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Abstract Exclusive ρ0-meson electroproduction is stud-
ied in the HERMES experiment, using a 27.6 GeV lon-
gitudinally polarized electron/positron beam and unpolar-
ized hydrogen and deuterium targets in the kinematic region
0.5 GeV2 < Q2 < 7.0 GeV2, 3.0 GeV < W < 6.3 GeV,
and −t ′ < 0.4 GeV2. Real and imaginary parts of the
ratios of the natural-parity-exchange helicity amplitudes
T11 (γ ∗

T → ρT ), T01 (γ ∗
T → ρL), T10 (γ ∗

L → ρT ), and
T1−1 (γ ∗−T → ρT ) to T00 (γ ∗

L → ρL) are extracted from the
data. For the unnatural-parity-exchange amplitude U11, the
ratio |U11/T00| is obtained. The Q2 and t ′ dependences of
these ratios are presented and compared with perturbative
QCD predictions.

1 Introduction

Exclusive electroproduction of vector mesons, e + N →
e′ +V +N ′, has been the focus of investigation for decades.
Not only is the reaction mechanism of intrinsic interest,
but this process also offers the possibility of studying, in a
model-dependent way, the structure of hadrons involved in
the process [1, 2]. Using the one-photon-exchange approxi-
mation, all the measurable observables in electroproduction
can be expressed in terms of the virtual-photon spin-density
matrix and the helicity amplitudes FλV λ′

Nλγ λN
of the process

γ ∗(λγ ) + N(λN) → V (λV ) + N ′(λ′
N). (1)

Here, γ ∗ denotes the virtual photon exchanged between the
lepton and the target nucleon, V denotes the produced vector
meson, and N(N ′) the initial (final) nucleon. The helicities
of the particles are given in parentheses in (1). The helicity
amplitudes are defined in the virtual-photon-nucleon center-
of-mass (CM) system. In order to make the discussion of
the transition γ ∗ → V more transparent, we shall hence-
forth often omit the nucleon helicity indices using the nota-
tion FλV λγ instead of FλV λ′

Nλγ λN
. The properties of helicity

amplitudes can be studied in detail because the spin-density
matrix of the virtual photon is well known from quantum
electrodynamics and the spin-density matrix of the produced
vector meson is experimentally accessible.

For unpolarized targets, the formalism of the spin-density
matrix elements (SDMEs) of the produced vector meson
was first presented in Ref. [3], where expressions of SDMEs
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in terms of helicity amplitudes were established. The for-
malism was then extended to the case of polarized targets in
Ref. [4]. Recently, a new general formalism for the descrip-
tion of the process in (1) through SDMEs was presented in
Ref. [5].

In order to determine SDMEs from experimental data,
the SDMEs are considered as being independent free pa-
rameters in the fitting of the production and decay angular
distribution of the vector meson. This is referred to as the
“SDME method” in the rest of this work.

SDMEs are dimensionless quantities and therefore de-
pend on ratios of amplitudes rather than on amplitudes them-
selves. The exact expressions for SDMEs given in Refs. [3–
5] can be rewritten in terms of amplitude ratios. In an alter-
native method of fitting the angular distribution, these ratios
are considered as being independent free parameters. This
method is referred to as the “amplitude method” in the rest
of this work.

In order to extract the helicity amplitudes themselves, ex-
perimental data on the differential cross section with respect
to the Mandelstam t variable, dσ/dt (which is proportional
to the sum of squared moduli of all the amplitudes) are re-
quired in addition to the experimentally determined ampli-
tude ratios. An analysis of these combined data would al-
low the extraction of the moduli of all amplitudes and of
the phase differences between them with the common phase
remaining undetermined. However, the requisite informa-
tion on nucleon spin-flip amplitudes is not available for data
taken with unpolarized targets.

Exclusive meson production in hard lepton scattering has
been shown to offer the possibility of constraining general-
ized parton distributions (GPDs), which provide correlated
information on transverse spatial and longitudinal momen-
tum distributions of partons in the nucleon [6–17]. Vector-
meson production amplitudes contain various linear combi-
nations of process-independent GPDs for quarks of various
flavors and gluons. Access to GPDs relies on the factoriza-
tion property of the process amplitude, i.e., the amplitude
can be written as convolution of “non-perturbative” GPDs
with amplitudes of hard partonic subprocesses calculated
within the framework of perturbative quantum chromody-
namics (pQCD) and quantum electrodynamics.

The amplitudes F0 1
2 0± 1

2
are the most interesting because,

only for these and quantities constructed from them, was
factorization proven [18]. Factorization is not proven for the
other amplitudes nor for SDMEs, which depend on all he-
licity amplitudes. The amplitudes F0 1

2 0± 1
2

correspond to the
transition of a longitudinally polarized (L) virtual photon
to a longitudinally polarized vector meson, γ ∗

L → VL, and
dominate at large photon virtuality Q2. Nevertheless, an ap-
plication of the “modified perturbative approach” [13, 14]
assumes that the factorization property also holds for the
amplitudes F11 and F01. The agreement found between

mailto:klaus.rith@desy.de
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certain calculated SDMEs and those extracted from HER-
MES [19], ZEUS [20], and H1 [21] data supports this as-
sumption. The differential and total cross sections for lon-
gitudinal ρ0-meson production by longitudinal photons are
reasonably well described in the GPD-based approach of
Refs. [12, 13, 15–17] not only at the high energies of the
HERA collider experiments [22–26] but also at intermediate
energies covered by the fixed-target experiments E665 [27],
HERMES [28], and CLAS [29, 30].

Amplitude ratios are useful not only as a tool for ob-
taining F00. They can be used to study the general proper-
ties [5, 31–33] of the vector-meson-production amplitudes
at very small and very large values of Q2 and t . They can
also be used to test theoretical models. For these purposes,
an amplitude ratio is more convenient than an SDME, which
constitutes a more complicated object since any SDME de-
pends on all the amplitude ratios. The amplitudes of the non-
diagonal γ ∗ → V transitions F01 and F10 are known [32] to
be zero if any valence quark in the vector meson carries half
of the longitudinal momentum of the meson in the infinite
momentum frame. These amplitudes are the most sensitive
objects for the study of the quark motion in vector mesons.
The double-spin-flip amplitude F1−1 contains information
on the gluon transversity generalized parton distribution [10,
11, 31–34] in the nucleon, which cannot be obtained from
inclusive deep-inelastic lepton-nucleon scattering.

Amplitude ratios in ρ0 and φ meson production on the
proton were first studied by the H1 experiment [21] at the
HERA collider. The results of the analysis of ρ0-meson pro-
duction at HERMES using the SDME method were pub-
lished in Ref. [19], where also the description of the HER-
MES spectrometer and details of the data treatment etc. can
be found. The present work is a continuation of that analy-
sis. In the analysis presented in this paper, ratios of helicity
amplitudes to the amplitude F0 1

2 0 1
2

are extracted separately
for data taken with unpolarized hydrogen and deuterium tar-
gets first and then also for the combined datasets in a single
analysis. A comparison of the proton and deuteron results
allows the study of the degree of interference between I = 1
exchanges of qq̄ pairs and I = 0 exchanges of qq̄ pairs and
two gluons.

2 Kinematics

In accordance with the notation of Ref. [19], the kinematic
variables of the process

eN → e′γ ∗N → e′ρoN ′ → e′π+π−N ′ (2)

are defined as follows. The four-momenta of the incident
and outgoing leptons are denoted by k and k′, the difference
of which defines the four-momentum q = k − k′ of the vir-
tual photon γ ∗. In the target rest frame (which is also called

the laboratory or lab frame in this work), ϑ is the scattering
angle between the incident and outgoing leptons, the ener-
gies of the leptons are denoted by E and E′. The photon
virtuality, given by

Q2 = −q2 = −(k − k′)2 lab≈ 4EE′ sin2 ϑ

2
, (3)

is positive in leptoproduction. In this equation, the electron
rest mass is neglected. The four-momentum of the incident
(recoiling) nucleon is denoted by p (p′). The Bjorken scal-
ing variable xB is defined as

xB = Q2

2p · q = Q2

2Mν
, (4)

with

ν = p · q
M

lab= E − E′, (5)

so that ν represents the energy transfer from the incom-
ing lepton to the virtual photon in the laboratory frame.
The squared invariant mass of the photon–nucleon system
is given by

W 2 = (p + q)2 = M2 + 2Mν − Q2. (6)

The Mandelstam variable t is defined by the relation

t = (q − v)2, (7)

where v is the four-momentum of the ρ0 meson being equal
to pπ+ + pπ− , the sum of π+ and π− four-momenta. The
variables t , t0, and t ′ = t − t0 are always negative, where
−t0 is the minimal value of −t for given values of Q2, W ,
and the ρ0-meson mass MV . At small values of −t ′, the
approximation −t ′ ≈ v2

T holds, where vT is the transverse
momentum of the ρ0 meson with respect to the direction of
the virtual photon in the CM system.

The variable ε represents the ratio of fluxes of longitudi-
nally and transversely polarized virtual photons and is given
by

ε = 1 − y − Q2

4E2

1 − y + y2

2 + Q2

4E2

lab≈
(

1 + 2

(
1 + ν2

Q2

)
tan2 ϑ

2

)−1

(8)

with y = p · q/p · k lab= ν/E.
The “exclusivity” of ρ0 production in the process in (2)

is characterized by the variable

�E = M2
X − M2

2M

lab= EV − (Eπ+ + Eπ−), (9)

where MX = √
(k − k′ + p − pπ+ − pπ−)2 is the recon-

structed invariant mass of the undetected hadronic system
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Fig. 1 Definition of angles in the process eN → e′γ ∗N →
e′ρ0N ′ → e′π+π−N ′. Here Φ is the angle between the ρ0 produc-
tion plane and the lepton scattering plane in the CM system of virtual
photon and target nucleon. See Ref. [35] for details. The variables θ

and φ are respectively the polar and azimuthal angles of the decay π+
in the ρ0-meson rest frame, with the Z axis being anti-parallel to the
outgoing nucleon momentum

(missing mass), EV = ν + t/(2M) is the energy of the ex-
clusively produced ρo meson, and (Eπ+ + Eπ−) is the sum
of the energies of the two detected pions in the laboratory
system. For exclusive ρ0 electroproduction MX = M and
therefore �E = 0.

The angles used for the description of the process in (2)
are defined according to Ref. [35] (see also Ref. [19]) and
presented in Fig. 1.

3 Formalism

3.1 Natural and unnatural-parity exchange helicity
amplitudes

In Ref. [3], exclusive ρ0-meson leptoproduction is described
by helicity amplitudes FλV λ′

Nλγ λN
defined in the right-

handed CM system of the virtual photon and target nucleon.
In this system, the Z-axis is aligned along the virtual photon
three-momentum q and the Y -axis is parallel to q ×v where
v is the ρ0 meson three-momentum as shown in Fig. 1. The
helicity amplitude can be expressed as the scalar product of
the matrix element of the electromagnetic current vector J κ

and the virtual-photon polarization vector e
(λγ )
κ

FλV λ′
Nλγ λN

= (−1)λγ 〈vλV p′λ′
N |J κ |pλN 〉e(λγ )

κ , (10)

where a summation over the Lorentz index κ is performed.
Here e

(±1)
κ and e

(0)
κ indicate respectively transverse and lon-

gitudinal polarization of the virtual photon in the CM sys-

tem:

e(±1) = (e0, eX, eY , eZ) =
(

0,∓ 1√
2
,− i√

2
,0

)
, (11)

e(0) = 1

Q
(qZ,0,0, q0)

= 1

WQ

(
M

√
ν2 + Q2,0,0,Mν − Q2

)
. (12)

The ket vector |pλN 〉 corresponds to the initial nucleon and
the bra vector 〈vλV p′λ′

N | represents the final state consist-
ing of a ρ0 meson and the scattered nucleon.

Any helicity amplitude FλV λ′
Nλγ λN

can be decomposed
into the sum of an amplitude TλV λ′

Nλγ λN
for natural-parity

exchange (NPE) and an amplitude UλV λ′
Nλγ λN

for unnatural-
parity exchange (UPE) [3–5]

FλV λ′
Nλγ λN

= TλV λ′
Nλγ λN

+ UλV λ′
Nλγ λN

, (13)

which obey the following symmetry relations

TλV λ′
Nλγ λN

= (−1)−λV +λγ T−λV λ′
N−λγ λN

= (−1)λ
′
N−λN TλV −λ′

Nλγ −λN
, (14)

UλV λ′
Nλγ λN

= −(−1)−λV +λγ U−λV λ′
N−λγ λN

= −(−1)λ
′
N−λN UλV −λ′

Nλγ −λN
. (15)

There are three important consequences of the symmetry re-
lations (14) and (15) [3, 5]:

(i) The number of linearly independent NPE amplitudes is
equal to 10 while only 8 independent UPE amplitudes
describe the process in (1),

(ii) No UPE amplitude exists for the transition γL → ρ0
L,

so that in particular F0 1
2 0 1

2
≡ T0 1

2 0 1
2

≡ T00,
(iii) For unpolarized targets there is no interference between

NPE and UPE amplitudes [3, 5].

