

. (21)

Finally, the inner product (11) yields the normalized horizon
wave function

ψH(RH) = �3/2 e
− �2 R2

H
8 �4p

23/2 π3/4 �3
p
. (22)

Note that, since 〈 r̂2 〉 � �2 and 〈 R̂2
H 〉 � �4

p/�
2, we expect

that the particle will be inside its own horizon if 〈 r̂2 〉 �
〈 R̂2

H 〉, which precisely yields the condition (7) if � ∼ m−1.
This is clear, for example, in Fig. 1, where the probability
PH = PH(r) is plotted along with the probability

1 2 3 4

0.1

0.2

0.3

0.4

Fig. 2 Probability density P< in Eq. (24) that particle is inside its
horizon of radius R = RH, for � = �p (solid line) and for � = 2 �p
(dashed line)

PS(r) = 4π r2 |ψS(r)|2, (23)

for m � mp and m � mp. In the former case, the horizon is
more likely found with a smaller radius than the particle’s,
with the opposite occurring in the latter case. In fact, the
probability density (12) can now explicitly be computed:

P< = �3 R2
H e

− �2 R2
H

4 �4p

2
√
π �6

p

⎡
⎢⎣Erf

(
RH

�

)
− 2 RH e− R2

H
�2√

π �

⎤
⎥⎦ , (24)

from which the probability (15) for the particle to be a black
hole is obtained as

PBH(�) = 2

π

[
arctan

(
2
�2

p

�2

)
+ 2

�2 (4 − �4/�4
p)

�2
p (4 + �4/�4

p)
2

]
, (25)

or, writing PBH as a function of m,

PBH = 2

π

[
arctan

(
2

m2

m2
p

)
+ 2

m2
p (4 − m4

p/m4)

m2 (4 + m4
p/m4)2

]
. (26)

In Fig. 2, we show the probability density (24), for two dif-
ferent values of the Gaussian width �. Since � ∼ m−1, it is
already clear that such a probability decreases for decreasing
m (below the Planck mass). In fact, in Fig. 3, we show the
probability (25) that the particle is a black hole as a func-
tion of the Gaussian width � (upper panel) and particle mass
m ∼ �−1 (lower panel). From the plot of PBH, it is pretty
obvious that the particle is most likely a black hole, PBH � 1,
if � � �p. Assuming as usual � ∼ m−1, we have thus derived
the same condition (7) from a totally Quantum Mechanical
picture.

An important remark is that we have here assumed flat
space throughout the computation, which means that the self-
gravity of the particle has been neglected. It is very likely
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Fig. 3 Probability PBH in Eq. (25) that particle of width � ∼ m−1 is a
black hole

that such an approximation fails for large black holes with
m � mp, although the general idea outlined in Sect. 2.2
should still be valid. Of course, one could then improve the
description of particles with m � mp by employing a curved-
space mass-shell relation and suitable normal modes, rather
than simple plane waves.

3.1 Effective GUP

For the Gaussian packet described above, it is easy to find that
the usual Quantum Mechanical uncertainty in radial position
is given by

〈
r2〉 = 4π

∞∫

0

|ψS(r)|2 r4 dr

−
⎛
⎝4π

∞∫

0

|ψS(r)|2 r3 dr

⎞
⎠

2

=
(

3π − 8

2π

)
�2. (27)

Analogously, the uncertainty in the horizon radius will be
given by

〈
R2
H〉 = 4π

∞∫

0

|ψH(RH)|2 R4
H dRH

−
⎛
⎝4π

∞∫

0

|ψH(RH)|2 R3
H dRH

⎞
⎠

2

= 4

(
3π − 8

2π

)
�4

p

�2 . (28)

Since

〈
p2〉 = 4π

∞∫

0

|ψS(p)|2 p4 d p

−
⎛
⎝4π

∞∫

0

|ψS(p)|2 p3 d p

⎞
⎠

2

=
(

3π − 8

2π

)
m2

p

�2
p

�2 ≡ 
p2, (29)

we can also write

�2 =
(

3π − 8

2π

)
�2

p

m2
p


p2 . (30)

