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Abstract A method for tuning parameters in Monte Carlo
generators is described and applied to a specific case. The
method works in the following way: each observable is gen-
erated several times using different values of the parameters
to be tuned. The output is then approximated by some an-
alytic form to describe the dependence of the observables
on the parameters. This approximation is used to find the
values of the parameter that give the best description of the
experimental data. This results in significantly faster fitting
compared to an approach in which the generator is called
iteratively. As an application, we employ this method to fit
the parameters of the unintegrated gluon density used in the
CASCADE Monte Carlo generator, using inclusive deep in-
elastic data measured by the H1 Collaboration. We discuss
the results of the fit, its limitations, and its strong points.

1 Introduction

The substructure of the proton is parametrized in terms of
parton distribution functions (PDFs). In perturbative QCD
the PDFs are given by solutions of integral equations, for
which the initial input distributions have to be determined
by global fits to the available experimental data (see, e.g.,
[1] and references therein). All present global fits are based
on fixed-order calculations in αs , the strong coupling con-
stant, and on factorization theorems that apply to specific
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inclusive processes, where most of the final-state properties
are integrated over.

To study more exclusive processes (i.e., multiparticle
production or multidifferential cross sections), Monte Carlo
(MC) event generators are used. The physics included in the
generators is often not the same as the one described by
the factorization theorems and used in global fits. For in-
stance, most of the generators do not implement complete
next-to-leading-order (NLO) QCD corrections, but on the
other hand they implement parton showers, which partially
take into account all-orders resummation effects.

Due to these differences, in principle using in the MC
generators the PDFs extracted from global fits is not fully
consistent. Ideally, the PDFs should be fitted directly using
a MC event generator [2], together with all other extra para-
meters of the generator. Unfortunately, the parameters of a
generator are difficult to tune efficiently because minimiza-
tion programs require several sequential calls of the gener-
ator. This can be extremely time-consuming, especially for
more exclusive events.

Motivated by Ref. [3], we are using a fast and efficient
method to fit generator parameters. The method is based on
using a MC event generator to produce a grid in parame-
ter space for each observable. The parameter dependence
is then approximated by polynomials before the fit is per-
formed, which significantly reduces the fitting time. This
method has also been recently used in Ref. [4].

As an application, we tune the parameters of the unin-
tegrated gluon distribution function (also called transverse-
momentum-dependent gluon distribution function) using the
CASCADE MC event generator [5], by fitting the generator
predictions to inclusive deep inelastic scattering data mea-
sured by the H1 Collaboration [6]. We explore the reliability
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and the limitations of the method and study to which extent
the data can constrain the input parameters.

The paper is organized as follows. In Sect. 2 we give
the details of the fitting method. We give a simple example
which we generalize to several parameters and observables.
In Sect. 3, we discuss how the fitting method is applied to
a specific case and the results of the tune are presented in
Sect. 4. We draw some conclusions at the end of the paper.

2 Tuning method

In general, the goal of the tuning is to describe a set of N

experimental observables Y ex
i , with errors δY ex

i , by means
of a theoretical model (in this case a MC generator) that de-
pends on the parameters αa , and predicts the observables to
be Y MC

i (αa), with errors δY MC
i (αa). The values of the para-

meters that give the best description of the data can be found
by minimizing the χ2 function

χ2(αa) =
N∑

i=1

[Y MC
i (αa) − Y ex

i ]2

[δY MC
i (αa)]2 + [δY ex

i ]2
. (1)

Usually, the minimization is done by numerical programs
such as MINUIT [7]. The generator predictions have to
be computed typically a few hundred times for different
choices of the parameters before the minimum is found. This
“brute-force” procedure is highly time consuming.

An alternative approach has been used in, e.g., Ref. [8] as
early as twenty years ago, and more recently in Refs. [3, 4].
First, for each observable a grid in parameter space is built,
running the MC generator with several values of the parame-
ters. Secondly, the grids are approximated by analytic func-
tions of the parameters, usually polynomials. These func-
tions give a fair description of the generator output and can
be used in its stead. In this way, finding the parameter values
that best fit the data becomes a much faster task.