In Regge phenomenology [36, 37], an exchange of a
single natural-parity reggeon [P = (−1)J (pomeron, sec-
ondary reggeons ρ, f2, a2, . . .)] contributes to the NPE
amplitudes, while an exchange of a single unnatural-parity
reggeon [P = −(−1)J (π , a1, b1, . . .)] contributes to the
UPE amplitudes [38]. It is worth noting that for a multi-
reggeon-exchange contribution, there is no such one-to-one
correspondence. For example, an exchange of two reggeons
of “unnatural” parity contributes to the NPE amplitudes.

For convenience, we introduced in Ref. [19] the abbrevia-
tion

∑̃ ≡ 1
2

∑
λ′

NλN
for the summation over the final nucleon

helicity indices and for averaging over the initial spin states
of the nucleon. For NPE amplitudes, transitions that are di-
agonal in nucleon helicity (λ′

N = λN ) are dominant. In this
case, neglecting the small nucleon helicity-flip amplitudes
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T
λV ± 1

2 λγ ∓ 1
2

and using (14), the summation and averaging

operation
∑̃

reduces to one term:

∑̃
TλV λγ T ∗

λ′
V λ′

γ
≡ 1

2

∑
λNλ′

N

TλV λ′
Nλγ λN

T ∗
λ′

V λ′
Nλ′

γ λN

= T
λV

1
2 λγ

1
2
T ∗

λ′
V

1
2 λ′

γ
1
2
+ T

λV − 1
2 λγ

1
2
T ∗

λ′
V − 1

2 λ′
γ

1
2

≈ T
λV

1
2 λγ

1
2
T ∗

λ′
V

1
2 λ′

γ
1
2

≡ TλV λγ T ∗
λ′

V λ′
γ
, (16)

where T ∗
λ′

V λ′
Nλ′

γ λN
represents the complex conjugate of

the amplitude Tλ′
V λ′

Nλ′
γ λN

. Due to symmetry properties
(see (14)), the abbreviated notation TλV λγ is used for the
amplitudes T

λV
1
2 λγ

1
2

= T
λV − 1

2 λγ − 1
2
.

In general, no dominance for UPE amplitudes can be
proven either for diagonal transitions (λN = λ′

N ) or for
transitions with nucleon helicity flip. Therefore, no relation
analogous to (16) can be derived.

3.2 Spin density matrix elements

The photon-spin-density matrix normalized to unit flux of
transversely polarized virtual photons embodies the matri-
ces �U

λγ μγ
and �L

λγ μγ
corresponding to unpolarized (U ) and

longitudinally (L) polarized lepton beams:

�U+L
λγ μγ

= �U
λγ μγ

+ PB �L
λγ μγ

, (17)

where PB is the longitudinal polarization of the lepton beam
and �U

λγ μγ
and �L

λγ μγ
are defined in Ref. [19]. The spin den-

sity matrix ρλV μV
of the produced ρ0 meson is related to

that of the virtual photon, �U+L
λγ μγ

, through the von Neumann
formula [3]:

ρλV μV
= 1

2N
∑

λγ μγ λNλ′
N

FλV λ′
Nλγ λN

�U+L
λγ μγ

F ∗
μV λ′

Nμγ λN
. (18)

Note that the phase factor (−1)λγ in (10) is important for
usual matrix summation over λγ and μγ in (18). The nor-
malization factor is given by

N = NT + εNL, (19)

with

NT =
∑̃(|T11|2 + |T01|2 + |T1−1|2

+ |U11|2 + |U01|2 + |U1−1|2
)
, (20)

NL =
∑̃(|T00|2 + 2|T10|2 + 2|U10|2

)
. (21)

Equation (21) is obtained by using the symmetry rela-
tions (14) and (15).

If the spin-density matrix of the virtual photon is decom-
posed into the standard set (see Ref. [3]) of nine hermitian

matrices Ση (η = 0,1, . . . ,8), for the produced ρ0 meson a
set of nine matrices r

η
λV μV

is obtained:

r
η
λV μV

= 1

2N
∑

λγ μγ λ′
NλN

FλV λ′
Nλγ λN

Σ
η
λγ μγ

F ∗
μV λ′

Nμγ λN
. (22)

If an experiment is performed at fixed beam energy,
a Rosenbluth [39] decomposition into contributions from
longitudinally and transversely polarized virtual photons is
impossible. In this case, the contributions from the matrix
elements r0

λV μV
and r4

λV μV
cannot be disentangled and the

only measurable combination is

r04
λV μV

≡ r0
λV μV

+ εr4
λV μV

. (23)

3.3 Three-dimensional angular distribution

The formula for the angular distribution of the scattered
electrons/positrons and π+ mesons from the decay ρ0 →
π+π− for the case of a longitudinally polarized beam and
an unpolarized target [3] is given by

W U+L(Φ,φ, cos θ)

= W U(Φ,φ, cos θ) + PB W L(Φ,φ, cos θ). (24)

Here W U(Φ,φ, cos θ) represents the angular distribution
when both beam and target are unpolarized (see (25)) and
W L(Φ,φ, cos θ) is the additional term arising for longitudi-
nally polarized beam (see (26)).

W U(Φ,φ, cos θ) = 3

8π2

[
1

2

(
1 − r04

00

) + 1

2

(
3r04

00 − 1
)

cos2 θ − √
2 Re

{
r04

10

}
sin 2θ cosφ − r04

1−1 sin2 θ cos 2φ

− ε cos 2Φ
(
r1

11 sin2 θ + r1
00 cos2 θ − √

2 Re
{
r1

10

}
sin 2θ cosφ − r1

1−1 sin2 θ cos 2φ
)

− ε sin 2Φ
(√

2 Im
{
r2

10

}
sin 2θ sinφ + Im

{
r2

1−1

}
sin2 θ sin 2φ

)
+ √

2ε(1 + ε) cosΦ
(
r5

11 sin2 θ + r5
00 cos2 θ − √

2 Re
{
r5

10

}
sin 2θ cosφ − r5

1−1 sin2 θ cos 2φ
)

+ √
2ε(1 + ε) sinΦ

(√
2 Im

{
r6

10

}
sin 2θ sinφ + Im

{
r6

1−1

}
sin2 θ sin 2φ

)]
, (25)
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W L(Φ,φ, cos θ) = 3

8π2

[√
1 − ε2

(√
2 Im

{
r3

10

}
sin 2θ sinφ + Im

{
r3

1−1

}
sin2 θ sin 2φ

)

+ √
2ε(1 − ε) cosΦ

(√
2 Im

{
r7

10

}
sin 2θ sinφ + Im

{
r7

1−1

}
sin2 θ sin 2φ

)

+ √
2ε(1 − ε) sinΦ

(
r8

11 sin2 θ + r8
00 cos2 θ − √

2 Re
{
r8

10

}
sin 2θ cosφ − r8

1−1 sin2 θ cos 2φ
)]

. (26)

4 The amplitude method

4.1 Comparison of the SDME and amplitude methods

The SDME method for analyzing experimental data has the
disadvantage that, in general, numerators of SDMEs depend
on several ratios of helicity amplitudes (see Refs. [3, 19])
while the denominator common for all SDMEs depends on
all the amplitude ratios. Therefore, if an SMDE extracted
from data differs from model calculations, the source of the
discrepancy is difficult to identify.

In total there are 18 independent amplitudes [3–5]. Since
SDMEs depend on ratios of these complex amplitudes to
F00, any SDME comprises 34 real, independent functions.
However, the number of SDMEs to be extracted from ex-
perimental data in polarized particle scattering is larger. For
instance, there are 47 SDMEs when both beam and target
are longitudinally polarized, while the angular distribution
for longitudinal beam polarization and transverse target po-
larization depends on 71 SDMEs [5]. While the SDMEs can
be completely expressed in terms of amplitude ratios, the
fact that there are many more SDMEs than amplitude ra-
tios implies that the SDMEs obey some relations. Due to the
complicated inter-dependence on amplitude ratios, SDMEs
cannot be considered as independent quantities and ampli-
tude ratios can provide a more economical basis for fitting
angular distributions of decay particles. This implies that
the SDME values calculated from extracted amplitude ra-
tios can be expected to be more accurate than those from
direct SDME fits.

SDMEs calculated using the extracted helicity ampli-
tude ratios may differ from those obtained with the SDME
method. The SDMEs calculated from amplitude ratios are
more constrained than those obtained by the SDME method.
In general, any set of SDMEs obtained with the SDME
method is physical only if it can be described in terms
of amplitude ratios. Certain conditions, called positivity
constraints, that must be satisfied by SDMEs in order to
be expressed through amplitude ratios were considered in
Ref. [5]. However, the full set of conditions that must be
satisfied by SDMEs in order to be expressible in terms of
helicity amplitude ratios is currently unknown.

4.2 Hierarchy of helicity amplitudes

The number of amplitude ratios to be extracted from data
can be reduced if there exists a hierarchy for the moduli

of helicity amplitudes. For large photon virtuality Q2 and
small |t ′|, such a hierarchy among helicity amplitudes was
predicted theoretically [31, 32] and confirmed experimen-
tally [19, 25, 40]. According to this hierarchy, there are a
few significant amplitudes while the contributions of other
amplitudes may be neglected within the present experimen-
tal accuracy. In a given kinematic region, the hierarchy of
the amplitudes is governed by one or more “small kinematic
parameters” that determine the contribution of various am-
plitudes to the process.

4.2.1 s-Channel helicity conservation

It was observed [1, 2] that, at small |t ′|, the amplitudes with
a helicity flip in the transition γ ∗ → V (λV �= λγ ) are much
smaller than those for diagonal transitions where the helic-
ity of the vector meson is equal to that of the virtual photon
(λV = λγ ). This behavior is controlled by the small param-
eter

α =
√−t ′
M

, (27)

where M is a typical hadronic mass, usually taken to be the
nucleon mass. This dominance of the γ ∗ → V transition that
is diagonal with respect to helicity is called the s-channel he-
licity conservation (SCHC) approximation. Furthermore, it
was shown [41] that for small |t ′| and Q2 > 2M2, NPE am-
plitudes with nucleon helicity flip are suppressed compared
to amplitudes describing diagonal transitions with λN = λ′

N .
The same small parameter given by (27) controls this sup-
pression.

As only an unpolarized target is considered here, there
is no linear contribution of nucleon-helicity-flip amplitudes
to the relevant SDMEs [3, 5]. The fractional contribution of
NPE amplitudes with nucleon helicity flip is suppressed by a
factor α2, so that we need to consider only NPE amplitudes
with λN = λ′

N if we neglect terms of order α2.
The SCHC NPE amplitudes are T00 and T11. The helicity-

flip amplitudes T01 and T10 are proportional to the small fac-
tor α, while the double-helicity-flip amplitude T1−1 is pro-
portional to α2.
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4.2.2 Twist decomposition

At asymptotically large photon virtuality, all amplitudes can
be decomposed into power series of another small parameter

β = MV

Q
. (28)

An expansion in β corresponds to the twist decomposition.
A theoretical analysis in the framework of pQCD was per-
formed [31, 32] for the amplitudes of the process in (1). It
was shown [18] that only the dominant amplitude T00 re-
ceives twist-2 contribution, while all other amplitudes con-
tain only higher-twist contributions. The amplitudes T11,
T01, T1−1 are suppressed by β while the amplitude T10 is
suppressed by β2. SCHC and the twist decomposition lead
to the following hierarchy of NPE amplitudes at small |t ′|
and large Q2:

|T00|2 � |T11|2 � |T01|2 � |T10|2 ∼ |T1−1|2. (29)

Such a hierarchy was observed in the HERA collider exper-
iments [20, 21, 25, 40].

4.2.3 Asymptotic behavior of amplitudes at high energy

At high energy, a third small parameter can be defined:

γ = M

W
. (30)

The asymptotic behavior of amplitudes at large W and small
|t | was studied experimentally, providing information that
led to the development of Regge phenomenology [36, 37].
The fractional contribution of various amplitudes to SDMEs
can be estimated by applying the formula for the ampli-
tude of the exchange of a reggeon R at small |t | and large
W , F ∝ (W 2/M2)αR(t), where αR(t) is the Regge trajec-
tory (the spin of the exchanged reggeon). As a rough es-
timate, we assume that the pomeron intercept αP (0) ≈ 1.
Hence the amplitude of pomeron exchange is proportional to
the factor W 2/M2. Secondary reggeons with natural parity
have αR(0) ≈ 0.5 which results in F ∝ W/M . Intercepts for
reggeons with unnatural parity are negative in accordance
with the results of a Regge phenomenology analysis [36, 37]
of experimental data on soft scattering of hadrons. There-
fore, the Regge factor is less than (W 2/M2)0 = 1. In QCD,
exchanges of secondary reggeons and reggeons with unnat-
ural parity correspond to quark–antiquark exchanges, while
pomeron exchange corresponds to two-gluon exchange. In
other words, the ratio of amplitudes of quark–antiquark ex-
changes with natural parity to the amplitude of pomeron ex-
change is proportional to the parameter γ , while the ratio
of amplitudes of quark–antiquark exchanges with unnatural
parity to the amplitude of pomeron exchange is proportional

to γ 2. Since there is no interference between contributions
of NPE and UPE amplitudes to SDMEs measured on un-
polarized targets, the fractional contribution of UPE ampli-
tudes is suppressed by a factor γ 4. This explains why only
NPE amplitudes survive at HERA collider energies.

