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Abstract. Biological neuronal networks are of great interest for emerging technological approaches such
as neuromorphic engineering due to their capability to efficiently process information. To understand the
principles governing this energy efficiency, it is useful to investigate model organisms with small and
well-characterized neuronal networks. Caenorhabditis elegans (C. elegans) is such a model organism and
perfectly suited for this purpose, because its neuronal network consists of only 302 neurons whose intercon-
nections are known. In this work, we design an ideal electrical circuit modeling this neuronal network in
combination with the muscles it controls. We simulate this circuit by a run-time efficient wave digital algo-
rithm. This allows us to investigate the energy consumption of the network occurring during locomotion of
C. elegans and hence deduce potential design principles from an energy efficiency point of view. Simulation
results verify that a locomotion is indeed generated. We conclude from the corresponding energy consump-
tion rates that a small number of neurons in contrast to a high number of interconnections is favorable
for consuming only little energy. This underlines the importance of interneurons. Moreover, we find that
gap junctions are a more energy-efficient connection type than synapses, and inhibitory synapses consume
more energy than excitatory ones. However, the energetically cheapest connection types are not the most
frequent ones in C. elegans’ neuronal network. Therefore, a potential design principle of the network could
be a balance between low energy costs and a certain functionality.

1 Introduction

Due to its high computational power and efficient infor-
mation processing, the human brain has attracted a lot
of interest in the field of hardware-based artificial neural
networks. However, great interest also lies in the study
of much simpler neuronal networks, because unveiling
core principles of neural information processing and
fundamental, functional subcircuits is much easier in
smaller networks. A popular choice for this purpose is
the neuronal network of the nematode Caenorhabditis
elegans (C. elegans), since it consists of only 302 neu-
rons and its connectome is fully described. Of these 302
neurons, 282 neurons belong to the somatic system and
279 neurons are especially considered when studying its
locomotion [1]. See appendix A for a list of the consid-
ered neurons and their type. This locomotion is asso-
ciated with a sinusoidal-like wave motion of the worm.
It is generated by 95 muscles, which are divided into
dorsal left (DL), dorsal right (DR), ventral left (VL),
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and ventral right (VR) muscles [2]. A sketch of C. ele-
gans is shown in Fig. 1. Locomotion can be triggered
by various touch sensors but is also linked to, e.g., the
chemosensory system [3].
C. elegans as a model organism is not only relevant to

biology, but also to technology and electrical circuits.
For instance, it enables the derivation of locomotion-
generating circuits for robotic applications [4]. Studying
C. elegans and its neuronal network can also improve
the control of robotics in the simultaneous presence of
different stimuli, locomotion in C. elegans is generated
while multiple types of sensory information are pro-
cessed. Moreover, C. elegans also allows for studying
the principles behind an information processing that
is far more efficient than that of today’s computers.
Energy efficiency has for instance been studied with
respect to the sparsity of a neuronal network [5,6].
Moreover, an energy homeostasis principle shaping the
neuronal dynamics has been proposed in [7] by consider-
ing a balance between energy supply, energy costs, and
availability of energy. Concerning C. elegans, energy-
efficiency of a subset of its neuronal network coupled
only via gap junctions has been investigated in [8].
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Fig. 1 Illustration of the sinusoidal body shape during
locomotion, with x denoting the muscle index per group
(ventral left, ventral right, dorsal left, dorsal right)

In this work, our aim is to investigate the power con-
sumption of the individual building blocks of C. elegans’
neuronal network, i.e. synapses, gap junctions, and ion
channels of neurons during locomotion behavior. To
our utmost knowledge, such an analysis has not been
considered for C. elegans. Based on this analysis, we
can provide insights into a functional neuronal network
topology design of C. elegans with respect to energy
efficiency principles. This allows us to deduce poten-
tial design principles that can aid in designing more
energy-efficient hardware-based neuronal networks. For
this purpose, we model the neuronal network of C.
elegans by an electrical circuit and derive a run-time
efficient circuit simulation algorithm. Existing circuit
realizations of C. elegans are for instance based on an
FPGA emulation for leaky-integrate-and-fire models as
neurons of C. elegans as part of the Si elegans project
[9,10]. Moreover, a memristive circuit has recently been
proposed for the locomotory neuronal network [4]. In
contrast to these approaches, we design an ideal, bio-
inspired electrical circuit based on analog circuit ele-
ments that accounts for the 279 somatic neurons and 95
body wall muscles. This offers several advantages. First,
due to its analog nature, the circuit can potentially be
used to extract electrical subcircuits that mimic func-
tional, neuronal subnetworks of C. elegans for, e.g., spe-
cific motor control or sensory information processing
tasks. Second, including the body wall muscles allows
us to link the mimicked neuronal activity to locomotion
behavior. Third, considering the 279 somatic neurons
instead of only a subset, such as the locomotory cir-
cuit, enables us to take the influence of other neurons
on the generation of locomotion into account. This way,
we can derive network design principles for the entire
somatic network with respect to a specific behavior,
namely forward locomotion. To this end, we derive cir-
cuit models for neurons and for muscles and verify the
resulting full system via wave digital simulations [11].
This framework has, for instance, been applied to simu-
late single neurons [12,13] and small neuronal networks
[14], and provides a flexible, potentially real-time capa-
ble algorithm.