Finally, by combining the uncertainty (27) with (28) linearly,
we find


r ≡
√

〈
r2〉 + γ

√
〈
R2

H〉

=
(

3π − 8

2π

)
�p

mp


p
+ 2 γ �p


p

mp
, (31)

where γ is a coefficient of order 1, and the result is plotted
in Fig. 4 (for γ = 1). This is precisely the kind of GUP con-
sidered in Refs. [15–19], leading to a minimum measurable
length


r ≥ 2

√
γ

3π − 8

π
�p � 1.3

√
γ �p, (32)

obtained for


p =
√

3π − 8

π γ

mp

2
. (33)

Of course, one might consider different ways of combin-
ing the two uncertainties (27) and (28), or even avoid this
step and just make direct use of the horizon wave function.
In this respect, the present approach appears to be more flexi-
ble, provided that one is able to extend it to different physical
systems, as we shall further discuss in the last section.
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Fig. 4 Uncertainty relation (31) (solid line) as a combination of the
Quantum Mechanical uncertainty (dashed line) and the uncertainty in
horizon radius (dotted line)

3.2 Quantum black-hole evaporation

The well-known result due to Hawking [24,25],

TH = m2
p

8π m
, (34)

extrapolated to vanishingly small mass M , implies that TH

diverges. On the other hand, one can derive modified black-
hole temperatures for m � mp from the GUP [26–33]. In
particular, we just recall that one obtains

m = m2
p

8π T
+ 2π β T, (35)

where

β = γ

4π (3π − 8)
> 0, (36)

to ensure the existence of a minimum mass for the black hole
(see Fig. 5). This is a consistency condition with the result
that PBH � 1 only for m � mp, or that one does not have a
black hole for masses significantly smaller than mp. In fact,
from (35) we get

mmin = √
β mp, Tmax = mp

4π
√
β
. (37)

Upon solving Eq. (35), and considering the “physical”
branch (which reproduces the Hawking behavior for m �
mp), one obtains

T = 1

4πβ

(
m −

√
m2 − β m2

p

)

= 1 − √
1 − β

4πβ

(
mp − m − mp√

1 − β

)
+ O

[
(m − mp)

2
]
,

(38)

for 0 < β < 1, where we expanded around m � mp. It
is interesting to note that such an expression for T is still

0.5 1.0 1.5 2.0

2

4

6

8

Fig. 5 Temperature vs. mass according to Eq. (35) with β = 1/10:
solid line reproduces the Hawking behavior for large m � mp; dotted
line is the unphysical branch, and their meeting point represents the
black hole with minimum mass

meaningful for β < 0. These possibilities hint at a lat-
tice microstructure of the space-time, and they have been
explored, e.g. in polymer quantization, and in world-crystal
physics [33].

Recalling now that the emission rate can be written as

dm

dt
= −8π3 m2 T 4

15 m5
p �p

, (39)

we obtain the decay rate

− dm

dt
� α

m2

mp �p
+ O(m − mp), (40)

for T � Tp = mp (or m � mp), where 4 × 10−5 < α <

7 × 10−4 when 0 < β < 1.
It is perhaps questionable that objects with a mass of the

order of mp can be described by the usual thermodynami-
cal arguments, which stem from a (semi-)classical picture of
black holes. However, the horizon wave function for a parti-
cle was precisely conceived to describe this quantum regime,
and we can now assume that the probability the black-hole
decays is given by the probability PT that the particle can
be found outside its own horizon4. Of course, if the mass
m � mp, the horizon wave function tells us that the particle
is most likely not a black hole to begin with, so the above
interpretation must be restricted to m � mp (see again Fig. 1).

We first define

P>(r > RH) = PS(r > RH) PH(RH), (41)

4 The subscript T is for tunneling, which is reminiscent of the inter-
pretation of the Hawking emission as a tunneling process through the
horizon [34,35]. Note, however, that the horizon is fuzzy in our descrip-
tion and not a (backreacting) classical surface.
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where now

PS(r > RH) = 4π

∞∫

RH

|ψS(r)|2 r2 dr. (42)

Upon integrating the above probability over all values of RH,
we then obtain (since m ∼ �−1)