In the context of single-reggeon exchange, the isospin
I = 1 reggeon (ρ, a2, . . .) contribution to the amplitude
of vector-meson production on the proton is of opposite
sign to that on the neutron. In contrast, the I = 0 reggeon
(pomeron, ω, f2, . . .) contribution to the amplitude is of the
same sign for both proton and neutron. Hence, the results on
SDMEs and amplitude ratios should be different for proton
and deuteron if I = 1 and I = 0 contributions to the am-
plitude interfere. By comparing proton and deuteron results,
the fractional contribution of I = 1 reggeons to the extracted
amplitude ratios can be estimated.

4.2.4 Hierarchy of amplitudes in the kinematic region
of HERMES

In the HERMES kinematic region, the parameter β is larger
than 0.3 and the relative sizes of SDMEs measured in exclu-
sive ρ0 production can be explained by the following hier-
archy [19]:

|T00|2 ∼ |T11|2 � |U11|2 > |T01|2 � |T10|2
∼ |T1−1|2 > |U01|2 ∼ |U10|2 ∼ |U1−1|2, (31)

with the two largest amplitudes being T00 and T11. The ab-
breviated notation UλV λγ , where

|UλV λγ |2 ≡ |U
λV

1
2 λγ − 1

2
|2 + |U

λV
1
2 λγ

1
2
|2 (32)

was introduced because, for UPE amplitudes, it is impossi-
ble to prove the dominance of those without nucleon helicity
flip over those with helicity flip, in contrast to the NPE am-
plitudes. As shown in (31), the moduli of all the UPE ampli-
tudes except U11 are smaller than those of the NPE ampli-
tudes. The numerical estimate |U11|2/(|T11|2 + ε|T00|2) ≈
0.11 ± 0.04 obtained in Ref. [19] shows that the modu-
lus of |U11| is even larger than that of |T01| (and the re-
sult of the fit done in the present work confirms this re-
sult) and the contribution of |U11| to the SDMEs cannot be
neglected. This contribution is suppressed by a factor γ 4

which is smaller than 0.01 in the HERMES kinematic re-
gion 3.0 GeV ≤ W ≤ 6.3 GeV. If the UPE amplitude U11

is due to pion exchange, its contribution may be significant
in the HERMES kinematic region because of the large pion-
nucleon coupling constant gπNN .

Contributions from small amplitudes can be appreciable
if they are multiplied by the largest amplitudes T00 or T11 in
the numerators of SDME formulas. As the small amplitudes
T01, T10, and T1−1 are multiplied by the largest amplitudes
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(see Ref. [3] and Appendix A of Ref. [19]), five complex
NPE amplitudes have to be considered in total, i.e. the four
ratios T11/T00, T01/T00, T10/T00, and T1−1/T00. Concern-
ing the ratio U11/T00, only |U11|/|T00| can be determined as
there is no interference between UPE and NPE amplitudes
for the case of an unpolarized target. The contribution of all
other UPE amplitudes can be neglected [19]. In total, there
are nine independent free parameters to be determined when
fitting the angular distribution using the amplitude method.

4.3 Basic formulas of the amplitude method

The exact formulas for SDMEs expressed in terms of helic-
ity amplitudes are presented in Appendix A of Ref. [19]. In
order to rewrite SDMEs in terms of the ratios of significant
helicity amplitudes, we neglect the contributions from NPE
nucleon helicity-flip amplitudes (using (16)) and from all
UPE amplitudes except U11. Then, dividing both the numer-
ators and the denominator in the exact formulas for SDMEs
by |T00|2, we arrive at approximate expressions for SDMEs
in terms of certain amplitude ratios:

r04
00 � {

ε + |t01|2
}
/N, (33)

Re
{
r04

10

} � Re

{
εt10 + 1

2
t01(t11 − t1−1)

∗
}/

N, (34)

r04
1−1 � Re

{−ε|t10|2 + t1−1t
∗
11

}
/N, (35)

r1
11 � Re

{
t1−1t

∗
11

}
/N, (36)

r1
00 � −|t01|2/N, (37)

Re
{
r1

10

} � 1

2
Re

{−t01(t11 − t1−1)
∗}/N, (38)

r1
1−1 � 1

2

{|t11|2 + |t1−1|2 − |u11|2
}
/N, (39)

Im
{
r2

10

} � 1

2
Re

{
t01(t11 + t1−1)

∗}/N, (40)

Im
{
r2

1−1

} � 1

2

{−|t11|2 + |t1−1|2 + |u11|2
}
/N, (41)

r5
11 � 1√

2
Re

{
t10(t11 − t1−1)

∗}/N, (42)

r5
00 � √

2 Re{t01}/N, (43)

Re
{
r5

10

} � 1√
8

Re
{
2t10t

∗
01 + (t11 − t1−1)

}
/N, (44)

r5
1−1 � 1√

2
Re

{−t10(t11 − t1−1)
∗}/N, (45)

Im
{
r6

10

} � − 1√
8

Re{t11 + t1−1}/N, (46)

Im
{
r6

1−1

} � 1√
2

Re
{
t10(t11 + t1−1)

∗}/N, (47)

Im
{
r3

10

} � −1

2
Im

{
t01(t11 + t1−1)

∗}/N, (48)

Im
{
r3

1−1

} � − Im
{
t1−1t

∗
11

}
/N, (49)

Im
{
r7

10

} � 1√
8

Im{t11 + t1−1}/N, (50)

Im
{
r7

1−1

} � 1√
2

Im
{
t10(t11 + t1−1)

∗}/N, (51)

r8
11 � − 1√

2
Im

{
t10(t11 − t1−1)

∗}/N, (52)

r8
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2 Im{t01}/N, (53)

Re
{
r8

10

} � 1√
8

Im
{−2t10t

∗
01 + t11 − t1−1

}
/N, (54)

r8
1−1 � 1√

2
Im

{
t10(t11 − t1−1)

∗}/N (55)

where the normalization factor N = N /|T00|2 is defined in
accordance with (19)–(21) by

N = NT + εNL,

NT � |t11|2 + |t01|2 + |t1−1|2 + |u11|2,
NL � 1 + 2|t10|2.

(56)

Here tλV λγ ≡ TλV λγ /T00 and |u11|2 ≡ |U11|2/|T00|2 with
|U11|2 defined in (32). There are nine independent real
functions in (33)–(56), namely: Re(t11), Im(t11), Re(t01),
Im(t01), Re(t10), Im(t10), Re(t1−1), Im(t1−1), and |u11|.
Equations (33)–(56) are the basis for the extraction of the
helicity amplitude ratios from the measured angular distri-
butions and also for the calculation of SDMEs from ampli-
tude ratios (see Sect. 6.5).

5 The HERMES experiment

A detailed description of the HERMES experiment at DESY
can be found in Ref. [42]. The data analyzed in this paper
were collected between the years 1996 and 2005. A longi-
tudinally polarized positron or electron beam of 27.6 GeV
was scattered from pure hydrogen or deuterium gas targets
internal to the HERA lepton storage ring. The lepton beam
was transversely polarized due to an asymmetry in the emis-
sion of synchrotron-radiation [43] in the field of the dipole
magnets. The transverse beam polarization was transformed
locally into longitudinal polarization at the interaction point
by spin rotators located upstream and downstream of the
HERMES apparatus. The helicity of the beam was typi-
cally reversed every two months. For both positive and nega-
tive beam helicities, the beam polarization was continuously
measured by two Compton polarimeters [44, 45]. The av-
erage beam polarization for the hydrogen (deuterium) data
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set was 0.45 (0.47) after requiring 0.15 < PB < 0.8 in the
analysis process, and the fractional uncertainty of the beam
polarization was 3.4% (2.0%) [44, 45]. Some of the data
were collected with longitudinally or transversely polarized
targets. However, the time-averaged polarization of the po-
larized targets was negligible, while the rapid (60–180 s)
reversal of the polarization direction minimized polarization
bias due to detector effects.

HERMES was a forward spectrometer [42] in which
both scattered lepton and produced hadrons were detected
within an angular acceptance of ±170 mrad horizontally,
and ±(40–140) mrad vertically. The tracking system had a
momentum resolution of about 1.5% and an angular reso-
lution of about 1 mrad. Lepton identification was accom-
plished using a transition-radiation detector, a preshower
scintillator counter, and the electromagnetic calorimeter.
The particle identification system included a gas threshold
C̆erenkov counter, which was replaced in 1998 by a dual-
radiator ring-imaging C̆erenkov detector [46]. Combining
the responses of these detectors in a likelihood method led
to an average lepton identification efficiency of 98% with
a hadron contamination of less than 1%. The event sam-
ple used in this analysis is exactly the same as that used in
Ref. [19].

6 Extraction of amplitude ratios

The measurement of the angular distribution of the scat-
tered electrons/positrons and the pions from the decay ρ0 →
π+π− is the basis for the extraction of spin density matrix
elements r

η
λV μV

in the SDME method and of helicity ampli-
tude ratios tλV λγ and |u11| in the amplitude method. For a
polarized lepton beam and an unpolarized target, the angu-
lar distribution of the pions is given by relations (24)–(26)
in Sect. 3.3 (see also Refs. [3, 19]), where the SDMEs are
expressed in terms of helicity amplitude ratios according
to (33)–(56).

6.1 Binned maximum likelihood method

Amplitude ratios are extracted with the same binned max-
imum likelihood method as in the previous SDME analy-
sis (see Sect. 6 of Ref. [19]). In brief, the amplitude ra-
tios in each of the kinematic bins are obtained by minimiz-
ing the difference between the 3-dimensional (cos θ,φ,Φ)

angular distribution of the experimental events and that of
a sample of fully reconstructed Monte Carlo events. The
latter are generated isotropically in (cos θ,φ,Φ) using the
rhoMC generator [48, 49] for exclusive ρ0 simulated in
the instrumental context of the spectrometer, and passed
through the same reconstruction chain as the experimental

data. The generated Monte Carlo events are iteratively re-
weighted with the angular distribution given by (24)–(26),
with the amplitude ratios treated as free parameters.

The minimization itself and the uncertainty calculation
are performed using the MINUIT package [50]. More details
can be found in Ref. [19].

6.2 Results on amplitude ratios in bins of Q2 and −t ′

Ratios of helicity amplitudes are extracted in a two-dimen-
sional (Q2, −t ′) binning from the same HERMES proton
and deuteron data sets as were used for the SDME analysis
of Ref. [19]. The four Q2 bins are denoted as q1, q2, q3,
and q4 defined by the limits 0.5, 1.0, 1.4, 2.0, 7.0 GeV2.
The four −t ′ bins are denoted as t1, t2, t3, and t4 defined by
the limits 0.0, 0.04, 0.10, 0.20, 0.40 GeV2. The mean val-
ues of Q2 and −t ′ in each bin are presented in Table 1. The
results of the extraction of the amplitude ratios in 16 bins
are presented in Table 2 for the proton data and in Table 3
for the deuteron data. In every (Q2, −t ′) bin, the nine free
parameters are obtained from a fit to the 3-dimensional an-
gular distribution without subtracting the background from
semi-inclusive deep-inelastic scattering (SIDIS). The SIDIS
background under the exclusive peak, i.e., in the region
−1 GeV < �E < 0.6 GeV, is estimated using the PYTHIA
Monte Carlo generator [51] (see Ref. [19] for more details)
and its effect is assigned as a systematic uncertainty.

6.3 Testing the extraction method

The self-consistency of the extraction of amplitude ratios
is tested with rhoMC Monte Carlo data. The fit results ob-
tained for the nine free parameters in several (Q2, −t ′) bins
spanning the experimental kinematic range are used to cal-
culate the 23 SDMEs according to (33)–(56). These SDMEs
are then used as input for a Monte Carlo simulation of the
angular distribution described in (24)–(26). This angular dis-
tribution is used to extract the nine free parameters again.

