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Abstract Sudakov-type distributions are at the heart of gen-
erating radiation in parton showers as well as contemporary
NLO matching algorithms along the lines of the POWHEG
algorithm. In this paper, the C++ library ExSample is in-
troduced, which implements adaptive sampling of Sudakov-
type distributions for splitting kernels which are in general
only known numerically. Besides the evolution variable, the
splitting kernels can depend on an arbitrary number of other
degrees of freedom to be sampled, and any number of fur-
ther parameters which are fixed on an event-by-event basis.

1 Introduction

Parton shower Monte Carlo simulations as implemented in
[1–3], just to name few of the recently developed codes, re-
quire a way to draw random variates from a probability den-
sity

dSP (μ,q|Q; z; ξ)

dq dnz

= ΔP (μ|Q; ξ)δ(q − μ)

+ θ(Q − q)θ(q − μ)P (q; z; ξ)ΔP (q|Q; ξ) (1)

when evolving from a hard scale Q to a soft scale q in the
presence of an infrared cutoff μ, below which no radiation
occurs. Here, ΔP (q|Q; ξ) is the Sudakov form factor,

ΔP (q|Q; ξ) = exp

(
−

∫ Q

q

∫
P(k; z; ξ)dnzdk

)
(2)

and P(q; z; ξ) ≥ 0 is the splitting kernel describing the dy-
namics of radiation at a scale q , along with n other kinematic
parameters z = (z1, . . . , zn) and in dependence on any fur-
ther parameters ξ = (ξ1, . . . , ξm). Examples of these param-
eters are momentum fractions of incoming partons or invari-
ant masses of the partonic configuration from which the next
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emission is to be generated. The most complicated informa-
tion in terms of additional parameters is certainly given by
the full information on a phase space point of a Born-type
event from which real emission is to be generated in the con-
text of matrix element corrections [4–8] or NLO matching
using the POWHEG method which is originally described
in [9]. We refer to the probability density defined in Eq. (1)
as the Sudakov-type distribution associated to P .

Drawing random variates from dSP by standard methods
is in general not feasible, as the integral entering the Su-
dakov form factor would have to be evaluated numerically,
and interpolated. Though this is indeed being done for exam-
ple in the FORTRAN version of HERWIG [10], this method
ceases to be applicable if the number of additional degrees
of freedom or in particular the number of additional param-
eters become large.

To this extent, current parton shower implementations re-
side on the Sudakov veto algorithm which, e.g. has been
discussed in [4, 11–13]. The Sudakov veto algorithm re-
quires an overestimate R to the splitting kernel of interest
P , R(q; z; ξ) ≥ P(q; z; ξ), and is defined by

Qstart ← Q

loop
solve rnd = ΔR(q|Qstart; ξ)θ(q − μ) for q

draw z from R(q; z; ξ)

if q = μ then
return (μ, z)

else
return (q, z) with probability P(q; z; ξ)/R(q; z; ξ)

end if
Qstart ← q

end loop

where rnd denotes a source of random numbers uniformly
distributed on [0,1]. Obviously, R needs to be of a simple
form in such a way that the first step in the loop can easily
be implemented.

Finding such an R has up to now always required knowl-
edge of properties of the target kernel P , making a general-
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purpose implementation of the algorithm impossible. Espe-
cially towards more complicated splitting kernels, this man-
ual procedure of determining R from the properties of P

may not be possible at all: even analytic expressions may not
be known, P being available only numerically. A general
implementation may also further enhance flexibility when
changing parton distribution functions in the parton shower
backward evolution and thus the respective splitting kernels.

The purpose of ExSample (a shorthand for Exponential
Sampler) is to provide such a general purpose implementa-
tion, by adaptively obtaining an overestimate to the target
splitting kernel in such a way as to optimize the algorithm’s
overall performance.

2 Generation of adapting overestimates

ExSample is very much inspired by the ACDC and FOAM
algorithms implemented in [14, 15]. By the same reason-
ing, ExSample makes use of ‘cells’, which represent a sub-
hypercube of the volume spanned by the evolution variable
q , the additional degrees of freedom z and external param-
eters ξ . Cells are organized in a binary tree, each cell hav-
ing either two or no children, in the latter case terminating
the tree at this branch. The union of the two hypercubes Ub

and Uc represented by the two children cells cb,c always
equals the hypercube U(bc) represented by the parent cell
c(bc). Each cell c contains the maximum of the target split-
ting kernel P encountered by a presampling as its value wc .
The leaf cells of the tree, constituting a certain fractal-type
partition of the sampling volume into hypercubes, define the
overestimate function,

R(q; z; ξ) =
∑

leaf cells c

wc θ
(
(q; z; ξ) ∈ Uc

)
. (3)

Each parent cell keeps track of the integrals of its children
cells, Ic,b = wc,b volume(Ub,c). This allows for an efficient
sampling of the overestimate function, by selecting either of
the children cells according to their integral, biased by con-
straints imposed due to the selected evolution variable, the
externally fixed parameter point and the need to compensate
for newly encountered maxima.