The rest of this paper is organized as follows: In
Sects. 2 and 3, circuit models for the neurons and mus-
cles are derived. Section 4 discusses the circuit realiza-
tion of the interconnections between neurons as well as
between neurons and muscles. Simulation results for the
locomotion behavior as well as an analysis of the corre-

Fig. 2 Differentiation of sensory neurons, motor neurons,
and interneurons

sponding energy consumption are presented in Sect. 5.
Finally, conclusions are given in Sect. 6.

2 Neuron model

A detailed biology-based modeling of C. elegans’ neu-
ronal network is a very challenging task for two major
reasons. First, as of now, electrophysiological recordings
are not available for most neurons. Second, standard
spiking neuron models have very limited applicability
to the neurons of C. elegans. This is because the neurons
of C. elegans were for long believed to not fire action
potentials at all, but rather to be isopotential [15]. This
is related to the fact that no sodium channels have
been found in neurons of C. elegans, hinting that neu-
ronal activity might be driven by voltage-gated calcium
channels instead [15,16]. Up to now, action potentials
have been found in the sensory neuron AWA [16,17]
and in enteric motor neurons [18]. For these reasons,
we use a generic modeling approach for the neurons by
classifying them into three functional types: (i) sensory
neurons that receive sensory signals via receptors, (ii)
motor neurons that innervate and control muscles, and
(iii) interneurons that relay signals between sensory and
motor neurons, see Fig. 2.

Here, neurons of the same type show the same behav-
ior. The classification is based on [19], where a list of all
neurons and their types can be found. Note that some
neurons play multiple roles, e.g., there can be sensory-
motor neurons. Since we consider a strict classification,
we treat potential sensory inter and inter motor neurons
as purely interneurons. Moreover, we consider all sen-
sory neurons that are also motor neurons to be purely
motor neurons. In total, this leads to 104 motor neu-
rons, 96 interneurons, and 79 sensory neurons, cf. A.

Let us now define the activity patterns of the three
classes as follows: (i) Interneurons most likely show
isopotential behavior [15,20,21], which we assume for
all interneurons in our modeling approach. (ii) Motor
neurons related to the locomotion show oscillatory
behavior [22], but no action potentials have been found
[18]. However, at least in the neuron RMD, plateau
potentials have been found [15,20]. We assume this
behavior for all motor neurons. (iii) Action potentials
have been found for the sensory neuron AWA, which is
why we model all sensory neurons to generate action
potentials. As a generic neuron model, we make use of
the Morris–Lecar model, since it offers several advan-
tages. First, it is a biologically reasonable model that
is computationally simpler than, e.g., Hodgkin-Huxley
models. Second, it naturally comes with a calcium
instead of a sodium channel, which is more precise
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Fig. 3 Electrochemical processes taking place at a cell
membrane, e.g., of neurons, which is currently in its rest-
ing state. j and un denote the input current and membrane
potential, respectively

when accounting for C. elegans neurons. Third, the
Morris–Lecar modeling framework is a conductance-
based model and is thus directly interpretable as an
electrical circuit. The circuit representation also allows
us to directly calculate power flows, which we require for
the investigation of energy consumption. The Morris–
Lecar model is based on the electrochemical processes
observed from an electrically excitable cell membrane
visualized in Fig. 3.

Non-voltage-dependent ion transport mechanisms
are summarized as leakage channels, while calcium and
potassium channels only let their specific ions pass
through if the membrane potential measured between
the inside and the outside is large enough. These voltage
levels are met when ions due to an input current enter
the region of the channels. This current can stem from
various sources such as synaptic transmission, electri-
cal coupling via channels called gap junctions, or in the
case of sensory neurons from sensory receptors. This
behavior is mathematically described by the following
set of differential equations [23,24]:

Cnu̇n = jn + jt − iK − iCa − iL (1a)
iCa = gCa(un) [un − ECa] (1b)
iK = WK [un − EK] , WK(z) = zGK (1c)
iL = GL [un − EL] (1d)

gCa(un) =
GCa

2

[
1 + tanh

(
un − UCa,1

UCa,2

)]
(1e)

ż = [z∞(un) − z]F cosh
(

un − UK,1

2UK,2

)
(1f)

z∞(un) =
1
2

[
1 + tanh

(
un − UK,1

UK,2

)]
. (1g)

Here, the membrane potential un and the fraction of
open potassium channels z are the dynamical variables.
Cn is the membrane capacitance, jn is the input cur-
rent due to synapses and gap junctions, and jt is the
input current due to a sensed touch. Furthermore, iK,
iCa, and iL denote the potassium current, calcium cur-
rent, and leakage current, respectively. GL and EL are
the conductance of the leakage channel and its resting
potential, respectively. gCa(un), GCa, UCa,1, and UCa,2

Fig. 4 Morris–Lear circuit corresponding to Eqs. (1)

are the conductance of the calcium channel, its maxi-
mum conductance, the threshold voltage, and the edge
steepness for the opening of the channel, respectively.
WK denotes the memductance of the potassium chan-
nel, cf. [24], GK is its maximum conductance and z∞
describes the fraction of open channels when the mem-
brane potential is equal to its resting potential. F is
the opening rate of the potassium channel, UK,1 is the
corresponding threshold voltage, and UK,2 refers to the
corresponding edge steepness. Note that the potassium
channel has originally been considered as a nonlinear
conductance, but has later been identified to be a mem-
ristor [24]. We adopt this understanding for this work.
The corresponding circuit is shown in Fig. 4.