Table 1 Mean values of kinematic variables for 16 bins. The limits of
the q1, q2, q3, and q4 bins for Q2 are 0.5; 1.0; 1.4; 2.0; 7.0 GeV2 while
those of the t1, t2, t3, and t4 bins for −t ′ are the following: 0.0; 0.04;
0.10; 0.20; 0.40 GeV2

bin 〈Q2〉, GeV2 〈−t ′〉, GeV2 bin 〈Q2〉, GeV2 〈−t ′〉, GeV2

q1t1 0.817 0.019 q3t1 1.658 0.019

q1t2 0.823 0.068 q3t2 1.660 0.068

q1t3 0.821 0.146 q3t3 1.663 0.146

q1t4 0.815 0.280 q3t4 1.663 0.282

q2t1 1.184 0.019 q4t1 2.996 0.019

q2t2 1.188 0.068 q4t2 3.056 0.068

q2t3 1.189 0.145 q4t3 3.076 0.146

q2t4 1.188 0.282 q4t4 3.134 0.284
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Table 2 Ratios of helicity amplitudes in Q2 and −t ′ bins for proton data. The mean values of Q2 and −t ′ for all 16 bins are given in Table 1. The
notations tkj and |u11| are used for the amplitude ratios Tkj /T00 and |U11/T00|, respectively. The first uncertainties are statistical, the second are
systematic

Ratio q1t1 q1t2 q1t3 q1t4

Re(t11) 0.975 ± 0.121 ± 0.297 0.961 ± 0.101 ± 0.213 1.363 ± 0.140 ± 0.309 1.037 ± 0.176 ± 0.230

Im(t11) 0.542 ± 0.187 ± 0.052 0.285 ± 0.145 ± 0.174 0.082 ± 0.285 ± 0.104 0.783 ± 0.147 ± 0.213

Re(t01) 0.025 ± 0.044 ± 0.056 0.112 ± 0.036 ± 0.047 0.214 ± 0.064 ± 0.050 0.182 ± 0.048 ± 0.116

Im(t01) −0.098 ± 0170 ± 0.211 0.111 ± 0.111 ± 0.136 0.315 ± 0.120 ± 0.073 0.107 ± 0.108 ± 0.107

Re(t10) 0.037 ± 0.038 ± 0.050 −0.049 ± 0.039 ± 0.024 0.024 ± 0.039 ± 0.026 −0.010 ± 0.056 ± 0.043

Im(t10) −0.067 ± 0.064 ± 0.156 −0.066 ± 0.068 ± 0.009 0.005 ± 0.069 ± 0.023 0.050 ± 0.067 ± 0.021

Re(t1−1) −0.110 ± 0.042 ± 0.045 −0.021 ± 0.037 ± 0.079 −0.037 ± 0.043 ± 0.043 0.020 ± 0.056 ± 0.040

Im(t1−1) 0.178 ± 0.087 ± 0.349 −0.147 ± 0.092 ± 0.055 −0.124 ± 0.100 ± 0.079 −0.172 ± 0.079 ± 0.104

|u11| 0.329 ± 0.070 ± 0.021 0.424 ± 0.049 ± 0.032 0.391 ± 0.063 ± 0.124 0.357 ± 0.077 ± 0.070

Ratio q2t1 q2t2 q2t3 q2t4

Re(t11) 1.138 ± 0.143 ± 0.021 0.996 ± 0.106 ± 0.084 1.079 ± 0.094 ± 0.135 0.925 ± 0.097 ± 0.139

Im(t11) 0.282 ± 0.268 ± 0.212 0.386 ± 0.125 ± 0.039 0.342 ± 0.162 ± 0.159 0.289 ± 0.156 ± 0.141

Re(t01) 0.044 ± 0.051 ± 0.009 0.116 ± 0.037 ± 0.061 0.113 ± 0.035 ± 0.030 0.250 ± 0.043 ± 0.075

Im(t01) 0.073 ± 0.146 ± 0.137 0.327 ± 0.099 ± 0.083 −0.009 ± 0.141 ± 0.069 0.265 ± 0.107 ± 0.055

Re(t10) 0.001 ± 0.054 ± 0.011 −0.054 ± 0.034 ± 0.033 0.032 ± 0.030 ± 0.015 −0.065 ± 0.032 ± 0.020

Im(t10) −0.081 ± 0.073 ± 0.154 0.064 ± 0.073 ± 0.058 0.006 ± 0.070 ± 0.027 0.063 ± 0.073 ± 0.057

Re(t1−1) 0.001 ± 0.045 ± 0.015 0.023 ± 0.040 ± 0.018 −0.017 ± 0.036 ± 0.021 −0.073 ± 0.035 ± 0.019

Im(t1−1) −0.041 ± 0.137 ± 0.271 0.002 ± 0.078 ± 0.019 −0.084 ± 0.107 ± 0.024 −0.099 ± 0.069 ± 0.034

|u11| 0.499 ± 0.040 ± 0.039 0.429 ± 0.042 ± 0.081 0.418 ± 0.046 ± 0.119 0.359 ± 0.055 ± 0.055

Ratio q3t1 q3t2 q3t3 q3t4

Re(t11) 1.029 ± 0.104 ± 0.039 1.088 ± 0.098 ± 0.083 0.878 ± 0.079 ± 0.202 0.975 ± 0.096 ± 0.228

Im(t11) 0.257 ± 0.131 ± 0.151 0.479 ± 0.111 ± 0.050 0.513 ± 0.102 ± 0.385 0.280 ± 0.176 ± 0.365

Re(t01) −0.052 ± 0.039 ± 0.052 0.008 ± 0.032 ± 0.060 0.113 ± 0.035 ± 0.081 0.194 ± 0.044 ± 0.064

Im(t01) 0.357 ± 0.127 ± 0.480 0.100 ± 0.100 ± 0.004 0.123 ± 0.092 ± 0.275 −0.100 ± 0.108 ± 0.406

Re(t100 0.074 ± 0.028 ± 0.021 0.043 ± 0.028 ± 0.011 −0.007 ± 0.034 ± 0.032 −0.032 ± 0.038 ± 0.036

Im(t10) −0.051 ± 0.067 ± 0.042 −0.129 ± 0.058 ± 0.031 0.075 ± 0.053 ± 0.173 0.025 ± 0.113 ± 0.120

Re(t1−1) −0.013 ± 0.038 ± 0.021 −0.019 ± 0.035 ± 0.037 0.034 ± 0.037 ± 0.101 −0.044 ± 0.036 ± 0.065

Im(t1−1) 0.108 ± 0.090 ± 0.236 0.100 ± 0.071 ± 0.031 −0.186 ± 0.071 ± 0.071 0.037 ± 0.098 ± 0.185

|u11| 0.423 ± 0.055 ± 0.048 0.323 ± 0.068 ± 0.084 0.346 ± 0.056 ± 0.085 0.445 ± 0.050 ± 0.191

Ratio q4t1 q4t2 q4t3 q4t4

Re(t11) 0.723 ± 0.071 ± 0.053 0.706 ± 0.068 ± 0.039 0.582 ± 0.074 ± 0.156 0.650 ± 0.063 ± 0.117

Im(t11) 0.570 ± 0.071 ± 0.025 0.657 ± 0.061 ± 0.066 0.583 ± 0.110 ± 0.120 0.488 ± 0.067 ± 0.119

Re(t01) 0.062 ± 0.031 ± 0.007 0.121 ± 0.031 ± 0.006 0.190 ± 0.054 ± 0.021 0.282 ± 0.036 ± 0.060

Im(t01) 0.011 ± 0.069 ± 0.019 0.084 ± 0.079 ± 0.019 −0.129 ± 0.0.57 ± 0.154 −0.099 ± 0.081 ± 0.044

Re(t10) −0.013 ± 0.030 ± 0.011 −0.046 ± 0.035 ± 0.008 0.095 ± 0.025 ± 0.118 0.007 ± 0.031 ± 0.012

Im(t10) 0.010 ± 0.052 ± 0.010 0.050 ± 0.045 ± 0.015 −0.181 ± 0.060 ± 0.258 0.003 ± 0.044 ± 0.058

Re(t1−1) 0.000 ± 0.034 ± 0.007 0.065 ± 0.034 ± 0.007 0.027 ± 0.040 ± 0.033 0.024 ± 0.031 ± 0.011

Im(t1−1) 0.029 ± 0.056 ± 0.005 −0.068 ± 0.048 ± 0.015 −0.038 ± 0.040 ± 0.142 −0.036 ± 0.051 ± 0.066

|u11| 0.451 ± 0.049 ± 0.024 0.306 ± 0.061 ± 0.032 0.383 ± 0.067 ± 0.097 0.380 ± 0.044 ± 0.091

The resulting amplitude ratios are found to be consistent
with the input amplitude ratios within statistical uncertain-
ties.

6.4 Systematic uncertainties

In the extraction of SDMEs in Ref. [19], two main contribu-
tions to the total systematic uncertainty of the results were

discussed. One was the uncertainty in the background con-
tribution to the signal in the region of the exclusive peak in
the �E distribution. The background was simulated with
the PYTHIA Monte Carlo generator. In the present anal-
ysis, the amplitude ratios are determined with and with-
out background subtraction. The systematic uncertainty due
to the background is chosen to be the difference between
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Table 3 Ratios of helicity amplitudes in Q2 and −t ′ bins for deuteron data. The mean values of Q2 and −t ′ for all 16 bins are given in Table 1.
The notations tkj and |u11| are used for the amplitude ratios Tkj /T00 and |U11/T00|, respectively. The first uncertainties are statistical, the second
are systematic

Ratio q1t1 q1t2 q1t3 q1t4

Re(t11) 0.860 ± 0.078 ± 0.163 1.256 ± 0.095 ± 0.055 1.220 ± 0.113 ± 0.145 1.197 ± 0.124 ± 0.218

Im(t11) 0.509 ± 0.118 ± 0.203 0.304 ± 0.159 ± 0.049 0.192 ± 0.228 ± 0.114 0.222 ± 0.320 ± 0.208

Re(t01) −0.011 ± 0.029 ± 0.027 0.020 ± 0.032 ± 0.069 0.174 ± 0.044 ± 0.080 0.151 ± 0.052 ± 0.042

Im(t01) 0.023 ± 0.076 ± 0.070 0.088 ± 0.076 ± 0.035 0.239 ± 0.112 ± 0.086 0.222 ± 0.143 ± 0.164

Re(t10) −0.011 ± 0.029 ± 0.020 0.002 ± 0.027 ± 0.014 0.025 ± 0.032 ± 0.048 0.017 ± 0.033 ± 0.019

Im(t10) 0.020 ± 0.049 ± 0.044 −0.017 ± 0.063 ± 0.047 −0.048 ± 0.083 ± 0.135 0.014 ± 0.076 ± 0.095

Re(t1−1) −0.017 ± 0.029 ± 0.018 0.056 ± 0.030 ± 0.051 −0.052 ± 0.032 ± 0.039 0.027 ± 0.050 ± 0.078

Im(t1−1) −0.062 ± 0.064 ± 0.020 −0.098 ± 0.078 ± 0.039 −0.093 ± 0.093 ± 0.153 −0.228 ± 0.105 ± 0.054

|u11| 0.364 ± 0.037 ± 0.090 0.343 ± 0.046 ± 0.037 0.419 ± 0.048 ± 0.020 0.388 ± 0.060 ± 0.105

Ratio q2t1 q2t2 q2t3 q2t4

Re(t11) 0.984 ± 0.087 ± 0.048 0.888 ± 0.080 ± 0.126 1.119 ± 0.074 ± 0.129 0.990 ± 0.063 ± 0.140

Im(t11) 0.341 ± 0.106 ± 0.054 0.778 ± 0.078 ± 0.153 0.252 ± 0.105 ± 0.163 0.039 ± 0.142 ± 0.482

Re(t01) 0.042 ± 0.023 ± 0.022 0.071 ± 0.028 ± 0.028 0.109 ± 0.025 ± 0.037 0.262 ± 0.031 ± 0.043

Im(t01) 0.289 ± 0.130 ± 0.084 −0.062 ± 0.069 ± 0.158 0.136 ± 0.074 ± 0.035 0.070 ± 0.086 ± 0.064

Re(t10) −0.006 ± 0.027 ± 0.020 0.039 ± 0.025 ± 0.038 0.039 ± 0.019 ± 0.012 0.022 ± 0.029 ± 0.048

Im(t10) 0.029 ± 0.101 ± 0.052 −0.009 ± 0.034 ± 0.013 −0.087 ± 0.044 ± 0.007 −0.201 ± 0.065 ± 0.171

Re(t1−1) 0.013 ± 0.046 ± 0.017 0.021 ± 0.028 ± 0.060 −0.077 ± 0.007 ± 0.012 −0.041 ± 0.028 ± 0.039

Im(t1−1) 0.063 ± 0.100 ± 0.034 −0.042 ± 0.046 ± 0.042 0.030 ± 0.070 ± 0.012 −0.071 ± 0.072 ± 0.106

|u11| 0.395 ± 0.035 ± 0.066 0.262 ± 0.050 ± 0.048 0.401 ± 0.036 ± 0.134 0.373 ± 0.048 ± 0.085

Ratio q3t1 q3t2 q3t3 q3t4

Re(t11) 0.787 ± 0.059 ± 0.052 0.819 ± 0.065 ± 0.067 0.839 ± 0.076 ± 0.076 0.835 ± 0.060 ± 0.128

Im(t11) 0.487 ± 0.072 ± 0.081 0.518 ± 0.085 ± 0.079 0.553 ± 0.088 ± 0.111 0.203 ± 0.097 ± 0.129

Re(t01) 0.028 ± 0.024 ± 0.030 0.094 ± 0.025 ± 0.053 0.129 ± 0.028 ± 0.017 0.222 ± 0.028 ± 0.034

Im(t01) 0.102 ± 0.080 ± 0.021 0.001 ± 0.091 ± 0.042 −0.017 ± 0.078 ± 0.072 0.080 ± 0.072 ± 0.040

Re(t10) −0.006 ± 0.024 ± 0.003 −0.007 ± 0.023 ± 0.020 0.027 ± 0.028 ± 0.010 0.053 ± 0.026 ± 0.038

Im(t10) 0.008 ± 0.048 ± 0.018 −0.025 ± 0.045 ± 0.042 −0.092 ± 0.046 ± 0.014 −0.228 ± 0.058 ± 0.035

Re(t1−1) 0.031 ± 0.026 ± 0.026 −0.045 ± 0.027 ± 0.012 −0.018 ± 0.032 ± 0.052 −0.008 ± 0.027 ± 0.025

Im(t1−1) 0.000 ± 0.052 ± 0.037 0.102 ± 0.061 ± 0.015 −0.038 ± 0.065 ± 0.048 −0.068 ± 0.067 ± 0.047

|u11| 0.386 ± 0.034 ± 0.020 0.402 ± 0.039 ± 0.076 0.355 ± 0.045 ± 0.023 0.353 ± 0.050 ± 0.072