The next value of the evolution variable is easily gener-
ated by keeping track of projections of the overestimate ker-
nel onto the evolution variable dimension in dependence on
the externally fixed parameter point. In order to keep track
of the dependence on the additional parameters ξ as well
as the starting value of the evolution variable Q, ExSam-
ple provides a mechanism to calculate unique hash values
identifying the sub tree of the cell structure which should
be considered for a given parameter point. All information
needed to sample events, i.e. in particular projections of the
overestimate kernel R and the number of ‘missing’ events

per cell, to be discussed in Sect. 3, can be accessed in de-
pendence on these hash values. The basic structure of the
sampling is sketched in Fig. 1.

The root cell of the tree spans the whole sampling vol-
ume and is the only cell present at the initial stage of the
algorithm. Children cells are produced in an adaption step,
iteratively building up the cell tree through splitting a cell
into two children cells. This procedure aims at improving
the algorithm’s efficiency along with gaining more detailed
information on the target splitting kernel, i.e. a more fine-
grained overestimate closer to it.

In order to achieve this, each cell always monitors its
efficiency, which is defined as the ratio of the number of
accepted points divided by the number of proposed points
and thus gives a measure of the overall performance of the
Sudakov veto algorithm. If this efficiency drops below a

Fig. 1 A sketch of the algorithm for an evolution variable q , one ad-
ditional variable z, and no further parameters ξ . The top of the fig-
ure shows how the leaf cells (in the third plane from the top, shown
here after two cell splits) are organized in a binary tree structure start-
ing from the root cell U((12)3). The bottom of the figure sketches the
overestimate R. To the left of the overestimate, the Sudakov expo-
nent corresponding to R, F(q) = − lnΔR(q|1) is shown. Here we as-
sume that the absolute upper bound on the evolution variable is q < 1,
thus the first step to draw an event starting from a scale Q is to solve
s(Q) = − ln rnd + F(Q) = F(q) for q (indicated by the dashed blue
line). A z value is then sampled in the cells containing the q value just
chosen: The cell integrals over z are computed to only reflect the sub-
tree consisting of the black arrows, and the tree structure is traversed
only along the corresponding paths, selecting either of the children
cells with weight given by the respective integral. Within the bound-
aries of a leaf cell selected by this procedure, a z value is drawn flat.
This corresponds to drawing a z value from the distribution sketched by
the solid blue line, the overestimate R at fixed q (Color figure online)
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user-supplied threshold, the cell is considered ‘bad’. With
a frequency decreasing as the efficiency of the algorithm in-
creases, and on encounter of a bad cell, a potential splitting
of the cell is determined to further increase the efficiency of
the algorithm.

To obtain an optimal hyper-plane along which the cell
should be split, each cell histograms projections of the av-
erage target kernel value onto each variable dimension k,
〈P 〉k(xk). The dimension k (which here may refer to either
the evolution variable, one of the additional degrees of free-
dom or any of the external parameters) orthogonal to this
hyperplane, and the split point xk (out of a number of pos-
sible split points well inside the cell’s boundaries) defined
by the intersection of the hyperplane and this direction are
determined to maximize a ‘gain’ measure, defined as

gaink(xk) =
| ∫ xk

x−
k

〈P 〉k(x)dx − ∫ x+
k

xk
〈P 〉k(x)dx|

∫ x+
k

x−
k

〈P 〉k(x)dx

. (4)

Here, x±
k denote the cell’s boundaries in the variable xk .

For reasons of performance and simplicity, the current im-
plementation uses a two-bin histogram per dimension, and
xk = (x−

k + x+
k )/2, leaving only the choice of dimension to

maximize the gain measure: If the behaviour of P is rather
flat when projected on one dimension k, this dimension will
receive a small gain measure, and projections showing more
variance in P are more likely to be split along. Again, a user-
supplied parameter can steer the behaviour of the adaption
by considering only those splits to be worth performed, if
the gain exceeds some value.

Out of the two children cells the target density is being
presampled in that cell which did not contain the maximum
point used before to get a new estimate of the maximum.
The number of presampling points per cell is another user-
defined parameter. The choice of this parameter has to be
carried out in view of the compensation procedure to be de-
fined in the next section with a trade-off between the time
needed for presampling and the time lost by the number of
events to be vetoed by the compensation procedure. There
is no general rule on how it is to be determined. Experience
gained so far shows that few thousand presampling points
are an acceptable compromise.