In the following, we briefly discuss the specific model-
ing of sensory, inter, and motor neurons. As the action
potentials observed for the neuron AWA are in the
order of milliseconds [16], we use a scaled version of
the parameters presented in [12] for the sensory neu-
rons. For the interneurons, we strongly decrease the
maximum conductance value GK such that no action
potentials arise. Considering the motor neurons, we
design the parameters such that action potentials with
long-lasting phases of positive membrane potential are
present. The duration of these action potentials is con-
gruent with those of enteric motor neurons, which have
been reported to be in the order of seconds [18]. The
parameters used throughout this paper are listed in
Table 1. They are roughly in the same order of magni-
tude as parameters for biophysically detailed modeling
of specific neurons of C. elegans [25].

Exemplary membrane potential behavior for all three
types is shown in Fig. 5, where each neuron is stimu-
lated by a current pulse lasting for 1.7 s. As can be
seen, sensory neurons generate short action potentials
with a high frequency, while motor neurons generate an
action potential that lasts approximately 1s. Lastly, the
membrane potential of interneurons rapidly increases
to a positive voltage, but they do not generate spikes
and remain at this voltage until the current stimulus is
turned off. This behavior is approximately comparable
to that of an RC circuit.

So far, the circuit model for the neurons only allows
for observing membrane potentials and ion currents.
Membrane potentials are typically considered as the
output signal of neurons, but cannot always be mea-
sured because electrophysiological recordings can be
difficult to conduct. Instead, fluorescence traces of neu-
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Fig. 5 Membrane potentials of sensory, inter, and motor neurons. The gray shaded areas highlight the time for which a
constant current stimulus j is applied

Table 1 Neuron and muscle circuit parameters

Sensory neurons
GL = 1 nS GCa = 4.6 nS GK = 7 nS
EL = −43 mV ECa = 111 mV EK = −119 mV
C = 22 pF UCa,1 = −1 mV UK,1 = 0 mV

UCa,2 = 12 mV UK,2 = 23 mV
FK = 30 Hz

Interneurons
GL = 3 nS GCa = 1 nS GK = 0.1 nS
EL = −20 mV ECa = 111 mV EK = −119 mV
C = 22 pF UCa,1 = −1 mV UK,1 = 0 mV

UCa,2 = 12 mV UK,2 = 23 mV
FK = 30 Hz

Motor neurons
GL = 1.5 nS GCa = 4.6 nS GK = 7 nS
EL = −30 mV ECa = 111 mV EK = −119 mV
C = 220 pF UCa,1 = −9 mV UK,1 = 0 mV

UCa,2 = 12 mV UK,2 = 23 mV
FK = 1 Hz

Muscle circuit
Cm = 100 pS G0 = 1 nS Im = 1 pA

rons are recorded via calcium imaging. To take this sec-
ond type of output signal into account, we extend our
circuit to model fluorescence traces as well. Note that
for the artificially generated fluorescence traces to be
comparable to real measurements, stimuli perceived by
the recorded worm have to be known. This is not the
case for existing recordings of freely moving animals
reported in, e.g., [26–28]. For this reason, we focus on
forward locomotion induced by a gentle touch, for which
the sensory input is known to be primarily perceived by
the neurons PLML and PLMR (cf. A).

We model the generation of fluorescence values based
on calculating the calcium concentration changes occur-
ring due to the neuronal activity. The dynamics of the
calcium concentration ηCa can be described by

η̇Ca = α [iCa − iCa,rest] − 1
τ

[ηCa − ηCa,rest] , (2)

see [13], with the resting concentration ηrest, the cal-
cium current iCa as well as its resting value iCa,rest, and
the decay time τ . Moreover, α is a factor for converting

Fig. 6 RC circuit for calculating the calcium concentration

current into concentration change, which we choose to
be α = 103 mol

m3C .
Following [13], Eq. (2) can be realized by an equiva-

lent RC circuit governed by

u̇η =
1

Cη
iCa − 1

RηCη
[uη − Uη,rest] , (3a)

Uη,rest = k [ταiCa,rest + ηCa,rest] , (3b)

Cη =
1

kα
, Rη = kτα , k = 1

Vm3

mol
. (3c)

Here, uη is a voltage representing the calcium concen-
tration, Uη,rest is a constant voltage, Cη is a capaci-
tance, Rη is a resistance, and k is a normalization con-
stant.

Note that since the Morris–Lecar circuit already pro-
vides calcium current, we can directly extend this cir-
cuit with the RC circuit by interconnecting them via
a current follower. The RC circuit is shown in Fig. 6,
where the current follower is represented as a controlled
current source.

Given the calcium concentrations, we can now calcu-
late fluorescence values. In general, calcium concentra-
tion can be inferred from fluorescence via

ΔηCa = KD
Fmax

F0

[
1 − D−1

F

]
ΔF/F0[

ΔFmax
F0

− ΔF
F0

]
ΔFmax

F0

, (4a)

ΔηCa = ηCa − ηCa,rest , ΔF = F − F0 , (4b)
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ΔFmax

F0
=

1 − D−1
F

D−1
F + η̄Ca/KD

, (4c)

ΔFmax = Fmax − F0 , (4d)

see [29,30]. F is the fluorescence, KD is the dissociation
constant, DF is the dynamic range of the fluorescence,
Fmax is the maximum fluorescence value, and F0 is the
baseline value of the fluorescence. ΔF and ΔFmax are
the fluorescence and maximum fluorescence without the
baseline value, and ΔF/F0 is the normalized fluores-
cence change. By solving for ΔF/F0, we obtain

ΔF/F0 =
ΔηCa

[
1 − D−1

F

]
ηCa

[
D−1

F + ηCa,rest/KD

] , (5)

which can be seen as a post-processing of the calcium
concentration provided by the RC circuit. Note that for
this work, we assume the usage of the calcium indicator
GCaMP6s, which is a popular choice for calcium imag-
ing. Due to this, we choose DF = 63.2, KD = 144 nM,
and τ = 0.79 s based on [31]. Moreover, we assume a
resting calcium concentration of ηCa,rest = 50nM which
is a typical value for the neurons [25].