Ratio q4t1 q4t2 q4t3 q4t4

Re(t11) 0.655 ± 0.054 ± 0.044 0.842 ± 0.068 ± 0.043 0.768 ± 0.060 ± 0.079 0.820 ± 0.075 ± 0.315

Im(t11) 0.629 ± 0.049 ± 0.011 0.614 ± 0.066 ± 0.052 0.592 ± 0.059 ± 0.089 0.614 ± 0.070 ± 0.273

Re(t01) 0.060 ± 0.025 ± 0.003 0.147 ± 0.030 ± 0.010 0.144 ± 0.029 ± 0.018 0.243 ± 0.031 ± 0.105

Im(t01) −0.091 ± 0.075 ± 0.011 −0.065 ± 0.067 ± 0.018 −0.173 ± 0.076 ± 0.028 0.042 ± 0.078 ± 0.382

Re(t10) 0.025 ± 0.027 ± 0.009 0.042 ± 0.030 ± 0.012 0.073 ± 0.031 ± 0.016 −0.014 ± 0.034 ± 0.063

Im(t10) −0.088 ± 0.038 ± 0.014 −0.148 ± 0.047 ± 0.010 −0.131 ± 0.041 ± 0.017 −0.025 ± 0.049 ± 0.043

Re(t1−1) −0.009 ± 0.030 ± 0.001 −0.004 ± 0.032 ± 0.017 −0.010 ± 0.030 ± 0.008 −0.009 ± 0.030 ± 0.046

Im(t1−1) 0.016 ± 0.038 ± 0.006 −0.024 ± 0.051 ± 0.026 −0.050 ± 0.042 ± 0.075 −0.055 ± 0.048 ± 0.109

|u11| 0.436 ± 0.038 ± 0.042 0.422 ± 0.044 ± 0.045 0.389 ± 0.042 ± 0.070 0.420 ± 0.045 ± 0.076

the amplitude ratios of these two sets. The other main un-
certainty arises from the reliance on Monte Carlo simula-
tions to perform the extraction of amplitude ratios from data.
There are uncertainties in the parameters of the description
of ρ0 production in the Monte Carlo that propagate through
to the amplitude-ratio values presented in this paper. The
parameterization of the total electroproduction cross sec-

tion in rhoMC is chosen in the context of a vector-meson-
dominance model [1] that incorporates a propagator-type
Q2 dependence, and also contains a Q2 dependence of the
ratio of the longitudinally-polarized virtual photon and the
transversely-polarized virtual photon cross-sections. As the
HERMES spectrometer acceptance depends on Q2, differ-
ent input parameters result in slightly different reconstructed
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Fig. 2 (Color online)
Comparison of SDME and
amplitude methods. Red squares
show the results of the SDME
analysis [19]. Blue circles
(amplitude method) are obtained
in the present work from
amplitude ratios fitted directly
to the three-dimensional angular
distribution in every Q2 and −t ′
bin. The proton data at 〈Q2〉 = 3
GeV2, 〈−t ′〉 = 0.019 GeV2 are
presented. Yellow bands mark
those SDMEs that are non-zero
in the SCHC approximation.
Total uncertainties are depicted

isotropic angular distributions. The corresponding system-
atic uncertainty of the resulting helicity amplitude ratios is
obtained by varying these parameters within one standard
deviation in the total uncertainty of the parameters given in
Refs. [28, 47–49]. The effect of a possible kinematic de-
pendence of the t ′ slope of the cross section in the rhoMC
generator is found to be negligible in the kinematic region
of our experiment.

A third main contribution to the systematic uncertainty
arises in the amplitude method as a result of the neglect of
the small NPE nucleon helicity-flip amplitudes and all the
UPE amplitudes except U1 1

2 1± 1
2
. As shown in Appendix A,

the real and imaginary parts of the deviation δtλV λγ and also
δ|u11| of the obtained amplitude ratios from the true values
tλV λγ and |u11|, respectively, can be estimated using the re-
lations

∣∣δ Re(tλV λγ )
∣∣ = v2

T

2M2
|tλV λγ |, (57)

∣∣δ Im(tλV λγ )
∣∣ = v2

T

2M2
|tλV λγ |, (58)

δ|u11| = v2
T

8M2
|u11|. (59)

These equations are used to calculate the systematic uncer-
tainty for the amplitude method described in this paper.

The three main systematic uncertainties are added in
quadrature to give the total systematic uncertainty presented
in Tables 2 and 3.

The effect of radiative corrections onto the values of ρ0

SDMEs extracted was shown to be negligible [19]. This is
mainly due to the exclusivity cut �E < 0.6 GeV that ex-
cludes photons radiated with more than 0.6 GeV. The am-
plitude ratios in this work are extracted using exactly the
same data sets and cuts, by a very similar fit comparing
the shapes of the 3-dimensional experimental and simulated
angular distributions. Hence we conclude that any possible
systematic uncertainty of amplitude ratios due to radiative
corrections can be safely neglected.

6.5 Calculation of SDMEs
from extracted helicity amplitude ratios

In the following, the SDME results obtained from SDME
and amplitude methods are compared. The SDMEs are cal-
culated for every (Q2, −t ′) bin by applying formulas (33)–
(56) and using the values of the real and imaginary parts
of the amplitude ratios given in Tables 2 and 3. The re-
sults of both methods are found to agree over the full kine-
matic range of the experiment. The comparison is shown
for two representative bins, for the proton data using the bin
q4t1 (〈Q2〉 = 3 GeV2, 〈−t ′〉 = 0.019 GeV2) in Fig. 2 and
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Fig. 3 (Color online)
Comparison of SDME and
amplitude methods. Red squares
show the results of the SDME
analysis [19]. Blue circles
(amplitude method) are obtained
in the present work from
amplitude ratios fitted directly
to the three-dimensional angular
distribution in every Q2 and −t ′
bin. The deuteron data at
〈Q2〉 = 1.19 GeV2,
〈−t ′〉 = 0.145 GeV2 are
presented. Yellow bands mark
those SDMEs that are non-zero
in the SCHC approximation.
Total uncertainties are depicted

for deuteron data using the bin q2t3 (〈Q2〉 = 1.19 GeV2,
〈−t ′〉 = 0.145 GeV2) in Fig. 3. The bands in the figures
mark those SDMEs that may be non-zero in the SCHC
approximation, while the line at zero is drawn for those
SDMEs that vanish at t ′ = 0.

For the unpolarized SDMEs, the total uncertainties ob-
tained with the amplitude method are in most cases com-
parable to those obtained with the SDME method. An ex-
ception seen in Fig. 2 is r1

00 which is proportional to |t01|2
(see (37)) and hence extremely small at small |t ′|. For po-
larized SDMEs, the uncertainties obtained using the SDME
method are generally much larger than those obtained using
the amplitude method. This difference reflects a major dif-
ference in the methods themselves. In the SDME method,
polarized and unpolarized SDMEs are fitted as indepen-
dent free parameters. In this case, the error bars of the po-
larized SDMEs are inflated due to the factors PB = 0.47
and

√
1 − ε ≈ 0.45 (see (24)–(26)). However, (33)–(56)

show that the polarized SDMEs depend on amplitude ratios
constrained by both polarized and unpolarized data. Hence
the polarized SDMEs calculated from the amplitude ratios
have uncertainties comparable to those of the unpolarized
SDMEs. Nevertheless, the polarized data serves the impor-
tant function of constraining the sign of the imaginary parts
of amplitude ratios.

7 Kinematic dependences of amplitude ratios

7.1 Predictions for asymptotic behavior

At small |t ′|, the behavior of NPE amplitudes TλV λγ can be
described [5] by

TλV λγ ∝ (−t ′)|λV −λγ |/2, (60)

which reflects angular momentum conservation in the pro-
cess in (1). Equation (60) shows that T00 behaves as a con-
stant at small |t ′|. Hence each ratio tλV λγ = TλV λγ /T00 has
the same asymptotic behavior at t ′ → 0 as the amplitude
TλV λγ .

The asymptotic behaviour of the amplitudes of vector-
meson electroproduction at large Q2 and small xB was con-
sidered in Refs. [31, 32] in the framework of pQCD, using
the approximation of leading logarithms in which the loga-
rithms ln(1/xB) and ln(Q2) are large, and the amplitudes are
considered to be nearly imaginary. It was predicted [31–33]
that the amplitude ratios should have the following behavior
at large Q2 and small xB :

t11 ≡ T11

T00
∝ MV

Q
, (61)

t01 ≡ T01

T00
∝

√−t ′
Q

, (62)
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Fig. 4 The Q2 dependence of Re(T11/T00) for proton (left panel)
and deuteron (right panel) data, showing the result for the 16 (Q2,
−t ′) bins. Inner error bars show the statistical uncertainty and the total
error bars represent statistical and systematic uncertainties added in
quadrature. The parameterization of the curves is given by (66) and

their parameters are given in Table 4. Central lines are calculated with
the fitted values of parameters, while the dashed lines correspond to
one standard deviation of the curve parameter. Except for the second
−t ′ bin, the data points are shifted for better visibility

t10 ≡ T10

T00
∝ MV

√−t ′

Q2 + M2
V

, (63)

t1−1 ≡ T1−1

T00
∝ −t ′MV

Q

[
C1

Q2 + M2
V

+ C2

μ2

]
. (64)

The functions C1 and C2 in (64) are dimensionless and the
parameter μ is between 0.7 GeV and 1.0 GeV. It was noted
in Refs. [31–33] that C1 is essentially a constant while C2

is a ratio whose numerator contains the gluon transversity
distribution [34] GT (xB,μ2) at the scale μ and the denom-
inator contains the unpolarized gluon density G(xB,Q2

V )

measured at the conjectured [32] scale QV for vector-meson
electroproduction in the non-asymptotic region, with

Q2
V = (

Q2 + M2
V

)
/4. (65)

As explained in Sect. 4.2.4, the twist-decomposition pa-
rameter β = MV /Q is not really small in the kinematic re-
gion of the HERMES experiment. Therefore, HERMES re-
sults on amplitude ratios are expected to be not always in
agreement with the pQCD predictions given by (61)–(64).
In the case of a disagreement, we use a parameterization
that does not contradict general principles and describes the
amplitude ratios with reasonable χ2 per degree of freedom.
Any NPE amplitude ratio has to obey (60). On very general
principles, at finite Q the amplitudes T11, T01, and T1−1 are
even functions in Q. In contrast, the amplitudes T00 and T10

are odd functions in Q due to the extra factor 1/Q in (12).
Therefore, the ratios t11, t01, and t1−1 (t10) are odd (even)
functions in Q. The fit functions will be chosen in agree-
ment with this property of amplitude ratios. Whenever the
chosen fit function does not agree with a pQCD prediction,
the resulting curve is shown not by a solid but a dash-dotted
line.

7.2 Kinematic dependence of T11/T00

The amplitudes T00 and T11 describe the diagonal helicity
transitions γ ∗

L → ρ0
L and γ ∗

T → ρ0
T respectively, and are the

largest amplitudes of ρ0 meson production in the HERMES
kinematic region. The Q2 dependence of the extracted am-
plitude ratio t11 in four −t ′ bins is presented in Fig. 4 for the
proton (left) and the deuteron (right). The points correspond
to the amplitude ratios extracted from the data in 16 bins
and given in Tables 2 and 3. In order to test the predictions
of Refs. [31, 32], the Q2 dependence of the ratio Re(t11)

was fitted in every −t ′ bin with the function

Re(t11) = a

Q
. (66)

For the four −t ′ bins, the values of the parameter a are found
to be consistent with each other within experimental accu-
racy. Therefore, data in all −t ′ bins are fitted simultaneously
to improve the statistical accuracy in determining the value
of a. The results of the fit for proton and deuteron data are
presented in Table 4 and shown in Fig. 4 for proton (left) and
deuteron (right). The figure shows that the Q2 dependence
of Re(t11) is well described by the parameterization given
by (66).

The dependences of the other amplitude ratios, which are
described in the following, are examined in a similar man-
ner as was done for Re(t11). In every case, it was checked
that the respective four datasets containing 4 points each can
be combined into one dataset containing 16 points. When
proton and deuteron results are consistent, the data are com-
bined and 32 points are used in the fit. All the fits to the
Q2 or t ′ dependences use 16 data points for the proton or
deuteron separately and 32 data points for the combined data
sets. Only for the sake of a more clear representation of the
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Fig. 5 The Q2 dependence of Re(T11/T00) (left panel) and
Im(T11/T00) (right panel) for proton and deuteron data. Points show
the amplitude ratios from Tables 2 and 3 after averaging over four −t ′
bins using (67) and (68). The parameterization of the curves obtained
from combined proton and deuteron data is given by (66) and (69)
while the parameters are given in Table 4. The meaning of the error

bars and the explanation of the curves are the same as for Fig. 4. Here
and hereafter proton data points are slightly displaced to the right for
better visibility. As explained in the text, curves are shown as solid
(dash-dotted) lines if the parameterization is based (not based) on
pQCD predictions

Table 4 The Q2 dependence of
Re(T11/T00) and Im(T11/T00)

for proton, deuteron and
combined data sets
parameterized as given by (66)
and (69). The values of
parameters with their total
uncertainties are presented. The
last column shows the value of
χ2 per degree of freedom

Target Ratio a, GeV δa, GeV χ2/Ndf

Proton Re(T11/T00) 1.173 ±0.048 0.63

Deuteron Re(T11/T00) 1.106 ±0.035 1.04

Proton+deuteron Re(T11/T00) 1.109 ±0.026 0.78

Target Ratio b, GeV−1 δb, GeV−1 χ2/Ndf

Proton Im(T11/T00) 0.340 ±0.025 0.54

Deuteron Im(T11/T00) 0.359 ±0.020 0.71

Proton+deuteron Im(T11/T00) 0.348 ±0.017 0.75

kinematic dependence of amplitude ratios in one variable
Q2 (or t ′), we average the values of the amplitude ratios
T = tλV λγ or |u11| over four −t ′ (or Q2) bins at the same
value of Q2 (or t ′) using the standard relations for the mean
value 〈T 〉 and squared total uncertainty (δT )2:

〈T 〉 =
∑

j Tj /(σj )
2∑

m 1/(σm)2
, (67)

(δT )2 = 1∑
m 1/(σm)2

. (68)

Here, σj denotes the total uncertainty of Tj in the j th bin
and δT is the total uncertainty of the averaged ratio T . The
same formula (68) is applied for the calculation of the sta-
tistical uncertainty δTstat where σm is the statistical uncer-
tainty of Tm.