The method turns out to be particularly time efficient.
A fitting procedure typically requires to sequentially calcu-

late χ2 a few hundred times for different values of the para-
meters. Building the grids in parameter space also requires
running the MC generator a few hundred times, but each
computation can be done independently in parallel. Once the
grid is built and approximated analytically, minimizing the
χ2 is extremely fast. It becomes very convenient to run the
minimization with different initial values of the parameters,
or including only a subsample of the observables. However,
if new data points are added, a new grid has to be produced
for each new data point.

2.1 A simple example

To illustrate the method, we start from a simple example.
Suppose we need to fit two data points Y ex

1 and Y ex
2 with

their errors (e.g., two cross-section measurements) using a
MC generator with one tunable parameter α. In Fig. 1, we
indicate the two data points with solid horizontal lines with
their error bands.

First, we choose 5 values (j = 1, . . . ,5) of the parameter
α and generate 5 predictions for each observable, i.e., two
grids (α1,j , Y

MC
1 (α1,j )) and (α1,j , Y

MC
2 (α1,j )), with statis-

tical errors due to the Monte Carlo method. In Fig. 1, these
grids are indicated by points (the errors are too small to be
visible).

Then we choose an analytical form to approximate the
two grids, which will be a function of α, but also of two new
sets of parameters A1,B1, . . . and A2,B2, . . . , one for each
grid. To avoid confusion, with denote these new parameters
as “grid parameters,” to be distinguished from the original
MC parameters. In principle, the functional form itself could
be different for each distinct grid, but in practice it is more
convenient to choose the same form. To make the procedure
easier, it is a good idea to choose a function that is linear in
the grid parameters, for instance a third-degree polynomial

Y
app
i (α;Ai,Bi,Ci,Di) = Ai + Biα + Ciα

2 + Diα
3. (2)

The best values of the grid parameters are chosen by
means of a χ2 minimization for each separate grid. We de-
fine this procedure as “grid approximation,” to be distin-

Fig. 1 Example of the fit
procedure applied to a single
parameter and two observables:
the horizontal lines with bands
represent the experimental
values and errors of the
observables, the points indicate
the grids predicted by the MC
generator for different values of
the parameter on the x axis, the
curved lines represent analytical
approximations to the grids, and
the vertical lines indicate the
best-fit value of the parameter
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guished from the actual fit to the experimental data. We de-
fine in this case

χ2
i (Ai,Bi, . . .)

=
5∑

j=1

[Y app
i (α1,j ;Ai,Bi, . . .) − Y MC

i (α1,j )]2

[δY MC
i (α1,j )]2

. (3)

The polynomials obtained using the best-fit parameter val-
ues, Âi , B̂i , . . . are indicated as a curved solid line in Fig. 1.
The χ2

i analysis allows us also to estimate the errors bands
on the grid approximations (not visible in the figure).

At this point, it is useful to remark that the degree of the
polynomial introduced in Eq. 2 is a matter of choice. Usu-
ally, the higher the degree, the better the description of the
grids becomes. However, from a certain point on, adding an
extra degree does not improve the quality of the approxi-
mation significantly, i.e., it does not change significantly the
sum of the minimum χ2

i . In the case shown in Fig. 1, it turns
out that a third-degree polynomial gives a much better de-
scription of the grid than a second-degree polynomial, while
the fourth-degree polynomial does not significantly improve
the situation.

Once we have analytical approximations of the Monte
Carlo generated grids, we can finally fix the best value of
the parameter α by minimizing the function

χ2(α) =
2∑

i=1

[Y app
i (α; Âi , B̂i , . . .) − Y ex

i ]2

[δY app
i (α; Âi , B̂i , . . .)]2 + [δY ex

i ]2
. (4)

In Fig. 1 the best-fit parameter value, α̂1, is indicated as a
straight vertical line.