3 Muscle model

In this section, we derive an electrical circuit for the
muscular behavior of C. elegans’ locomotion. Existing
modeling approaches for the muscular behavior focus
on the muscle activation as well as on the mechani-
cal interconnection of the muscles, see [32–34]. Since
this work investigates the energy consumption of the
neuronal information processing during forward loco-
motion, the muscle model mainly serves to verify that
locomotion is generated. As such, a detailed biomechan-
ical model is not required. Instead, we focus on a simple
muscle activity model. Here, we take the muscle activ-
ity as a direct representation of the behavior. Based on
[1,32], the muscle activity can be described by the leaky
integrator

ṁ =
1

τm
[1 − m + f(un)] , (6)

where m is the dimensionless muscle activity that physi-
cally captures the muscular calcium concentration [35].
τm = 100 ms accounts for the muscle response time
[1], and f(un) is a function that accounts for synaptic
inputs. Since this is a first-order differential equation,
the muscle activity can be modeled by an equivalent
RC circuit governed by

Cmu̇m = Im + jm(un) − G0um , (7)
Cm = τmG0 , Im = I0 , (8)

with the capacitance Cm, the voltage um representing
the muscle activity, a constant current Im, the input

Fig. 7 RC-Circuit modeling the activity of a single muscle

currents due to synapses jm(un), a normalization con-
ductance G0 and a normalization current I0. The result-
ing muscle circuit hence consists of an ideal current
source, a capacitance, and a conductance, and is illus-
trated in Fig. 7.

4 Interconnection network

In this section, we discuss the interconnection network
of neuron and muscle circuits to model the generation of
forward locomotion. While a distinct locomotory circuit
is known, we use the full connectome for the intercon-
nection network. The latter can be described via adja-
cency matrices, which we have taken from [1]. Making
use of the full connectome allows us to not only investi-
gate the energy consumption of the locomotory circuit
but also to compare it to the energy consumption of
the complete network. The locomotory circuit primar-
ily responsible for the forward locomotion of C. elegans
is depicted in Fig. 8.

It consists of the sensory neurons PLM responsible
for sensing a gentle touch, interneurons PVC and AVB,
as well as motor neurons. The latter are divided into the
first layer motor neurons VB and DB, acting excitatory
on the muscles, and the second layer motor neurons
VD and DD, inhibiting muscle activity. Note that some
neurons are associated with the ventral or dorsal side
of the worm, which is indicated by the letters V and D,
respectively.

In this work, we model connections between neurons
as either gap junctions or synapses, and interconnec-
tions between neurons and muscles only as synapses.
We neglect muscle-to-muscle interconnections, as this
coupling is typically considered to be weak in compari-
son to the synaptic ones [1]. In the following, let us first
consider the neuronal interconnections. In the electri-
cal circuit of the μ-th neuron described by equations
(1) and (4), these interconnections are accounted for
via the current jn,μ

jn,μ = jg,μ + js,μ , μ = 1, . . . , N (9a)

jg,μ = Gel

N∑
k=1

[un,k − un,μ] ael
μk , (9b)
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Fig. 8 Neuronal subcircuit for forward locomotion, with
sensory neurons, interneurons, and motor neurons in orange,
blue, and red, respectively. Neuron names are composed of
abbreviations for the anatomical positions and the subgroup
of neurons, i.e., posterior lateral microtubule (PLM), pos-
terior ventral process C (PVC), anterior ventral process B
(AVB), dorsal B-type motor neuron (DB), dorsal D-type
motor neuron (DD), ventral B-type motor neuron (VB), and
ventral D-type motor neuron (VD) [19]. An excerpt of the
corresponding interconnection network is depicted at the
bottom, with additional letters for the neuron names indi-
cating whether neurons are located on the left or right side
of the worm’s body. The complete interconnection network
is shown in [1]

where N is the total amount of neurons. jg,μ is the input
current caused by gap junctions, js,μ is the synaptic cur-
rent, Gel is the associated coupling strength, and ael

μk is
the μk-th element of the weighted adjacency matrix Ael

that describes the gap-junction-based connections from
neuron k to neuron μ. In our electrical circuit, for each
positive entry in the adjacency matrix Ael, we intercon-
nect the corresponding neuron circuits with a constant
series resistor. Note that the absolute resistance values
differ for the individual gap junctions because there can
be multiple gap junctions between a pair of neurons.
This is reflected in the weight of the adjacency matrix.