In the left panel of Fig. 5, the average values of the ra-
tio Re(t11) in each of the Q2 bins for both the proton and
deuteron targets are shown. As the results for the two tar-
gets are found to be compatible, a fit to the combined pro-
ton and deuteron data is performed and the result extracted
for a in (66) is also presented in Table 4. Reasonable val-

ues of χ2 per degree of freedom, χ2/Ndf ≈ 1, are obtained.
A comparison of the average values of ratio Re(t11) across
−t ′ bins and the curve calculated with (66) using the value
of the parameter a obtained from the combined proton and
deuteron data is shown in the left panel of Fig. 5. The Q2

dependence of Re(t11) is found to be in a good agreement
with the asymptotic behavior expected from pQCD.

As shown in the right panel of Fig. 5, the amplitude ratio
Im(t11) rises with Q2. This dependence of Im(t11) disagrees
with the prediction [31, 32] given by (61), whereas the de-
pendence of the real part of the same ratio t11 agrees with
predictions based on the same formula. A fit of the function
in (66) to the experimental data does not provide reasonable
values of χ2 per degree of freedom: χ2/Ndf = 2.46 for the
proton data and χ2/Ndf = 4.25 for the deuteron data. In-
stead, a fit function of the type

Im(t11) = bQ (69)

gives reasonable results as can be seen from Table 4, where
fit results for the proton, deuteron and combined datasets are
presented. The right panel of Fig. 5 shows the curve calcu-
lated with the parameter b obtained for the combined proton



Page 16 of 25 Eur. Phys. J. C (2011) 71: 1609

Fig. 6 The Q2 dependence of the phase difference δ11 (left panel) and
δ01 (right panel, see Sect. 7.4) between the amplitudes T11 and T01, re-
spectively, and T00 obtained for proton and deuteron data. Points show
the phase differences δ11 and δ01 calculated from ratios of amplitudes
given in Tables 2 and 3 after averaging over −t ′ bins. Inner error bars
show the statistical uncertainty and the outer ones show the statistical

and systematic uncertainties added in quadrature. The fitted parame-
terization is given by (70) and (78) respectively for δ11 and δ01. The
parameters of the curves are given in Tables 4 and 6 for combined
proton and deuteron data. The central lines are calculated with the fit-
ted values of the parameters, while the dashed lines correspond to one
standard deviation in the uncertainty of the curve parameter

and deuteron data compared with the −t ′ bin averaged ratio
Im(t11) for both proton and deuteron data. The disagreement
with the prediction of (61) may be due to the fact that the Q2

range of the HERMES experiment is not in the asymptotic
region. This is in agreement with the conjecture of Ref. [32]
that the hard scale for vector-meson electroproduction is QV

given by (65) which is smaller than Q. Another possible ex-
planation can be found in the discussion later in this paper
of potential final-state interactions between the struck parton
and the target remnant.

The phase difference δ11 between the helicity amplitudes
T11 and T00 is given by the relation

tan δ11 = Im(t11)/Re(t11). (70)

It increases with Q2 as shown in the left panel of Fig. 6. Also
shown is a fit to the Q2 dependence of δ11 calculated with
the functional form tan δ11 = bQ2/a deduced from (66) and
(69). The result of the fit is δ11 = (31.5 ± 1.4) degrees at
〈Q2〉 = 1.95 GeV2, obtained with the parameters a and b

given in Table 4 for the combined proton and deuteron data.
It is consistent within one standard deviation with the pub-
lished result [19] obtained with the SDME method using the
same proton and deuteron data as in the present analysis.
A large phase difference δ11 ≈ 20 degrees was measured by
the H1 Collaboration for exclusive ρ0 and φ meson elec-
troproduction at 2.5 GeV2 < Q2 < 60 GeV2 [21]. A large
value of δ11 = (33.0 ± 7.4) degrees was measured also in
φ meson production at HERMES [52]. As two-gluon ex-
change dominates in φ meson production at HERMES kine-
matics, the measured large value of δ11 for ρ0 cannot be at-
tributed solely to the quark–antiquark exchange essential for
ρ0 meson production. This value of δ11 is in clear disagree-
ment with a calculation [53] performed using a GPD-based

approach in pQCD that predicts a very small value for δ11.
At present, there exists no model capable of explaining the
value and Q2 dependence of δ11.

In existing pQCD calculations for exclusive vector-
meson electroproduction, only two-gluon and/or quark–
antiquark exchange have been taken into account. It can
be argued [54] that even in inclusive deep-inelastic lepton-
nucleon scattering, the final-state interaction of the struck
quark alters the cross section due to multi-gluon exchanges
with the target remnant. This is at variance with the tra-
ditional understanding obtained from inclusive DIS. It is
shown [54] that a summation of multi-gluon-exchange am-
plitudes results in an eikonal-like correction. For vector-
meson production, if rescattering on the nucleon occurred
also for the quark–antiquark pair that transforms to the final
vector meson, the eikonal-like correction might be respon-
sible for the measured large phases observed in the present
work.

Figure 7 shows the t ′ dependence of the real and imagi-
nary parts of the ratio t11. Since Re(t11) and Im(t11) depend
on Q2 according to (66) and (69), they are shown in Fig. 7
multiplied or divided by Q, respectively. No noticeable t ′
dependence is observed for Re(t11) and Im(t11). Since the
differential cross section of the process in (1) for high en-
ergies and small |t ′| is usually described by an exponential
factor exp{βt ′}, the helicity amplitudes should have expo-
nential factors T00 ∝ exp{βLt ′/2} and T11 ∝ exp{βT t ′/2}.
The absence of a t ′ dependence of the ratio T11/T00 means
that the slope parameters βL and βT for the amplitudes T00

and T11 are close to each other. For very small |t ′|, it is rea-
sonable to use the linear approximation

Re(T11/T00) = a

Q
exp

{
−1

2
�β1t

′
}



Eur. Phys. J. C (2011) 71: 1609 Page 17 of 25

Fig. 7 The t ′ dependence of Q · Re(T11/T00) (left panel) and
Im(T11/T00)/Q (right panel) for proton and deuteron data. Points
show the amplitude ratios from Tables 2 and 3 after averaging over
four Q2 bins using (67) and (68). The straight lines in the left and

right panel show the value of a and b, respectively, from (66) and (69)
while the parameters a and b are given in Table 4. The meaning of the
error bars and the explanation of the curves are the same as for Fig. 4

≈ a

Q

(
1 + 1

2
�β1|t ′|

)
, (71)

Im(T11/T00) = bQ exp

{
−1

2
�β2t

′
}

≈ bQ

(
1 + 1

2
�β2|t ′|

)
. (72)

The proton results are �β1 = (−1.02 ± 0.85) GeV−2 and
�β2 = (−0.91 ± 2.00) GeV−2, while the fit for the deute-
ron data gives �β1 = (0.58 ± 0.80) GeV−2 and �β2 =
(−1.96 ± 1.58) GeV−2. The results of the fits show that
all four numbers are consistent with one another. We now
assume that, within experimental accuracy, the slope pa-
rameters for the real and imaginary parts of the ratio coin-
cide across both target types. In this case we have �β1 ≈
�β2 ≈ βL − βT . Combining these four numbers making
use of (67) and (68) we get an estimate for βL − βT =
(−0.4±0.5) GeV−2. This result on βL −βT is in agreement
with the prediction published in Ref. [55], which ranges
from −0.7 GeV−2 at Q2 = 0.8 GeV2 to −0.4 GeV−2 at
Q2 = 5 GeV2.

7.3 Kinematic dependence of |U11/T00|

The unnatural-parity-exchange amplitude, U11, describes
the transition from a transversely polarized photon to a
transversely polarized ρ0 meson (γ ∗

T → ρ0
T ). At large W

and Q2, this transition should be suppressed by a factor
of MV /Q compared to the dominant amplitude T00 as ex-
plained in Sect. 4.2.2. The UPE contributions to the ampli-
tude may be sizable at intermediate energies [36, 37] typical
for HERMES.

The ratio |u11| versus Q2 and t ′ is presented in Fig. 8.
The value of |U11| is found to be smaller than |T00| by a

Table 5 Results of fitting the ratio |U11/T00| to a constant for proton,
deuteron and combined data sets. The values of parameters with their
total uncertainties are presented. The last column shows the value of
χ2 per degree of freedom

Target Ratio g δg χ2/Ndf

Proton |U11/T00| 0.400 ±0.020 0.60

Deuteron |U11/T00| 0.383 ±0.017 0.40

Proton+deuteron |U11/T00| 0.390 ±0.013 0.49

factor of approximately 2.5. No kinematic dependences of
the ratio |u11| are seen and therefore it is fitted to a constant

|u11| = g. (73)

The results of the fit to proton and deuteron combined data
are given in Table 5, and the constant g is shown in Fig. 8
by straight lines. Fits with the same function a/Q as for
Re(t11) (see (66)), corresponding to the behavior expected
in pQCD, give values for χ2 per degree of freedom 2.03,
2.67, and 2.25 for the proton, deuteron, and combined data,
respectively. This disagreement may reflect the fact that the
HERMES Q2 region is far from the asymptotic one.

From a study of soft hadron scattering, it is known [36,
37, 56] that the most important contribution to UPE ampli-
tudes at intermediate energies comes from pion exchange.
The amplitude of one-pion-exchange in the t-channel con-
tains the propagator 1/(t − m2

π ), which becomes large for
small values of −t that approach the pole at the unphysi-
cal value of −t = −m2

π ≈ −0.018 GeV2. The mean value
of −t ′ for the first −t ′ bin is 0.019 GeV2, and hence might
appear to be small enough to approach the vicinity of the
pole. However, as shown in the right panel of Fig. 8, no
evidence for a pion-pole-like dependence can be seen in
the data within the statistical precision of the measurement.
Such a dependence could be weakened by various effects:
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Fig. 8 The dependences of |U11/T00| on Q2 and t ′ for proton and
deuteron data. The points show the amplitude ratios given in Tables 2
and 3 after averaging over −t ′ (Q2) bins in the left (right) panel. The
inner error bars show the statistical uncertainty and the outer ones

show the statistical and systematic uncertainties added in quadrature.
The results fitting the combined data set with a constant (central line),
|U11/T00| = g, are given in Table 5. The dashed lines correspond to
one standard deviation in the total uncertainty

(i) even in the first bin in −t ′, the value of 〈−t〉 equal to
0.06 GeV2 is substantial, and hence not close enough
to the pion pole at unphysical positive t ,

(ii) the amplitude T00 has a strong exponential dependence
∝ exp{βLt ′/2} with βL ≈ 7 GeV−2 [19, 48] and de-
creases with |t ′|, hence the ratio U11/T00 is flatter than
U11 itself,

(iii) in addition to one-pion exchange, other exchange pro-
cesses can contribute to the amplitude U11.

Using the amplitude method, the signal of unnatural-
parity exchange has a significance of more than 20 standard
deviations in the total experimental uncertainty separately
for each of the proton and deuteron data sets (see Table 5
and Fig. 8). In contrast, the existence of UPE was estab-
lished [19] with a significance of 3 standard deviations for
the combined proton and deuteron data in the analysis using
the SDME method.

7.4 Kinematic dependence of T01/T00

The amplitude T01 ≡ T0 1
2 1 1

2
describing the transition γ ∗

T →
ρ0

L is expected to be the largest SCHC-violating amplitude.
In accordance with the asymptotic formula (62), the param-
eterization

Im(t01) = f

√−t ′
Q

(74)

is used. A fit to both proton and deuteron data using this
parameterization gives acceptable χ2 values, as seen in Ta-
ble 6. Proton and deuteron results are compatible within one
standard deviation in the total uncertainty, although neither
measurement is particularly precise as shown in Table 6 and
the right panel of Fig. 9 in which the data are multiplied by
Q in order to demonstrate the

√−t ′ dependence. The fit of

the combined proton and deuteron data set yields a value of
the parameter f that is three standard deviations from zero
with χ2/Ndf ≈ 0.66 (see Table 6). We note that these re-
sults do not necessarily confirm the validity of (62) although
the data do not contradict the pQCD prediction.