2.2 The general case

Generalizing the above example, with N experimental
points (denoted by the index i) and P parameters (denoted
by the index a), we need to build N grids in (P + 1)-
dimensional spaces, (αa,ja , Y

MC
i (αa,ja )). If we choose Ja

points for each parameter, the generation of the grid requires
J = ∏P

a=1 Ja Monte Carlo runs. Once the grids are built, we
approximate them using polynomials of degree n (for sim-
plicity we show here explicitly only the terms up to second
degree)

Yi(Ai,Bi,a,Ci,ab, . . .)

= Ai +
P∑

a=1

Bi,aαa +
P∑

a=b

P∑

b=1

Ci,abαaαb + · · · . (5)

Note that the Monte Carlo parameters αa are the variables
of the polynomials, while the grid parameters are the coef-
ficients. For degree two and higher, the off-diagonal terms
like Ci,ab , a �= b, take into account correlations between

the Monte Carlo parameters. In our application, we found
that third-degree polynomials give a good description of the
grid. Advancing to fourth-degree polynomials does not lead
to significant improvements.

The total number of coefficients for a degree-n polyno-
mial of P parameters is M = ∑n

k=0
(P+k)!
k!P ! . For instance,

a polynomial of third degree of four Monte Carlo para-
meters has 35 coefficients. For simplicity, we denote them
collectively as Ai,s , where Ai,1 = Ai , Ai,s = Bi,a for s =
2, . . . ,P +1, Ai,s = Ci,ab for s = P +2, . . . ,P +2+P(P +
1)/2, etc.

The values of the coefficients that give the best approxi-
mation to the grid are obtained by minimizing

χ2
i (Ai,s) =

J∑

j=1

[Y app
i (αk,j ;Ai,s) − Y MC

i (αk,j )]2

[δY MC
i (αk,j )]2

. (6)

Since the fit function is linear in the coefficients, the best
way to perform the χ2 minimization is to use Singular Value
Decomposition (SVD) [9]. SVD is based on the fact that
the relation between the observables and the grid parame-
ters Ai,s can be written as an over-determined system of lin-
ear equations. SVD provides a solution to this system in a
least-squares sense. Compared to other, more general nu-
merical minimization procedures (such as the ones imple-
mented in MINUIT), SVD is faster and guarantees that the
true χ2 minimum is found. The solution does not depend on
the choice of the initial values of the parameters. This is par-
ticularly important when the minimization involves several
dozens of parameters.

The approximation procedure returns the best-fit values,
Âi,s , of the coefficients and a covariance matrix that can be
used to estimate the statistical error bands on the approxi-
mation, δY

app
i (αa; Âi,s) by means of error propagation.

Once the grids are approximated by polynomials in
Monte Carlo parameter space, we finally want to choose the
values of the parameters αa that give the best description of
the data. To correctly take into account systematic errors in
the experimental measurements, the χ2 function has been
computed using [10]

χ2 =
N∑

i=1

[Y app
i (αa; Âi,s) − Y ex

i + ∑nsys
k=1 r ′

k
2]2

[δY app
i (αa; Âi,s)]2 + [δY ex

i ]2
+

nsys∑

k=1

r ′
k

2
,

(7)

where the random parameters r ′
k are defined in Appendix A.

The minimization is done in this case using MINUIT, since
the dependence on parameters αa is non-linear.

The tuning method studied in Ref. [4] is essentially the
same as the one considered here. The main differences be-
tween the two implementations reside in the definition of the
χ2 function, which in our case include the statistical error in
the grid approximation (δY app

i ) and the contribution of cor-
related systematic uncertainties.
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3 An application: fitting the unintegrated gluon
distribution function in CASCADE

The fitting method described before is general and may be
applied to tune any parameter in any Monte Carlo generator.
At present, however, we want to concentrate on tuning the
parameters of the unintegrated gluon distribution function
(uGDF)—also known as transverse-momentum-dependent
gluon distribution function—in the CASCADE MC genera-
tor.

A brief introduction to the CASCADE event generator is
in order. For a more detailed description we refer the reader
to [5]. CASCADE is a hadron level Monte Carlo event gen-
erator for ep, γp and pp processes, which uses the CCFM
evolution equation for the initial state parton shower supple-
mented with off-shell matrix elements for the hard scatter-
ing. To simulate the hadronization process, CASCADE uses
the Lund string model [11].