The synaptic current js,μ is composed of the Glu cur-
rent jGlu

n,μ , the ACh current jGlu
n,μ , and the GABA current

jGlu
n,μ , which yields

js,μ = jGlu
n,μ + jACh

n,μ + jGABA
n,μ (10a)

jGlu
n,μ =

N∑
k=1

S(un,k)GGlu aGlu
n,μk [un,μ − Eexc] ,

(10b)

jACh
n,μ =

N∑
k=1

S(un,k)GACh aACh
n,μk [un,μ − Eexc] ,

(10c)

jGABA
n,μ =

N∑
k=1

S(un,k)GGABA aGABA
n,μk [un,μ − Einh] ,

(10d)

Fig. 9 Circuit models for neuronal synapses. a Equiva-
lent circuit of neuronal synapses typically found in liter-
ature. b Equivalent circuit of neuronal synapses realized
with a voltage-controlled switch. c Circuit representation
of neuronal synapses as arbitrary voltage-controlled current
sources

S(un,k) =
[
1 + e−[un,k−Us1]/Us2

]−1

. (10e)

Here, GGlu, GACh, and GGABA are the coupling strengths
for the neurotransmitters Glu, ACh, and GABA, respec-
tively, Eexc denotes the resting potential for an exci-
tatory synapse, and Einh is the resting potential for
an inhibitory synapse. aGlu

n,μk, aACh
n,μk, and aGABA

n,μk are the
μk-th elements of the adjacency matrices AGlu

n ,AACh
n ,

and AGABA
n , respectively, which describe the connec-

tions between neurons due to the corresponding type
of neurotransmitter. Finally, S(un) is the synaptic acti-
vation function, with the threshold voltage Us1 and a
voltage determining the slope Us2.

Individual synapses are typically represented by non-
linear resistive voltage sources, see Fig. 9a. Here,
the nonlinear resistor can be realized by a voltage-
controlled switch in series to a constant resistor Gsyn,
where the switch accounts for the synaptic activation
function and can be realized by, e.g., transistors, cf.
[36] for a comparable transistor-based approach. This is
illustrated in Fig. 9b. Gsyn depends on the type of neu-
rotransmitter and is a multiple of either GGlu, GACh, or
GGABA. The exact factor depends on the weight of the
specific adjacency matrix entry. For our circuit simula-
tion, we treat the synapses as voltage-controlled current
sources shown in Fig. 9c, allowing for a generic circuit
simulation.

Similar to the synapses between neurons, we model
the neuromusculuar synaptic currents via

jm,μ =
M∑

k=1

un,k

[
GACh aACh

m,μk + GGABA aGABA
m,μk

]
,

(11)

where jm,μ is the synaptic input current of the μ-th
muscle, with μ = 1, . . . , M and the total number of
muscle cells M . aACh

m,μk and aGABA
m,μk are the μk-th ele-

ments of the adjacency matrices AACh
m and AGABA

m ,
respectively, which denote the synaptic couplings from
neurons to muscles based on ACh and GABA transmit-
ters, respectively.
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Fig. 10 Voltage-controlled current source as a circuit
model for synapses between neurons and muscles

Since the muscle model is not biologically accurate,
it does not include synaptic ion channels as it is the
case for the neuronal synapses. Instead, the muscular
synaptic current is directly calculated as the product
of the neuronal membrane potential un and the cou-
pling strength of the synapse-specific neurotransmitter.
From a circuit-theoretical point of view, this results in a
voltage-to-current converter and can be represented by
a voltage-controlled current source as well, see Fig. 10.

5 Simulating locomotion and analysis of
power consumption

Let us now discuss the simulation of the combined cir-
cuit model. Taking all interconnections into account
leads to a highly complex circuit diagram that requires
great effort to simulate it via circuit simulation tech-
niques like SPICE. To reduce this complexity, we con-
sider vector-valued neuron and muscle models by vir-
tually stacking, e.g., N Morris–Lecar circuits on top of
each other to model N neurons. This approach results
in the complete circuit model illustrated in Fig. 11 and
is composed of vector-valued subcircuits for neurons,
calcium concentration calculation, muscles, and inter-
connection elements introduced in the previous sec-
tions. The vector-valued nature of the complete circuit
is advantageous for our simulation approach based on
the wave digital concept [11]. In particular, a vector-
valued representation makes the complete circuit model
generic, as in this case more neurons and muscles only
scale the dimensions of the corresponding subcircuits.
As such, it enables an improved run-time efficiency of
the simulation approach. Details about the wave digital
concept are provided in the following.

5.1 Wave digital algorithm

We obtain simulation results using a wave digital algo-
rithm implemented in MATLAB. Compared to other
simulation techniques such as SPICE or ODE solvers,
this provides us with a run-time efficient, real-time
capable algorithm that has a direct correspondence

Fig. 11 Complete circuit model for mimicking the loco-
motory behavior of C. elegans. Note that the individual cir-
cuits are vector-valued variants of the Morris–Lecar circuit
in Fig. 4, the calcium concentration circuit in Fig. 6, the
muscle circuit in Fig. 7, the neuronal synapses in Fig. 9c,
and the neuromuscular synapses in Fig. 10

with the reference circuit. In particular, the algorithm
can be derived from the equivalent electrical circuit by
first decomposing the circuit into its ports and then
translating the ports as well as the interconnection
structure using the bijective transformation

a = u + Ri , b = u − Ri , R > 0 , (12)