PT(m) = 1 − PBH(m), (43)

and, expanding (26) for m � mp,

PT(m) � a − b
m − mp

mp
, (44)

where a � 0.14 and b � 0.65 are positive constants of order
1. The amount of the particle’s energy that can be found
outside the horizon could thus be estimated by


m � m PT � a m + O(m − mp). (45)

At the same time, from the time-energy uncertainty relation


E 
t � mp �p, (46)

one obtains the typical emission time


t � �2
p


RH
� �, (47)

where we used Eqs. (1) and (28). Putting the two pieces
together, we then find that a near-Planck size black hole
would emit according to

− 
m


t
� a

m

�
+ O(m − mp)

� a
m2

mp �p
+ O(m − mp), (48)

in functional agreement with the prediction from the GUP
given in Eq. (40).

It is now important to remark that there is a fairly large
numerical discrepancy between the numerical coefficients in
Eq. (40) and those in Eq. (48). For once, this disparity can
perhaps be traced back to the fact that, with Eq. (39), we are
applying the canonical formalism to a Planck mass particle,
which is not completely sensible, since the particle/black hole
should be in quasi-equilibrium with its radiation for thermo-
dynamical arguments to hold. The horizon wave function,
instead, knows nothing of the thermodynamics, and, there-
fore, should have a more general validity. However, we must
point out that the above description of black-hole evapora-
tion relies on a totally static representation of the Quantum
Mechanical particle, and is, therefore, to be viewed as a first
attempt at modeling the decay of a quantum black hole in
the present picture. A more accurate account of the micro-
scopic structure of quantum black holes is indeed likely to
change the details (see, e.g. Refs. [36–40]), but the fact that

this simple treatment leads to results similar to those fol-
lowing from the GUP is already intriguing, and suggestive
that an even more accurate Quantum Mechanical description
should be possible. Finally, let us mention that in this Planck-
ian regime, regardless of the microscopic model, it would
certainly be more appropriate to use the microcanonical for-
malism [41,42] (based on energy conservation, a property
not entailed by the GUP). Future work will be devoted to
refining of the calculations in all of these directions.

4 Conclusions and outlook

We have here introduced a horizon wave function as a tool
that allows us to effectively describe the emergence of a
horizon in a localized Quantum Mechanical system. For the
simple case of a spherically symmetric massive particle, the
horizon wave function already supports the existence of a
minimum black-hole mass, without assuming a priori the
existence of a minimum (fundamental) length [23,43–47]5.
Moreover, it does so in a genuinely Quantum Mechanical
fashion, since it produces a negligible probability that a par-
ticle with mass much smaller than mp is a black hole, rather
than giving a sharp value for the particle mass above which
the transition from particle to black hole occurs. Further,
the description of black holes that the horizon wave func-
tion entails was shown to be compatible with GUPs, since it
yields the same kind of uncertainty relation in phase space,
and a similar decay rate for Planck-size objects.

The results presented here, however, should be viewed
as preliminary, as the notion of a horizon wave function
requires a thorough generalization before it can be effectively
employed to analyze more interesting physical problems. We
already mentioned in the Introduction that it is of particu-
lar conceptual interest to study the possibility of black-hole
production in high-energy collisions [53–57]. Let us here
recall that, along these lines, Dvali et al. [21,22] recently
conjectured that the high-energy limit of all physically rel-
evant Quantum Field Theories involves the formation of a
(semi)classical state (to wit, black-hole formation for grav-
ity), which should automatically suppress trans-Planckian
quantum fluctuations. This idea extends the concept of a
GUP to include gravity, as was considered, for example in
Refs. [15–19,23] and implies that the mass of microscopic
black holes must be quantized and we must admit a mini-
mum value [58] (for more general cases, see also Ref. [59]).
Besides the conceptual relevance for the inclusion of grav-
ity in a description of all forces of nature, there is also the

5 The existence of this mass threshold may have phenomenological
implications in models with extra spatial dimensions [48–52], where the
fundamental (gravitational) length corresponds to energy scales poten-
tially as low as a few TeV’s.
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potential phenomenological relevance of quantum mechan-
ical effects during the formation of trapping horizons and
black holes of astrophysical size.