The CCFM equation is a linear integral equation which
sums up the cascade of gluons under the condition that sub-
sequent emissions are angularly ordered. With this ordering
it interpolates between DGLAP (resummation of transverse
momenta αn

s lnn k2
t ) and BFKL (resummation of longitudi-

nal momenta αn
s lnn x) limits.

In Fig. 2 we show schematically a parton ladder defining
the kinematic variables which we use in equations below.
The CCFM equation reads:

A(x, kt , q) = A0(x, kt , q)

+
∫ 1

x

dz

z

∫
d2q

πq2
Θ(q − zq)Δs(q, zq)

× P̃gg(z, q, kt )A

(
x

z
, k′

t , q

)
(8)

where A0(x, kt , q) is the input distribution, x denotes the
longitudinal momentum fraction of the proton carried by

Fig. 2 Schematic view of a parton ladder illustrating the kinematic
variables used in the text

the gluon, kt is the 2-dimensional transverse momentum of
the t channel gluon, z = x/x′ is the splitting variable, q is
the factorization scale specified by the maximum allowed
angle Ξ between the partons in the matrix elements, k′

t =
|�kt + (1 − z)�q|. We also introduced q as a shorthand nota-
tion for the 2-dimensional momentum �q ≡ �qt = �pg/(1 − z).
The Sudakov form factor (which we do not write explicitly)
Δs(q, zq) for inclusive quantities regularizes the 1/(1 − z)

collinear singularity of the splitting function P̃gg(z, q, kt ).
The input distribution can be written as

A0(x, kt , q) = A0(x, kt )Δs(q,Q0). (9)

We choose to parametrize the distribution at the starting
scale Q0 = 1.2 GeV in the following way

xA0(x, kt ) = Nx−B(1 − x)C(1 − Dx)e−(kt−μ)2/σ 2
(10)

where N,B,C,D,μ,σ should be in principle determined
from fits. In practice, for the purpose of the present study we
fix C = 4, μ = 0 GeV, σ = 1 GeV [5]. The value of parame-
ter C is dictated by the spectator counting rules [12]: since
at large x gluons are suppressed as compared to quarks, C

for gluons has to be larger than 3. Previous studies suggests
C = 4 [13]. Parameter D, typically included in global fits
of the PDFs (see, e.g., [14, 15]), was set to zero in earlier
studies with CASCADE [13, 16, 17]. As we will show later,
the addition of this parameter substantially improves the de-
scription of the data we consider.

The parameters of the starting uGDF, N , B , and D in
Eq. 10, are determined by fits to the F2 structure function in
inclusive deep inelastic scattering, ep → e′X, as measured
by the H1 Collaboration [6]. We chose this data set in or-
der to compare our results with earlier determinations of the
uGDF. The measurement was made at the electron-proton
center of mass energy

√
s = 300.9 GeV within the kine-

matic range 1.5 < Q2 < 150 GeV2, 3 × 10−5 < xBj < 0.2.
Here Q2 is the virtuality of the exchanged boson, and xBj

is the Bjorken scaling variable. The measurements cover the
small-xBj region where gluon-induced processes dominate
and we should have a good sensitivity to the values of the
parameters in the uGDF. In total, there are 122 data points
binned in xBj and Q2.

We considered two different cases: in the first case we
restricted ourselves to xBj ≤ 0.005 and Q2 ≥ 4.5 GeV2, as
in most of the available CASCADE tunes [13, 16, 17]; in the
second case, we extended the range to the whole data set.