see [11]. Here, a, b, and R are the incident wave, the
reflected wave, and the port resistance, respectively. To
translate the complete circuit of Fig. 11, we consider
the subcircuits individually and start with the Morris–
Lecar circuit. A corresponding scalar wave digital has
been derived in [12,13] and its extension to vector-
valued models is achieved when applying the bijec-
tive transformation to vectors of voltages and currents
instead of scalar ones. This has for instance been used
in [14] to couple Morris–Lecar circuit networks of arbi-
trary size. It is based on a general adaptor that repre-
sents arbitrary Kirchhoff interconnections, see [37,38].
This adaptor takes the incidence matrix of the intercon-
nection structure as topology information and connects
the Morris–Lecar circuits with the chosen coupling ele-
ment. This is directly applicable to the interconnection
network via gap junctions presented in this work, with
the vector-valued resistor Gel = GelAel as coupling
element. To connect this resistor to the vector-valued
Morris–Lecar circuit, the adjacency matrix Ael is trans-
lated into a corresponding incidence matrix that is used
for the general adaptor. The wave digital equivalent of
the resistor then corresponds to

b = 0 , (13)

given that its port resistance matrix is chosen to R =
1/Gel, where 1 is the unity matrix. The interconnec-
tion network for the neuronal synapses consists of the
vector-valued controlled current source js(un) that is
translated by applying the bijective transformation. Its
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wave digital equivalent is

a = b + 2Rjs(un) (14)

and is interconnected to the Morris–Lecar circuit via
a parallel adaptor - the wave digital equivalent of a
parallel connection, see [11] for more details.

A wave digital model of a scalar calcium concentra-
tion circuit has been presented in [13] and can also be
extended to a vector-valued variant by considering vec-
tors of voltages and currents for the wave digital trans-
lation. The translation of the muscle circuit works sim-
ilarly, since both the muscle circuit and the calcium
concentration circuit are essentially RC circuits. The
muscle circuits’ interconnection structure is given by
the controlled current source jm(un) whose translation
is identical to equation (14). This current source is again
connected to the muscle circuit via a parallel adaptor.

To implement the wave digital equivalents of the indi-
vidual subcircuits as a wave digital algorithm, the non-
linearities contained in the subcircuits have to be spe-
cially considered. This is because these nonlinearities
give rise to implicit relationships between the incident
and reflected wave of a port, known as delay-free loops.
It is in general advisable to prevent as many loops as
possible from arising, since typical solution approaches
via iterative approaches [39–41] pose an increased com-
putational effort. Delay-free loops can be prevented via
reflection-free ports of the parallel adaptors [11], but
also via source transformation of the nonlinearities con-
tained in the Morris–Lecar model, see [12]. We deploy
fixed-point iterations based on [39] for the remaining
delay-free loops.

5.2 Neuronal and muscular activity

As an input signal, we apply a constant current of
100 pA to the circuits modeling the neurons PLML
and PLMR. This reflects a continuously sensed gen-
tle touch that should trigger forward locomotion. The
utilized parameters are given in Tables. 1 and 2. Here,
the ratio of the coupling strengths is taken from [1]. In
the following, we first discuss the simulation results for
the membrane potentials and fluorescence traces to ver-
ify that forward locomotion is indeed generated. After-
wards, we study energy consumption rates of the neu-
ronal network occurring during this locomotion.

Results for the membrane potentials of all 279 neu-
rons are depicted in the top panel of Fig. 12 and relative
fluorescence traces can be seen in the center panel of
Fig. 12. Motor neurons can be identified by their slowly

Table 2 Parameters for the coupling structure

Coupling network

Gel = 90pS GGlu = 45pS Eexc = 110mV
Us1 = −20mV GACh = 45pS Einh = −120mV
Us2 = 0.1mV GGABA = 67.5pS

oscillating activity pattern, see e.g. neurons labeled
with 239–279. Interneurons exhibit a more or less con-
stant membrane potential, see e.g. neurons labeled with
11–23. Activity of sensory neurons is given by fast oscil-
lations, but is barely visible because there are no larger
groups of active sensory neurons. Evaluating which neu-
rons are active in particular, it turns out that almost
all motor neurons, approximately 2/3 of all interneu-
rons, and only 3 sensory neurons show activity. The
latter are in particular the neurons PLML,PLMR, and
ALM. Even though ALM is part of the backward loco-
motory circuit, this might be reasonable, as hints have
been found that neurons of the mechanosensory system
influence each other [42].

Taking a look at the muscle activity illustrated in the
bottom panel of Fig. 12, we observe that after a tran-
sient phase of 10 s, activity within each muscle group is
propagating approximately diagonally from low indices
to high indices. Note that the transient phase is due
to the neuron and muscle circuits being initialized near
their resting states. The diagonally propagating activity
is especially observable for the dorsal left (DL) and dor-
sal right (DR) muscles, and to a lesser extend also from
the ventral left (VL) and ventral right (VR) muscles.
In light of the fact that the muscles of these groups are
arranged from head to tail with increasing index, these
results suggest that locomotion is indeed generated.

5.3 Power consumption

Finally, we investigate the power consumption of the
neuronal ion channels, neuronal synapses and gap junc-
tions present in the neuronal network of C. elegans.
Based on [43,44], the rate of energy consumption for
the ion channels pion and gap junctions pgap, equivalent
to power, can be calculated via

pion =
N∑

μ=1

−iCa,μ [un,μ − ECa,μ] (15a)

− iK,μ [un,μ − EK,μ] − iL,μ [un,μ − EL,μ]

pgap = unΛeluT
n , un = [un,1 ... un,N ]T , (15b)

where Λel is a Laplacian matrix describing the connec-
tions via gap junctions. Following this approach, the
energy consumption rate for the synapses is given by

psyn =
N∑

μ=1

−jACh
n,μ [un,μ − Eexc]

− jGlu
n,μ [un,μ − Eexc] − jGABA

n,μ [un,μ − Einh] .