The Q2 dependence of the amplitude ratio Im(t01) for
the proton and deuteron data is shown in the right panel of
Fig. 10. As shown in the figure, the point for the deuteron
in the largest Q2 bin is slightly negative which favours a fit
using the equation

Im(t01) = √−t ′
(
f1 + f2Q

2) (75)

over that using parameterization (74). The result of the fit
with function (75) is shown in the right panel of Fig. 10.
The parameters f1 and f2 are strongly correlated. The cor-
relation parameter ρc is presented in Table 6 and is taken
into account in the calculation of the uncertainty of Im(t01)

using (75).
The Q2 dependence of the ratio Re(t01)/

√−t ′ is pre-
sented in the left panel of Fig. 10. The quantity Re(t01)/

√−t ′
does not decrease with Q2 and can be well described by a
constant which is also shown in the figure. Using for Re(t01)

the functional form of (74) yields χ2/Ndf values of 1.08,
1.55, and 1.31 for separate fits to the proton, deuteron and
combined data sets. Using instead the simpler parameteriza-
tion

Re(t01) = c
√−t ′ (76)

decreases the value of χ2 by a factor of approximately two,
indicating a better description of the data. The results of this
fit are shown in Table 6 and the left panels of Figs. 9 and 10.
The small values of χ2/Ndf as shown in Table 6 indicate
that our systematic uncertainty might be overestimated.
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Table 6 The kinematic dependence of Re(T01/T00) and Im(T01/T00) for the proton, deuteron and combined data sets parameterized as given
by (74)–(76). The values of parameters with their total uncertainties are presented. The last column shows the value of χ2 per degree of freedom
and ρc is the correlation parameter

Target Ratio c, GeV−1 δc, GeV−1 χ2/Ndf

Proton Re(T01/T00) 0.405 ±0.046 0.56

Deuteron Re(T01/T00) 0.378 ±0.033 0.69

Proton+deuteron Re(T01/T00) 0.394 ±0.024 0.63

Target Ratio f δf χ2/Ndf

Proton Im(T01/T00) 0.317 ±0.115 0.97

Deuteron Im(T01/T00) 0.161 ±0.090 1.20

Proton+deuteron Im(T01/T00) 0.221 ±0.069 1.10

Target Ratio f1, GeV−1 δf1, GeV−1 f2, GeV−3 δf2, GeV−3 ρc χ2/Ndf

Proton+deuteron Im(T01/T00) 0.653 ±0.132 −0.285 ±0.065 −0.903 0.66

Fig. 9 The t ′ dependence of Re(T01/T00) (left panel) and Q ·
Im(T01/T00) (right panel) for proton and deuteron data. Points show
amplitude ratios from Tables 2 and 3 after averaging over Q2 bins. In-
ner error bars show the statistical uncertainty and the outer bars show
statistical and systematic uncertainties added in quadrature. The pa-

rameterization is given by (74) and (76). The parameters of the curves
are given in Table 6 for combined proton and deuteron data. Central
lines are calculated with fitted values of parameters, while the dashed
lines correspond to one standard deviation of the curve parameter

Fig. 10 The Q2 dependence of Re(T01/T00)/
√−t ′ (left panel) and

Im(T01/T00)/
√−t ′ (right panel) for proton and deuteron data. Points

show amplitude ratios from Tables 2 and 3 after averaging over −t ′
bins. Inner error bars show the statistical uncertainty and the outer
bars show statistical and systematic uncertainties added in quadrature.

The parameterization is given by (75) and (76). The parameters of the
curves are given in Table 6 for combined proton and deuteron data.
Central lines are calculated with fitted values of parameters, while the
dashed lines correspond to one standard deviation of the curve param-
eter
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Fig. 11 The Q2 dependence of Re(T10/T00)/
√−t ′ (left panel) and

Im(T10/T00)/
√−t ′ (right panel) for proton and deuteron data. Points

show amplitude ratios from Tables 2 and 3 after averaging over −t ′
bins. Inner error bars show the statistical uncertainty and the outer ones
indicate statistical and systematic uncertainties added in quadrature.

The parameterization of the curves describing the deuteron data both
on Re(T10/T00) and Im(T10/T00) is given by (80) and their parameters
are given in Table 7. Central lines are calculated with the fitted val-
ues of parameters, while the dashed lines correspond to one standard
deviation of the curve parameter

The phase difference δ01 between the amplitudes T01 and
T00 can be calculated using the formula

tan δ01 = Im(t10)/Re(t10). (77)

The results for the Q2 dependence of δ01 after averaging
over −t ′ bins are shown in the right panel of Fig. 6. The
phase difference δ01 is non-zero and decreases with Q2. It is
slightly negative for the deuteron data at the largest value of
Q2. Using instead the results from the fits to formulas (75),
(76) given in Table 6, the phase difference is obtained as

tan δ01 = (f1 + f2Q
2)/c, (78)

which is shown as a curve in the right panel of Fig. 6. As
can be seen, the fit function (78) is able to describes the Q2

dependence of the phase difference δ01.

7.5 Small amplitude ratios T10/T00 and T1−1/T00

According to the hierarchy given in (31), T10 and T1−1 are
the smallest amplitudes that give linear contributions to the
numerators of SDMEs in the case of an unpolarized target.
The ratio t10 is expected to be proportional to

√−t ′ in ac-
cordance with (60), while t1−1 is expected to be propor-
tional to t ′. These ratios are supposed to depend on Q2 in
the asymptotic region according to (63) and (64). Figure 11
shows Re(t10)/

√−t ′ and Im(t10)/
√−t ′ versus Q2 for both

proton and deuteron data. As shown in Fig. 11, the values
of Re(t10)/

√−t ′ and Im(t10)/
√−t ′ on the proton are com-

patible with zero. The results of the fit of Re(t10) with the
function

Re(t10) = r
√−t ′ (79)

Table 7 The kinematic dependences of Re(T10/T00) and Im(T10/T00)

for proton and deuteron parameterized as given by (79) and (80). The
values of parameters with their total uncertainties are presented. The
last column shows the value of χ2 per degree of freedom

Target Ratio r , GeV−1 δr , GeV−1 χ2/Ndf

Proton Re(T10/T00) −0.012 ±0.030 1.07

Proton Im(T10/T00) 0.019 ±0.061 0.58

Target Ratio s, GeV−3 δs, GeV−3 χ2/Ndf

Deuteron Re(T10/T00) 0.045 ±0.015 0.32

Deuteron Im(T10/T00) −0.109 ±0.021 1.02

and Im(t10) with the same function are presented in Table 7.
The ratio Re(t10)/

√−t ′ for the deuteron is slightly positive
(except the first point at the smallest value of Q2) and in-
creases with Q2. The fit of the deuteron data with the func-
tion

Re(t10) = sQ2
√−t ′ (80)

provides the positive result which is presented in Table 7.
As shown in Fig. 11, the quantity Im(t10)/

√−t ′ is negative
for the three points at the largest values of Q2. The fit of
Im(t10)/

√−t ′ using the same function (80) gives the nega-
tive result presented in Table 7. This behavior contradicts the
pQCD prediction given by (63), and indicates that in the case
of the amplitude T10 the HERMES kinematic range may be
far from the large-Q asymptotic region.

We recall that the amplitudes T00 and T10 vanish in the
small Q-limit (Q2 → 0) because the real photon has no lon-
gitudinal polarization. If the behavior at fixed t ′ and small
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Fig. 12 The Q2 dependence of Re(T1−1/T00)/(−t ′) (left panel) and
Im(T1−1/T00)/(−t ′) (right panel) for proton and deuteron data. Points
show amplitude ratios from Tables 2 and 3 after averaging over −t ′
bins. Inner error bars show the statistical uncertainty and the outer ones
indicate statistical and systematic uncertainties added in quadrature.

The parameterization of the curves describing the combined proton
and deuteron data both on Re(T1−1/T00) and Im(T1−1/T00) is given
by (83) and their parameters are given in Table 8. Central lines are
calculated with the fitted values of parameters, while the dashed lines
correspond to one standard deviation of the curve parameter

Table 8 The kinematic dependence of Re(T1−1/T00) and
Im(T1−1/T00) for combined proton and deuteron data parame-
terized as given by (83). The values of parameters with their total
uncertainties are presented. The last column shows the value of χ2 per
degree of freedom

Target Ratio h, GeV−1 δh, GeV−1 χ2/Ndf

Proton+deuteron Re(T1−1/T00) −0.156 ±0.059 0.79

Proton+deuteron Im(T1−1/T00) −0.418 ±0.126 0.54

Q2 were described by

T00 ∝ Q, (81)

T10 ∝ Q3, (82)

the behavior of the ratio t10 ≡ T10/T00 would be just as as-
sumed by (80) and presented in Fig. 11.

The ratios Re(t1−1)/(−t ′) and Im(t1−1)/(−t ′) are pre-
sented versus Q2 in Fig. 12. Both ratios appear to be com-
patible with zero within 2.5σ of the total uncertainty both
for the proton and deuteron target and only the combined
data provides a non-zero signal for Im(t1−1). The fit of
Re(t1−1) with the function

Re(t1−1) = (−t ′) h

Q
(83)

corresponds to the second term in (64). The result, presented
in Table 8 for the combined proton and deuteron data, shows
a signal of 2σ significance with respect to the total uncer-
tainty. The result of the fit of Im(t1−1) with the same func-
tion (83) is also presented in Table 8. The parameter h devi-
ates from zero by more than three standard deviations of the

total uncertainty. A fit of the combined proton and deuteron
data with both terms in (64) provides values of C1 and C2

that are consistent with zero within 1.5σ of the total un-
certainty for both Re(t1−1) and Im(t1−1). This means that
the statistical precision of the HERMES data does not allow
a reliable verification of (64) or an extraction of the gluon
transversity GPD.

7.6 Comparison of HERMES and H1 results

Here we compare the results of the present work with the
analysis of the ρ0-meson production data on the proton
by the H1 collaboration [21], obtained for the CM energy
range 36 GeV ≤ W ≤ 180 GeV, photon virtuality 2.5 GeV2

≤ Q2 ≤ 60 GeV2, and −t ′ ≤ 3 GeV2. For the comparison
of the t ′ dependence, the results at the mean value of Q2

equal to 3.3 GeV2 are chosen which are the closest ones to
the Q2 region of the HERMES data. In the H1 data anal-
ysis presented in Ref. [21], the imaginary parts of the am-
plitude ratios were not extracted. The additional hypothesis
was used in Ref. [21] that for any ratio of the amplitudes, the
approximate relation |tλV λγ |2 = [Re(tλV λγ )]2 is valid within
the experimental accuracy. The comparison of the HERMES
and H1 results is presented in Fig. 13. As seen from the fig-
ure the HERMES and H1 results agree within their total
uncertainties. No strong dependence on W is observed for
the amplitude ratios Re(t11) and Re(t01). Considering the
differences in Q2 between HERMES (〈Q2〉 = 2.0 GeV2)
and H1 (〈Q2〉 = 3.3 GeV2), no Q2 dependence can be
seen for Re(t01) at small |t ′| even for Q2 ≤ 3.3 GeV2 (see
also the discussion in Sect. 7.4). The ratios Re(t10) and
Re(t1−1) obtained by H1 [21] are compatible with zero at
Q2 = 3.1 GeV2 within the experimental accuracy. This is
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Fig. 13 The kinematic
dependences of Re(T11/T00)

(left panel) and Re(T01/T00)

(right panel) for proton and
deuteron data. Points of
HERMES are the same as in
Figs. 5 and 9. The H1 results are
from Ref. [21]. Inner error bars
show the statistical uncertainty
and the outer ones indicate
statistical and systematic
uncertainties added in
quadrature

consistent with the HERMES results for the proton shown
in Figs. 11 and 12.

8 Conclusions

Exclusive ρ0-meson electroproduction is studied in the
HERMES experiment, using a 27.6 GeV longitudinally po-
larized electron/positron beam and unpolarized hydrogen
and deuterium targets in the kinematic region 0.5 GeV2 <

Q2 < 7.0 GeV2, 3.0 GeV < W < 6.3 GeV, and −t ′ <

0.4 GeV2. These data are used to determine the real and
imaginary parts of the ratios T11/T00, T01/T00, T10/T00,
T1−1/T00, and |U11/T00| for 16 bins in Q2 and −t ′. Sys-
tematic uncertainties due to the background contribution,
uncertainties in the Monte Carlo input parameters, and the
uncertainty of the applied amplitude method are given. Ex-
cept for T10/T00, the amplitude ratios for the proton are
compatible with those for the deuteron. The extracted ampli-
tude ratios T11/T00, |U11/T00| and T01/T00 are found to be
sizable. The ratios T10/T00 and T1−1/T00 for the proton are
found to be compatible with zero within experimental un-
certainties. The ratio T1−1/T00 for the deuteron is also zero
within experimental accuracy, while Re(T10/T00) is slightly
positive and Im(T10/T00) is slightly negative, except for the
bin with the smallest Q2 values.

The SDMEs calculated in terms of these helicity am-
plitude ratios generally agree with the results published in
Ref. [19]. The amplitude method was shown to provide more
accurate polarized SDMEs than the previous analysis using
the SDME method.