In summary, we performed four kinds of fits:

Fit 1. xBj ≤ 0.005 and Q2 ≥ 4.5 GeV2, D = 0 in Eq. 10,
Fit 2. xBj ≤ 0.005 and Q2 ≥ 4.5 GeV2, D �= 0 in Eq. 10,
Fit 3. full xBj and Q2 range, D = 0 in Eq. 10,
Fit 4. full xBj and Q2 range, D �= 0 in Eq. 10.
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The grid in parameter space was built in two different
ways depending on whether parameter D was set to zero or
treated as a fit parameter. The final grids were chosen af-
ter performing rough fits with wider grids. In Fit 1 and 3,
we chose N = [0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9]
and B = [−0.05,−0.025,0.0,0.025,0.05,0.075,0.1,

0.125] for a total of 72 grid points. In Fit 2 and 4,
we chose N = [0.30,0.38,0.46,0.54,0.62,0.70], B =
[0.00,0.05,0.10,0.15,0.20], and D = [−12,−10,−8,−6,

−4,−2,0], for a total of 150 grid points. For each point 2.5
million events were generated. Each generation takes a few
hours of computing time and can be run in parallel.

Describing the grid with a third degree polynomial is in
our experience the best choice. The quality of the grid ap-
proximation is very good, with an average χ2/n.d.f. of 1.08,
1.05, 1.11, 1.12 for Fit 1 to 4, respectively. We studied the
performance of polynomials of different degree. At variance
with Ref. [4], we observed that second-degree polynomi-
als do not give a sufficiently good description of the grid.
Fourth-degree polynomials perform better but do not lead to
a significant improvement of χ2.

Using the covariance matrix obtained in the approxima-
tion procedure, the errors of the coefficients in the polyno-
mials are propagated as theoretical errors to the observables
we need to fit, denoted as δY app in Eq. 7.

Once the parameter dependence was described by the
polynomials, the parameters were fitted to the data by us-
ing MINUIT, using the Migrad method [7]. Approximately
150 iterations were needed by the program in order to find
the lowest χ2 within the allowed limits set by the grid. This
minimization took only few seconds.

If our analytical grid description is good enough, we can
expect the number of iterations to be the same as if we used
the true MC instead of the polynomial approximation. As-
suming that running the generator once with the current sta-
tistics takes approximately 6 hours of CPU time, fitting the
Monte Carlo parameters with a conventional iterative way is
expected to take 150 × 6 hours. Clearly, in such case one is
forced to drastically reduce the statistics, and the fit could be
influenced by statistical fluctuations. In addition, our method
allowed us to quickly remake the fit by feeding MINUIT
with different starting values. In this way we reduced the
risk of finding a local minimum.

4 Results

The best-fit values of the parameters are quoted in Table 1.
To have an idea of the performance of our fit, we can

compare Fit 1 with earlier uGDF fits [13, 16, 17]. In partic-
ular, we chose to compare our fit to the J2003 set 2 (JSET2)
uGDF [16], which is the one with the closest conditions
to ours. In that set, parameter B is set to zero. To com-
pare the quality of the description, we ran CASCADE with
a statistics of 2.5M events, and we found that our fit gives a
χ2/n.d.f. = 1.4, while the old set gives χ2/n.d.f. = 2.1. In
other words, we found parameters that give a better descrip-
tion of the data, giving us confidence in our fitting method.
In Fig. 3 we show the results of Fit 1, Fit 2, and JSET2 com-
pared to the data. The results of Fit 3 and 4 are shown in
Fig. 4.

In order to check if our minimization approach works,
we scanned the parameter values around their best values to
check if we can indeed identify the signs of the presence of a
minimum of χ2. In Figs. 5 and 6 we show how χ2 changes
as a function of each of the three parameters used in Fit 2
and Fit 4, while fixing the other two to their best-fit value.
The scans were carried out using both the Monte Carlo gen-
erator directly and the grid approximation. For comparison,
we show also the results obtained using second- and fourth-
degree polynomial approximations. First of all, we observe
that the profile has in all cases a parabolic shape and the po-
sition of the minimum is clearly visible. This gives us once
again confidence in the reliability of the procedure. We see
also that the position of the minimum and the shape of χ2

from the MC computation are similar to what is obtained
from the grid approximation with third-degree polynomials.
The position of the minimum is similar to what is found us-
ing the fourth-degree polynomial approximation, but quite
different to what is found using the second-degree polyno-
mial approximation. The value the minimum χ2 is not the
same for MC and grid approximation (1.4 versus 1.6 for
Fit 2; 3.2 versus 4.6 for Fit 4). This is due to the fact that the
approximation errors, δY

app
i in Eq. 7, are typically smaller

than the MC errors, δY MC
i in Eq. 1, and lead to a higher χ2.