(15c)

Calculating these energy consumption rates for the
neuronal network of C. elegans during locomotion (cf.
Figure 12), yields the results shown in Fig. 13. Compar-
ing Fig. 13a, d, we find that the ion channels have by
far the highest energy consumption rate. Gap junctions
and synapses, on the other hand, account for only a
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Fig. 12 Neuronal and muscular activity. Top: Membrane potentials of all 279 neurons. Center: Relative fluorescence traces
of all 279 neurons. Bottom: Muscle activity of all 95 muscles. White lines are used to highlight the four different groups of
muscles

small fraction of the consumed energy. From an energy-
efficiency point of view, it seems advantageous to have
small numbers of neurons but a large number of inter-
connections. This is supported by the fact that C. ele-
gans possesses merely 300 neurons, but several thou-
sand connections via gap junctions or synapses. More-
over, this suggests that neurons with a high degree of
connectivity, such as interneurons, are especially impor-
tant for an energy-efficient information processing.

Observing Fig. 13a, we see that the motor neurons
show the highest energy consumption rate, followed
by the inter and the sensory neurons. This is directly
related to the fact that during locomotion, almost all
motor neurons of the entire neuronal network are active,
but only 2/3 of the interneurons and only three of
the sensory neurons. Considering the average energy
consumption rates of single, active neurons depicted
in Fig. 13b shows that a motor neuron consumes the
least amount of energy. A sensory neuron has the high-
est average energy consumption rate, although the rate
fluctuates strongly due to the fast oscillating behav-
ior of the sensory neurons. The average consumption
rate of interneurons is only slightly lower than the one
of a sensory neuron, but higher than that of a motor
neuron by a factor of 1.6. This can be explained by

the isopotential behavior of the interneurons. This type
of behavior implies that the neurons are constantly in
a state that is not their resting state and hence con-
stantly consume energy. Figure 13c presents the average
energy consumption rates of individual sensory, inter,
and motor neurons. The rates are ordered by how many
neurons of each type are active during locomotion. The
figure shows that the more energetically expensive a
neuron type is, the less frequently it occurs. This sup-
ports the idea that the neuronal network is designed
with respect to energy-efficiency.

From Fig. 13d, we can see that the energy consump-
tion rate of the gap junctions is lower than that of the
synapses by a factor of five. As there are 1028 gap junc-
tions and 2005 synapses [1], the average energy con-
sumption rate of a single gap junction and a single
synapse is 0.3 pW and 0.82 pW, respectively. Hence,
gap junctions consume less energy than synapses. This
makes sense because gap junctions are represented
by constant resistors in series to the neuron circuits
and lead to synchronization effects. Synchronization
of the neuronal membrane potentials in turn leads to
extremely small voltage differences across the gap junc-
tion resistors, and as such, the dissipated powers are
also very low.

123



   42 Page 10 of 15 Eur. Phys. J. B           (2024) 97:42 

Fig. 13 Energy consumption rates. a Rates for the ion channels of all neurons, and b average rates for ion channels of a
single, active neuron. c Comparison of average rates with respect to the number of active sensory, motor, and interneurons.
d Rates for all gap junctions and synapses, and e rates for all synapses of a specific neurotransmitter type. f Average rates
for a single synaptic or gap junctions connection vs the total number of connections present for the type of connection (i.e.
ACh-synapse, GABA-synapse, Glu-synapse, gap junction)

Let us now take a look at the energy consumption
rates of the different synapse types shown in Fig. 13e.
It turns out that the sum of all ACh-sensitive synapses
consumes the most energy, followed by Glu-sensitive
synapses and GABA-sensitive synapses. Average con-
sumption rates for single synapses with respect to how
often their neurotransmitter type occurs are depicted
in Fig. 13f. This shows that a single GABA-sensitive
synapse consumes by far the most energy, followed by
ACh-sensitive and Glu-sensitive synapses. Even in com-
parison to the single synapse types, gap junctions are
still energetically cheaper. However, we can also see
that energetically more expensive connections do not
necessarily occur less frequently. In particular, even
though ACh-sensitive synapses occur the most, they are
energetically more expensive than, e.g., Glu-sensitive
synapses. This indicates that a low energy-consumption
is not the only design criterion for the neuronal net-
work and that there probably is a balance, e.g., between
ensuring functionality and keeping energy costs as low
as possible.

6 Conclusion

In this work, we have designed an ideal electrical cir-
cuit modeling the somatic neuronal network and mus-
cle system of C. elegans. For the neurons, we have used
Morris–Lecar circuits in combination with RC circuits
to calculate the membrane potential and a relative flu-
orescence of each neuron. The muscle circuits are based

on a leaky integrator model, which translates into an
RC circuit as well.

Simulation results of the complete circuit structure
have shown that when applying an input current rep-
resenting a gentle touch of the worm, a locomotion
behavior can indeed be observed from the muscle activi-
ties. Results for the membrane potentials of the neurons
have shown that despite simulating a forward locomo-
tion, more than half of the entire neuronal network and
almost all motor neurons are active instead of only the
neurons typically associated with forward locomotion.
It is very likely that this is due to the overall inter-
connection structure of the neurons, since experiments
have been reported where, e.g., different neurons of the
mechanosensory system influence each other.