The statistical precision available in this analysis permits
the parameterization of the kinematic dependences of am-
plitude ratios and the extraction of the phase difference be-
tween various helicity amplitudes. The real part of T11/T00

is found to follow the asymptotic 1/Q behavior predicted
by pQCD [31, 32]. The imaginary part of T11/T00 grows

with Q2, in contradiction to the large-Q2 asymptotic behav-
ior expected from pQCD. The phase difference δ11 between
the amplitudes T11 and T00 grows with Q2 and has a mean
value of about 30 degrees in the HERMES kinematic region.
This is in agreement with the published result of the SDME
method [19] and in contradiction to calculations [12–14, 31,
32] based on pQCD. For the first time, the Q2 dependence
of δ11 observed in Ref. [19] is shown to be related to the
increase with Q2 of the imaginary part of the ratio of the
helicity amplitudes T11/T00.

The behavior of Im(T01/T00) is found to be in agreement
with the asymptotic pQCD behavior

√−t ′/Q, while the ex-
tracted value of Re(T01/T00) is likely to be in disagreement
with the pQCD prediction. The data indicate non-zero val-
ues of the phase difference δ01 between the amplitudes T01

and T00 and the decrease of δ01 with Q2.
The ratio |U11/T00| is found to be constant in the HER-

MES kinematic region, in disagreement with the asymptotic
pQCD behavior at large Q2. No pion-pole-like behavior is
observed at small |t ′|. The UPE signal is seen with a very
high significance for both proton and deuteron data, con-
firming the existence of unnatural-parity exchange contri-
butions with a higher precision than that obtained with the
SDME method [19].

The Q2 dependence of the amplitude ratio Re(T11/T00)

and t ′ dependence of the amplitude ratio Re(T01/T00) are
also compared to those extracted by the H1 collaboration at
the center-of-mass energy range 36 GeV ≤ W ≤ 180 GeV,
photon virtuality 2.5 GeV2 ≤ Q2 ≤ 60 GeV2, and −t ′ ≤
3 GeV2. No strong dependence of the amplitude ratios
Re(T11/T00) and Re(T01/T00) on W , and no Q2 depen-
dence of Re(t01) at small |t ′| are observed. The HERMES
and H1 results agree within their total uncertainties.
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Appendix A: Systematic uncertainty of the amplitude
method for an unpolarized target

The systematic uncertainty arising from the neglect of am-
plitudes that make small contributions to the angular distri-
bution applies if only data on unpolarized targets are con-
sidered. If the set of observables were enlarged and data on
targets with transverse and longitudinal polarizations were
added, then all the amplitude ratios could be extracted and
there would be no contributory systematic uncertainty of the
amplitude method.

The SDME analysis [19] of the HERMES data has shown
the absence of any signal of the UPE amplitudes U01, U10,
and U1−1, violating the SCHC approximation. The contri-
bution of the greatest UPE amplitude U11 to any SDME
changes it by a value which is less or about one standard
deviation of the statistical uncertainty. We neglect the contri-
butions of U01, U10, and U1−1 to the SDMEs and do not con-
sider that as a possible source of systematic uncertainty. The
terms with the amplitudes U01, U10, and U1−1 in all the for-
mulas considered in this appendix are also ignored. As ex-
plained in Sect. 4.2.1 the fractional contribution to SDMEs
of NPE helicity-flip amplitudes are suppressed by α2. The
systematic uncertainty of the extracted amplitude ratios due
to the neglect of the NPE nucleon helicity-flip amplitudes is
the only uncertainty of the amplitude method which is con-
sidered below.

The true ratio of the NPE amplitude without helicity flip
T

λV
1
2 λγ

1
2

to T0 1
2 0 1

2
is denoted by tλV λγ . The true ratio of the

nucleon-helicity-flip amplitude T s
λV λγ

≡ T
λV − 1

2 λγ
1
2

to T0 1
2 0 1

2
is denoted by t sλV λγ

, in particular, t s00 ≡ T0− 1
2 0 1

2
/T0 1

2 0 1
2
,

while |u11|2 ≡ (|U1 1
2 1 1

2
|2 +|U1− 1

2 1 1
2
|2)/|T0 1

2 0 1
2
|2. In the fol-

lowing, we estimate the effect of neglecting small contri-
butions of the NPE nucleon spin-flip amplitudes, T s

λV λγ
,

which bias the fitted amplitude ratios by δtλV λγ and δ|u11|,
respectively. In order to avoid misunderstandings, we note

that the notation tλV λγ and |u11| in the main text was used
for the fitted amplitude ratios which corresponds now to
tλV λγ + δtλV λγ and |u11| + δ|u11|, respectively.

As shown in (24)–(26), any SDME is multiplied by a
function of the angles θ , Φ , φ and these functions are lin-
early independent. This means that every SDME (rather than
combinations of them) is determined in the fit individually.
Now we assume that the true amplitude ratios are known, so
that the true values of all SDMEs can be calculated.

The exact expression for r04
00 , which was presented in

Ref. [19] and rewritten here in terms of the ratios of the he-
licity amplitudes tλV λγ , t sλV λγ

and |u11|, is

r04
00 = ε(1 + |t s00|2) + |t01|2 + |t s01|2

Ntot

(A.1)

where

Ntot = ε
(
1 + ∣∣t s00

∣∣2 + 2|t10|2 + 2
∣∣t s10

∣∣2)
+ |t11|2 + ∣∣t s11

∣∣2 + |t01|2 + ∣∣t s01

∣∣2

+ |t1−1|2 + ∣∣t s1−1

∣∣2 + |u11|2. (A.2)

It is more convenient technically to consider a logarithm
of r04

00 . The contribution to ln(r04
00 ) of the small NPE

nucleon-helicity-flip amplitudes |t s00|2, |t s10|2, |t s11|2, |t s01|2
and |t s1−1|2, linear in these small quantities, is

� ln
(
r04

00

) = �r04
00

r04
00

= ε|t s00|2 + |t s01|2
ε + |t01|2 − [

ε
(∣∣t s00

∣∣2 + 2
∣∣t s10

∣∣2) + ∣∣t s11

∣∣2

+ ∣∣t s01

∣∣2 + ∣∣t s1−1

∣∣2]
/
[
ε
(
1 + 2|t10|2

) + |t11|2 + |t01|2

+ |t1−1|2 + |u11|2
]
. (A.3)

The formulas for r04
00 used in the fit of the angular distri-

bution are

r̃04
00 = ε + |t01|2 + δ|t01|2

Ñtot

(A.4)

where

Ñtot = ε
[
1 + 2

(|t10|2 + δ|t10|2
)]

+ (|t11|2 + δ|t11|2
) + (|t01|2 + δ|t01|2

)
+ (|t1−1|2 + δ|t1−1|2

) + (|u11|2 + δ|u11|2
)

(A.5)

with δ|tλV λγ |2 = t∗λV λγ
δtλV λγ + tλV λγ δt∗λV λγ

and δ|u11|2 =
2|u11|δ|u11|.
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The contribution to ln(̃r04
00 ) linear in the small quantities

δ|tλV λγ |2 and δ|uλV λγ |2 is given by the relation

δ ln(̃r04
00 ) = δ̃r04

00

r̃04
00

= δ|t01|2
ε + |t01|2 − [

2εδ|t10|2 + δ|t11|2 + δ|t01|2

+ δ|t1−1|2 + δ|u11|2
]

/
[
ε
(
1 + 2|t10|2

) + |t11|2 + |t01|2

+ |t1−1|2 + |u11|2
]
. (A.6)

A comparison of (A.1) and (A.2) with (A.4) and (A.5) shows
that r̃04

00 = r04
00 when δtλV λγ = δ|u11| = t sλV λγ

= 0. Since the
fit has to reproduce the angular distribution, the contribu-
tion of the nucleon-helicity-flip amplitudes to r04

00 is com-
pensated by the deviation of the obtained amplitude ratios
from the true amplitude ratios. This assumes the validity of
the relation

� ln
(
r04

00

) = δ ln
(̃
r04

00

)
(A.7)

which provides the linear relation between |t sλV λγ
|2 and

δ|tλV λγ |2, δ|uλV λγ |2. Considering all other SDMEs r
η

λV λ′
V

,

use of the same method provides the set of relations for
η = 1–3, 5–8

� ln
(
r
η

λV λ′
V

) = δ ln
(̃
r
η

λV λ′
V

)
(A.8)

which can be used to determine δtλV λγ and δ|u11|.
In order to get an approximate solution of (A.7), the

contributions of the s-channel helicity violating amplitudes
T01, T10, and T1−1 (T s

01, T s
10, and T s

1−1) are neglected since
they are small compared to T00 and T11 (T s

00 and T s
11).

Putting (A.3) and (A.6) into (A.7) yields the relation

∣∣t s00

∣∣2 − ε|t s00|2 + |t s11|2
ε + |t11|2 + |u11|2 = − δ|t11|2 + δ|u11|2

ε + |t11|2 + |u11|2 . (A.9)

Considering in the same way the matrix element r1
1−1 (or

Im(r2
1−1)) and using (A.8) we get the relation

|t s11|2
|t11|2 − |u11|2 − ε|t s00|2 + |t s11|2

ε + |t11|2 + |u11|2

= δ|t11|2 − δ|u11|2
|t11|2 − |u11|2 − δ|t11|2 + δ|u11|2

ε + |t11|2 + |u11|2 . (A.10)

The solution of the system of two equations (A.9) and (A.10)
is

δ|t11|2 = ∣∣t s11

∣∣2 − ∣∣t s00

∣∣2|t11|2, (A.11)

δ|u11|2 = −∣∣t s00

∣∣2|u11|2. (A.12)

Dividing (A.11) by |t11|2 and (A.12) by |u11|2 these solu-
tions can be rewritten for the fractional systematic uncer-
tainties of |t11|2 and |u11|2 in the form

δ|t11|2
|t11|2 =

∣∣∣∣T
s
11

T11

∣∣∣∣
2

−
∣∣∣∣T

s
00

T00

∣∣∣∣
2

, (A.13)

δ|u11|2
|u11|2 = 2

δ|u11|
|u11| = −|t s00|2 ≡ −

∣∣∣∣T
s
00

T00

∣∣∣∣
2

. (A.14)

In order to obtain estimates for the real and imaginary
parts of δt11, we consider the SDMEs Re(r5

10) and Re(r8
10),

respectively. The exact expression for Re(r5
10) taken from

Ref. [19] and rewritten in terms of tλV λγ , t sλV λγ
, and |u11| is

Re
(
r5

10

) = 1√
8

Re
[
t11 − t1−1 + (

t s11 − t s1−1

)(
t s00

)∗

+ 2t10(t01)
∗ + 2t s10

(
t s01

)∗]
/Ntot (A.15)

where Ntot is defined by (A.2). Using (A.8) an approximate
equation analogous to (A.9) and (A.10) is obtained:

Re[t s11(t
s
00)

∗]
Re(t11)

− ε|t s00|2 + |t s11|2
ε + |t11|2 + |u11|2

= Re(δt11)

Re(t11)
− δ|t11|2 + δ|u11|2

ε + |t11|2 + |u11|2 . (A.16)

Substituting into this equation the solutions for δ|t11|2 and
δ|u11|2 given in (A.11) and (A.12) leads to:

Re(δt11) = Re
[
t s11

(
t s00

)∗] − ∣∣t s00

∣∣2 Re(t11). (A.17)

Considering Re(r8
10) analogously we get

Im(δt11) = Im
[
t s11

(
t s00

)∗] − ∣∣t s00

∣∣2
Im(t11). (A.18)

Combining Re(δt11) and Im(δt11) into the complex number
δt11 = Re(δt11) + i · Im(δt11), the equation

δt11 = t s11

(
t s00

)∗ − ∣∣t s00

∣∣2
t11 (A.19)

is obtained which is equivalent to (A.17) and (A.18).
From (A.19), it follows that

δt11

t11
=

(
T s

11

T11
− T s

00

T00

)(
T s

00

T00

)∗
. (A.20)

An analogous consideration of r5
00 and r8

00 provides the
expression

δt01

t01
=

(
T s

01

T01
− T s

00

T00

)(
T s

00

T00

)∗
, (A.21)

while considering r1
11 and Im(r3

1−1) leads to:

δt1−1

t1−1
=

(
T s

1−1

T1−1
− T s

00

T00

)(
T s

11

T11

)∗
. (A.22)
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Consideration of Im(r6
1−1) and Im(r7

1−1) leads to the relation

δt10

t10
=

(
T s

10

T10
− T s

00

T00

)(
T s

11

T11

)∗
. (A.23)

As shown in Ref. [41] the ratios of T s
λV λγ

and TλV λγ obey
the inequality

∣∣∣∣
T s

λV λγ

TλV λγ

∣∣∣∣ ≤ vT

2M
, (A.24)

which gives the inequality

∣∣∣∣
T s

λV λγ

TλV λγ

− T s
00

T00

∣∣∣∣ ≤
∣∣∣∣
T s

λV λγ

TλV λγ

∣∣∣∣ +
∣∣∣∣T

s
00

T00

∣∣∣∣ ≤ vT

M
. (A.25)

Inserting (A.24) and (A.25) into expressions (A.20)–(A.23)
yields the formulas of interest for the systematic uncertainty
of tλV λγ

|δtλV λγ | ≤ v2
T

2M2
|tλV λγ |. (A.26)

Since |Re(δtλV λγ )| ≤ |δtλV λγ | and |Im(δtλV λγ )| ≤ |δtλV λγ |,
the right hand side of relation (A.26) can be used both for
the real and imaginary parts of δtλV λγ yielding (57) and (58).
Relation (59) follows immediately from (A.14) and (A.24).
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