This difference becomes irrelevant only if δY MC
i is negligi-

ble compared to the experimental errors δY ex
i .

Table 1 Best fit parameters and
χ2/n.d.f. for the fits described
in the text

Range N (GeV−2) B D χ2/n.d.f.

Fit 1 xBj ≤ 0.005, 0.805 ± 0.032 0.030 ± 0.006 0 (fixed) 2.0

Q2 ≥ 4.5 GeV2

Fit 2 xBj ≤ 0.005, 0.417 ± 0.030 0.125 ± 0.010 −9.2 ± 1.3 1.6

Q2 ≥ 4.5 GeV2

Fit 3 full 0.582 ± 0.016 0.070 ± 0.004 0 (fixed) 6.2

Fit 4 full 0.368 ± 0.015 0.140 ± 0.006 −8.03 ± 0.66 4.6
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Fig. 3 F2(x) structure function measured by the H1 Collaboration [6]
together with simulations based on the CASCADE event generator, us-
ing the unintegrated gluon PDF obtained in Ref. [13] (dashed line), and

using the parameters obtained in Fit 1 of the present work (solid line).
The hatched areas were excluded from the fit

At this point, we can briefly discuss the physical meaning
of our results. First of all, we can conclude that in the ex-
tended xBj and Q2 range of Fit 3 and 4 we cannot achieve a
good description of the F2 data with CASCADE. This is not
surprising, since the generator starts from a purely gluonic
distribution function. The description is in general better at
lower values of xBj , where gluons dominate.

Secondly, we conclude that in the restricted xBj and Q2

range of Fit 1 and 2, a good description of the data is ob-
tained when we include parameter D to give more flexibility
to the functional form of the gluon distribution.

A few considerations can be made also on the value of
parameter B , governing the low-x behavior of the gluon dis-
tribution. In all fits, the value is higher than previous stud-
ies [13, 16, 17]. This is for instance the reason of the differ-
ent behaviors at low xBj and Q2 in Fig. 3. The value of B

turns out to be even higher in the fits with a free D parame-
ter.

Not surprisingly, we observe that the parameters of the
gluon distribution function are in general different from the
ones obtained in global fits at similar input scales [14, 15].
To start with, global fits include many more data sets than we
presently considered. However, there are more fundamental
differences between the physics included in the generators
or in global fits. Therefore, to achieve the best possible de-
scription of data with Monte Carlo generators, the parame-
ters of the distribution functions should be tuned indepen-
dently of global fits.

5 Conclusions

In this work we analyzed a method to tune the parameters
of Monte Carlo event generators using a set of experimental
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Fig. 4 F2(x) structure function measured by the H1 Collaboration [6]
together with simulations based on the CASCADE event generator, us-
ing the parameters of the Fit 3 (dashed line), and Fit 4 (solid line) of

the present work. In contrast to Fig. 3, the whole xBj and Q2 range has
been included in the fit

Fig. 5 χ2 profiles as a function of the parameters of the input uGDF
for Fit 2. Points: using the MC generator directly. Lines: using three
different versions of the polynomial approximation. The vertical line

and band indicates the position of the minimum and its error (obtained
using the third-degree polynomial approximation)

observables. First, the generator is run with a few different
values of the parameters to tune. For each observable, a grid
of predictions is thus obtained. The resulting grids are ap-

proximated by analytic functions of the parameters. Finally,
the analytic functions are used in place of the generator it-
self to perform a χ2 fit to the data and obtain the best values
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Fig. 6 Same as Fig. 5 but for Fit 4

for the parameters. The method is significantly faster than a
direct use of the generator, as the construction of the grids
typically requires fewer calls to the generator than a direct
fit and all grid points can be computed in parallel. There is
no need to rerun the generator to repeat the fit with differ-
ent initial values of the parameters, nor if the experimental
data change (for instance if the statistics increase). If data for
different observables become available, the generator has to
be run to build grids for these new observables, but the old
grids remain still valid for the old observables.