3 Compensating for new maxima

Since the true maximum of the target kernel can never be
determined with probability one from the presampling pro-
cedure, care has to be taken on what constraints need to be
imposed on the sampling procedure once a point has been
encountered exceeding the currently used maximum. For a

sufficiently large number of presampling points one may re-
side on the statement that these points are rare and gener-
ated distributions will not show any effect on the erroneous
overestimate. Thinking about the overall efficiency of the
algorithm in performing its function of acting as a continu-
ous source of unweighted events with the smallest possible
overhead, this is certainly not a criterion to base an imple-
mentation on.

To define the method of compensation, we first intro-
duce the notion of missing events in a given cell. As for
the cell’s integral, each parent cell carries the sum of the
missing events of its children cells. The number of missing
events is not limited to be positive. In case it is positive, the
corresponding cell needs to be oversampled, i.e. the algo-
rithm is forced to sample events in cells with a positive num-
ber of missing events, lowering this number in the selected
cell if it is larger than zero. Oversampling is imposed on
the algorithm as long as there are cells with a positive count
of missing events. Conversely, if the missing event count is
negative, a cell needs to be undersampled. If such a cell is
selected, its missing event count is increased, if it is smaller
than zero and the selection is vetoed, triggering a new cell
selection. The behaviour of the algorithm in a compensating
state is illustrated in Fig. 2.

Upon encounter of a new maximum w′
c > wc, the number

of missing events associated to this change is calculated for
each cell as

Nmiss
c = Nc

(
p′

c

pc

− 1

)
. (5)

Here, Nc is the number of proposal events already generated
in the cell, and pc (p′

c) denotes the probability to select cell
c using the old (new) overestimate value for events above
the infrared cutoff. pc is calculated from the knowledge of
projections of the overestimate kernel in dependence on the
additional parameter point ξ and the hard scale Q as

pc =
∫
c
R(q; z; ξ)ΔR(q|Q; ξ)dnzdq

1 − ΔR(μ|Q; ξ)
. (6)

Nmiss
c is then added to each cell’s current missing event

count. Note that undersampling, Nmiss
c < 0 appears in the

cells not containing the newly encountered maximum ow-
ing to the change in normalization of the overestimate den-
sity for events above the infrared cutoff. Equation (5) en-
sures that within the currently accumulated statistics pro-
posal events are always distributed according to the last
encountered maximum, provided the algorithm has been
stopped in a state where it is not anymore forced to perform
over- or undersamplings. This is evident by rewriting Eq. (5)
as

Nmiss
c = Nc

〈N〉c
(〈N ′〉c − 〈N〉c

)
(7)
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Fig. 2 A sketch of the algorithm in a setup similar to Fig. 1, now
sketching the situation upon encounter of a new overestimate. The new
overestimate gave rise to different numbers of events expected in each
cell (solid rectangles in the lower part), as compared to the number
of events expected with the old overestimate (dotted rectangles). The
difference between these determines the number of missing events per
cell (see text for more details). In the sketch given here, the cells U2
and U3 would receive a positive number of missing events (forcing
sampling in these cells as indicated by the black arrows), whereas cell
U1 would contain a negative count of missing events, triggering vetoes
of attempts to sample points in this cell (indicated by the red arrow)
(Color figure online)

where 〈N〉c = Npc (〈N ′〉c = Np′
c) is the number of ex-

pected events in cell c for the total number of generated
events, N . The difference in brackets is the number of miss-
ing events in the absence of fluctuations due to a finite num-
ber of generated events, and the factor in front of it takes into
account the currently accumulated statistics, i.e. how much
the population of the cell differs from its expected popula-
tion.

4 The cell selection algorithm

In this section the complete algorithm to generate events as
implemented in ExSample is defined. We here skip those
parts connected to monitoring the efficiency of and splitting
a cell. Proposal events according to dSR(q|Q; z; ξ) as re-
quired by the Sudakov veto algorithm are generated by first
deciding, if there has been an event at the infrared cutoff
or otherwise selecting a proposal cell according to Algo-
rithm 1.