In fact, one should not forget that the basic building blocks
of matter remain the Standard Model particles, and that at
such extreme energy regimes quantum effects should not be
overlooked. All of the above conjectures would, therefore,
be conspicuously substantiated if we could understand the
extremely complex dynamics of colliding Standard Model
particles, including the effect of the gravitational interac-
tion, around the Planck scale [54–57,60]. To this purpose, the
definition of the horizon wave function for simple spherical
systems must be generalized to describe particle collisions
and the inclusion of angular momentum in the initial and
final configurations [61]. It appears to be hard to complete
such steps without a more detailed model of “quantum black
holes”, to define the Hilbert space of the horizon wave func-
tion. One could, for example, incorporate the conjecture of
Refs. [36–40] and describe the matter sourcing the black-hole
geometry as a condensate at the phase transition.

Acknowledgments R.C. would like to thank O. Micu and B. Harms
for useful comments. R.C. is supported by the I.N.F.N. Grant BO11.
F.S. would like to thank Misao Sasaki, for warm hospitality at Yukawa
Institute, Kyoto, where some early stages of this work were conceived.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
Funded by SCOAP3 / License Version CC BY 4.0.

References

1. J.R. Oppenheimer, H. Snyder, Phys. Rev. 56, 455 (1939)
2. J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55, 374 (1939)
3. P.S. Joshi, Gravitational Collapse and Spacetime Singularities.

Cambridge Monographs on Mathematical Physics. (Cambridge,
MA, 2007)

4. J.D. Bekenstein, Black Holes: Physics and Astrophysics. Stellar-
Mass, Supermassive and Primordial Black Holes. arXiv:astro-ph/
0407560

5. K.S. Thorne, in Nonspherical Gravitational Collapse: A Short
Review, ed. by J.R. Klauder. Magic Without Magic (San Francisco,
1972), p. 231

6. P.D. D’Eath, P.N. Payne, Phys. Rev. D 46, 658 (1992)
7. P.D. D’Eath, P.N. Payne, Phys. Rev. D 46, 675 (1992)
8. P.D. D’Eath, P.N. Payne, Phys. Rev. D 46, 694 (1992)
9. J.M.M. Senovilla, Europhys. Lett. 81, 20004 (2008)

10. G.L. Alberghi, R. Casadio, O. Micu, A. Orlandi, JHEP 1109, 023
(2011)

11. S.D.H. Hsu, Phys. Lett. B 555, 92 (2003)
12. X. Calmet, D. Fragkakis, N. Gausmann, Eur. Phys. J. C 71, 1781

(2011)
13. X. Calmet, W. Gong, S.D.H. Hsu, Phys. Lett. B 668, 20 (2008)
14. R. Casadio, Localised Particles and Fuzzy Horizons: A Tool for

Probing Quantum Black Holes. arXiv:1305.3195 [gr-qc]

15. M. Maggiore, Phys. Lett. B 319, 83 (1993)
16. A. Kempf, G. Mangano, R.B. Mann, Phys. Rev. D 52, 1108 (1995)
17. F. Scardigli, Phys. Lett. B 452, 39 (1999)
18. F. Scardigli, R. Casadio, Class. Quant. Grav. 20, 3915 (2003)
19. F. Scardigli, R. Casadio, Int. J. Mod. Phys. D 18, 319 (2009)
20. S.A. Hayward, R. Di Criscienzo, L. Vanzo, M. Nadalini, S. Zerbini,

Class. Quant. Grav. 26, 062001 (2009)
21. G. Dvali, C. Gomez, A. Kehagias, JHEP 1111, 070 (2011)
22. G. Dvali, G.F. Giudice, C. Gomez, A. Kehagias, JHEP 1108, 108

(2011)
23. M. Bleicher, P. Nicolini, M. Sprenger, Eur. J. Phys. 33, 853 (2012)
24. S.W. Hawking, Nature 248, 30 (1974)
25. S.W. Hawking, Commun. Math. Phys. 43, 199 (1975)
26. F. Scardigli, Nuovo Cim. B 110, 1029 (1995)
27. R.J. Adler, P. Chen, D.I. Santiago, Gen. Rel. Grav. 33, 2101 (2001)
28. M. Cavaglia, S. Das, R. Maartens, Class. Quant. Grav. 20, L205