The main limit of the approach is that the limited para-
meter ranges have to be fixed a priori, since the grids have
to be built once and for all before the fitting is actually per-
formed. It is possible to improve the choice of the parameter
ranges with hindsight, after the first attempt. However, this
approach might be time consuming and the minimization
can still fail if the data cannot constrain the value of one or
more parameters.

As a concrete example, we applied the method to find the
best values for the parameters of the unintegrated gluon dis-
tribution function used in the CASCADE Monte Carlo gen-
erator. To constrain the parameter values, we used the data
on the F2 structure function in inclusive deep inelastic scat-
tering. We performed four different types of fit, changing
the range of xBj and Q2 and the number of free parameters
under consideration.

Taking the second version of the fit as an illustration,
we chose 150 combinations of parameter values and pro-
duced a grid of predictions for each one of the 122 data
points. The grid was approximated by a third order polyno-
mial with a total of 35 coefficients. The best approximation
was searched for using the method of Single Value Decom-
position to guarantee a fast and reliable search. The qual-
ity of the approximation was found to be very good, with
χ2/n.d.f. = 1.05.

Finally, we found the best values of the parameters by a
second χ2 minimization, using the difference between the
experimental measurements and the analytic approximation
of the generator output to define the χ2 function. The mini-
mization was done using MINUIT.

We checked that the best-fit values of the parameters give
a good description of the data, with a χ2/d.o.f. = 1.6. By
scanning the dependence of χ2 on the single parameters, we
strengthened the evidence that the fit found the parameter
values that describe the data best.

By including more data in the fit, the method described
in this work can be applied to better constrain the parame-
ters of the unintegrated gluon distribution, including those
describing the intrinsic kt -dependence.
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Appendix A: Treatment of correlated systematic
uncertainties

A convenient method to determine the quality of a fit is to
use a least square minimization. This ansatz is justified by
the assumption that the errors are Gaussian distributed.

A set of measurements {di} will in general deviate from
a set of corresponding predictions {ti}. The deviations are
caused by various kinds of uncertainties as there is for each
data point a statistical uncertainty σ dat

i , an uncorrelated sys-
tematic uncertainty ui and, coming from nsys sources, the
correlated systematic uncertainties {βi1, βi2, ..., βinsys}. The
measurement is then related to the prediction by:

di = ti + riαi +
nsys∑

k=1

r ′
kβik, (A.1)
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where σ dat
i and ui are added in quadrature to form a unified

uncorrelated error αi =
√

(σ dat
i )

2 + (ui)
2. The ri , r ′

k express
the individual shifts of the data points by the uncertainties
and are Gaussian distributed with zero mean and unit vari-
ance and assumed to be independent of each other.

A χ2 that includes a proper treatment of correlated sys-
tematic errors can be calculated as follows (see [10] for a
derivation):

χ2({a}, {r ′}) =
N∑

i=1

(
di − ti − ∑nsys

k=1 βikr
′
k)

αi

)2

+
nsys∑

k=1

r ′
k

2
,

(A.2)

where it can be seen that χ2 depends both on {a} (the para-
meters entering the predictions ti ) and the random parame-
ters {r ′}. The latter ones can be expressed as

r ′
k

({a}) =
nsys∑

k′=1

(
A−1)

kk′Bk′ , (A.3)

which leads to the r ′-independent form

χ2({a}) =
Ndat∑

i=1

(di − ti )
2

α2
i

−
nsys∑

k,k′=1

Bk

(
A−1)

kk′Bk′ (A.4)

with

Bk =
Ndat∑

i=1

βik(di − ti )

α2
i

, Akk′ = δkk′ +
Ndat∑

i=1

βikβik′

α2
i

.

(A.5)

For the systematic errors, in this work we used the ansatz
proposed by CTEQ, i.e.,

βik = εikdi (A.6)

with εik being the relative systematic error.
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