Algorithm 1 The cell selection algorithm.
calculate sub tree hash h(Q; ξ) and collect projections
loop

solve rnd = ΔR(q|Q; ξ)θ(q − μ) for q

if q = μ then
return event at infrared cutoff

end if
collect cell integrals and missing event counters
cell ← root cell
while cell is not a leaf do

if Nmiss
firstChild(cell) > 0 ∧ Nmiss

secondChild(cell) ≤ 0 then
cell ← firstChild(cell)

else if Nmiss
firstChild(cell) ≤ 0 ∧ Nmiss

secondChild(cell) > 0 then
cell ← secondChild(cell)

else
if rnd < IfirstChild(cell)/Icell then

cell ← firstChild(cell)
else

cell ← secondChild(cell)
end if

end if
end while
if Nmiss

cell = 0 then
return cell

else if Nmiss
cell > 0 then

Nmiss
cell ← Nmiss

cell − 1
return cell

else if Nmiss
cell < 0 then

Nmiss
cell ← Nmiss

cell + 1
end if

end loop

Once a proposal cell has been selected, a proposal event
is drawn by sampling the remaining degrees of freedom z

in the selected cell with uniform distribution. Except for the
compensating cell selection algorithm outlined above, the
Sudakov veto algorithm proceeds without modification.

5 Examples and validation

ExSample has been validated for various ‘toy’ splitting ker-
nels and within the realistic application of a parton shower
and POWHEG matching implementation. In this section we
present simple examples of distributions obtained by using
ExSample, mainly to illustrate the basic functionality.

Figure 3 shows the results obtained by the adaptive Su-
dakov veto algorithm, using a kernel density showing the
generic behaviour of a QCD splitting function with run-
ning αs . Perfect agreement with a numerical integration is
found. In addition, Fig. 4 shows the functionality of the com-
pensation procedure by comparing results for the same dis-
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Fig. 3 A Sudakov-type distribution with a QCD splitting function type
kernel density as sampled by ExSample using the adaptive Sudakov
veto algorithm. The vertical axis corresponds to the evolution variable
q , the horizontal to a variable similar to a momentum fraction. Shown
are few sampled events, projections of the generated distribution versus
the result from a numerical integration, and the cell grid produced

Fig. 4 The same distribution as shown in the upper left panel of Fig. 3,
now sampled with a different number of presampling points proving
functionality of the compensation procedure

tribution but different numbers of presampling points used
in the algorithm, which are all consistent with each other.

In Fig. 5 the results of sampling a Sudakov-type distri-
bution in the presence of additional parameters are shown.
In this example, a quark splitting function multiplied by a
power law in x/z has been used, where x is the additional
parameter and z is the momentum fraction variable to be
sampled. The sampled distributions in various bins of the
additional parameter x have been compared to a numerical
integration. Full agreement has been found here. The pres-
ence of adaption splits in the parameter dimension has ex-
plicitly been checked for this example.

We also use this example, which closely resembles initial
state backward evolution of a parton shower at small values
of the momentum fraction x, to asses the improvements ob-
tained by the adaptive sampling algorithm. Particularly, we
count the number of vetoed points encountered when requir-
ing the same number of events while limiting the allowed
number of cell splits. This way, a direct comparison of very
coarse to increasingly finer overestimates is performed. The

Fig. 5 Distributions for a Sudakov-type distribution using a quark
splitting function, multiplied by a power law in x/z. Shown are the
sampled distribution for the evolution variable q and momentum frac-
tion z in various bins of the additional parameter x. The distributions
are compared to a numerical integration, proving full functionality of
the sampling in presence of additional parameters

results are presented in Fig. 6, showing an exponential im-
provement with the number of splits performed.

6 Conclusions

The sampling of Sudakov-type distributions is at the heart of
all current parton shower and POWHEG NLO matching im-
plementations. In this paper we have introduced the C++ li-
brary ExSample, which targets at adaptive sampling of these
distributions as defined from a splitting kernel, which—in
general—may only be known through a function call.

Additional parameters, such as typically encountered de-
pendencies on incoming parton momentum fractions or the
full dependence on a phase space point governing a hard
scattering process, can be dealt with in full generality.
ExSample has been validated in ‘toy’ as well as realistic se-
tups, showing full functionality of the implementation.
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Fig. 6 Performance of the algorithm measured as a ratio of the number
of vetoed points to the number of events requested as a function of
the number of cell splits allowed. An exponential improvement is seen
as more and more splits are considered. In this example, requesting
500000 events, a maximum of 27 splits occurred. The very efficient
region from 18 splits onward with below three vetoes per generated
event has been reached after about 40000 generated events
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Appendix: Availability and installation

ExSample is available from http://www.desy.de/~platzer/
software/exsample-1.0.tar.gz. It is a complete header based

library, depending additionally only on the presence of boost
headers [16]. An installation procedure is thus not required
except for making the ExSample headers available to the
client code during compilation by including the header file
exsample.h. ExSample is published under the GNU General
Public License version 2 [17] and can thus be freely used
and redistributed.

The distribution contains extensive documentation, sev-
eral examples of usage, as well as an implementation for
standard sampling and adaptive Monte Carlo integration, of
which ExSample is capable as well.
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