(2003)
29. F. Scardigli, Hawking temperature for various kinds of black holes

from Heisenberg uncertainty principle. arXiv:gr-qc/0607010
30. K. Nouicer, Class. Quant. Grav. 24, 5917 (2007)
31. F. Scardigli, Glimpses on the Micro Black Hole Planck Phase.

arXiv:0809.1832 [hep-th]
32. F. Scardigli, C. Gruber, P. Chen, Phys. Rev. D 83, 063507 (2011)
33. P. Jizba, H. Kleinert, F. Scardigli, Phys. Rev. D 81, 084030 (2010)
34. M.K. Parikh, F. Wilczek, Phys. Rev. Lett. 85, 5042 (2000)
35. M. Angheben, M. Nadalini, L. Vanzo, S. Zerbini, JHEP 0505, 014

(2005)
36. G. Dvali, C. Gomez, Black Holes as Critical Point of Quantum

Phase Transition. arXiv:1207.4059 [hep-th]
37. G. Dvali, C. Gomez, Phys. Lett. B 719, 419 (2013)
38. G. Dvali, C. Gomez, Phys. Lett. B 716, 240 (2012)
39. G. Dvali, C. Gomez, Fortsch. Phys. 61, 742 (2013)
40. R. Casadio, A. Orlandi, Quantum harmonic black holes, JHEP (to

appear). arXiv:1302.7138 [hep-th]
41. R. Casadio, B. Harms, Phys. Rev. D 58, 044014 (1998)
42. R. Casadio, B. Harms, Entropy 13, 502 (2011)
43. P. Nicolini, Int. J. Mod. Phys. A 24, 1229 (2009)
44. L.J. Garay, Int. J. Mod. Phys. A 10, 145 (1995)
45. C.A. Mead, Phys. Rev. 135, B849 (1964)
46. X. Calmet, M. Graesser, S.D.H. Hsu, Phys. Rev. Lett. 93, 211101

(2004)
47. X. Calmet, M. Graesser, S.D.H. Hsu, Int. J. Mod. Phys. D 14, 2195

(2005)
48. N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phys. Lett. B 429,

263 (1998)
49. N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phys. Rev. D 59,

0806004 (1999)
50. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phys.

Lett. B 436, 257 (1998)
51. L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999)
52. L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999)
53. P. Kanti, Lect. Notes Phys. 769, 387 (2009)
54. T. Banks, W. Fischler, A Model for High-Energy Scattering in

Quantum Gravity. arXiv:hep-th/9906038
55. D.M. Eardley, S.B. Giddings, Phys. Rev. D 66, 044011 (2002)
56. S.B. Giddings, S.D. Thomas, Phys. Rev. D 65, 056010 (2002)
57. I.Y. Aref’eva, Theor. Math. Phys. 161, 1647 (2009)
58. G. Dvali, C. Gomez, S. Mukhanov, Black Hole Masses are Quan-

tized. arXiv:1106.5894 [hep-ph]
59. M. Visser, JHEP 1206, 023 (2012)
60. D. Amati, M. Ciafaloni, G. Veneziano, JHEP 0802, 049 (2008)
61. R. Casadio, A. Orlandi, O. Micu (work in progress)

123

http://arxiv.org/abs/arXiv:astro-ph/0407560
http://arxiv.org/abs/arXiv:astro-ph/0407560
http://arxiv.org/abs/arXiv:1305.3195
http://arxiv.org/abs/arXiv:gr-qc/0607010
http://arxiv.org/abs/arXiv:0809.1832
http://arxiv.org/abs/arXiv:1207.4059
http://arxiv.org/abs/arXiv:1302.7138
http://arxiv.org/abs/arXiv:hep-th/9906038
http://arxiv.org/abs/arXiv:1106.5894

	Horizon wave function for single localized particles:  GUP and quantum black-hole decay
	Abstract 
	1 Introduction and motivation
	2 Horizon Quantum Mechanics
	2.1 Spherical trapping horizons
	2.2 Horizon wave function

	3 Gaussian packet at rest in flat space
	3.1 Effective GUP
	3.2 Quantum black-hole evaporation

	4 Conclusions and outlook
	Acknowledgments
	References