In the second step, we have investigated the energy
consumption rates occurring during the simulated loco-
motion. This has revealed that by far the most energy
is consumed by the ion channels of the neurons and
only a small fraction is consumed by gap junctions and
synapses. Hence, a low number of neurons in contrast to
a high number of interconnections is energetically favor-
able. This highlights the importance of strongly inter-
connected neurons such as interneurons. We have also
considered the average energy consumption rates of the
different neuron types with respect to the occurrences of
the neuron types. This has shown that the more energy
is consumed, the less likely a neuron type occurs in the
neuronal network used for generating locomotion. Con-
cerning the neuronal interconnections, our results have
shown that gap junctions consume less energy than
synapses and that from the synapses, GABA-sensitive
ones are the energetically most expensive ones. Aver-
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age energy consumption rates for the connection types
with respect to their respective occurrences have mostly
also shown the tendency that energetically expensive
connections occur less frequently, with the exception
of ACh-synapses. These occur the most frequently but
are not the energetically cheapest connection type. As
a design criterion for neuronal networks, there proba-
bly is some kind of balance between functionality and
energy costs.

As a simulation technique, we have used a wave dig-
ital algorithm that is run-time efficient and potentially
real-time capable and thus especially useful for simulat-
ing larger neuronal networks. Moreover, the algorithm
retains the port-wise structure of the electrical circuit
due to its direct correspondence with the circuit. This
allows for plasticity studies of the C. elegans connec-
tome that can be adjusted during the run-time of the
simulation.
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Appendix A List of neurons

For the sake of completeness, we have listed the classification
of C. elegans neurons considered in this work into sensory
neurons, motor neurons, and interneurons in the following
tables.
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Table 3 Neurons with number 0–122 and their types

Index Neuron Type Index Neuron Type Index Neuron Type Index Neuron Type Index Neuron Type

0 ADAL Inter 26 ALNR Sensory 52 AUAR Sensory 78 BAGL Sensory 104 DD03 Motor
1 ADAR Inter 27 AQR Sensory 53 AVAL Inter 79 BAGR Sensory 105 DD04 Motor
2 ADEL Sensory 28 AS01 Motor 54 AVAR Inter 80 BDUL Sensory 106 DD05 Motor
3 ADER Sensory 29 AS02 Motor 55 AVBL Inter 81 BDUR Sensory 107 DD06 Motor
4 ADFL Sensory 30 AS03 Motor 56 AVBR Inter 82 CEPDL Sensory 108 DVA Inter
5 ADFR Sensory 31 AS04 Motor 57 AVDL Inter 83 CEPDR Sensory 109 DVB Inter
6 ADLL Sensory 32 AS05 Motor 58 AVDR Inter 84 CEPVL Sensory 110 DVC Inter
7 ADLR Sensory 33 AS06 Motor 59 AVEL Inter 85 CEPVR Sensory 111 FLPL Sensory
8 AFDL Sensory 34 AS07 Motor 60 AVER Inter 86 DA01 Motor 112 FLPR Sensory
9 AFDR Sensory 35 AS08 Motor 61 AVFL Inter 87 DA02 Motor 113 HSNL Motor
10 AIAL Inter 36 AS09 Motor 62 AVFR Inter 88 DA03 Motor 114 HSNR Motor
11 AIAR Inter 37 AS10 Motor 63 AVG Inter 89 DA04 Motor 115 IL1DL Sensory
12 AIBL Inter 38 AS11 Motor 64 AVHL Sensory 90 DA05 Motor 116 IL1DR Sensory
13 AIBR Inter 39 ASEL Sensory 65 AVHR Sensory 91 DA06 Motor 117 IL1L Sensory
14 AIML Inter 40 ASER Sensory 66 AVJL Sensory 92 DA07 Motor 118 IL1R Sensory
15 AIMR Inter 41 ASGL Sensory 67 AVJR Sensory 93 DA08 Motor 119 IL1VL Sensory
16 AINL Inter 42 ASGR Sensory 68 AVKL Inter 94 DA09 Motor 120 IL1VR Sensory
17 AINR Inter 43 ASHL Sensory 69 AVKR Inter 95 DB01 Motor 121 IL2DL Sensory
18 AIYL Inter 44 ASHR Sensory 70 AVL Inter 96 DB02 Motor 122 IL2DR Sensory
19 AIYR Inter 45 ASIL Sensory 71 AVM Sensory 97 DB03 Motor 123 IL2L Sensory
20 AIZL Inter 46 ASIR Sensory 72 AWAL Sensory 98 DB04 Motor 124 IL2R Sensory
21 AIZR Inter 47 ASJL Sensory 73 AWAR Sensory 99 DB05 Motor 125 IL2VL Sensory
22 ALA Inter 48 ASJR Sensory 74 AWBL Sensory 100 DB06 Motor 126 IL2VR Sensory
23 ALML Sensory 49 ASKL Sensory 75 AWBR Sensory 101 DB07 Motor 127 LUAL Inter
24 ALMR Sensory 50 ASKR Sensory 76 AWCL Sensory 102 DD01 Motor 128 LUAR Inter
25 ALNL Sensory 51 AUAL Sensory 77 AWCR Sensory 103 DD02 Motor 129 OLLL Sensory
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Table 4 Neurons with number 130–278 and their types

Index Neuron Type Index Neuron Type Index Neuron Type Index Neuron Type Index Neuron Type

130 OLLR Sensory 160 PVQR Inter 190 RMDVR Motor 220 SMBVL Motor 250 VB01 Motor
131 OLQDL Sensory 161 PVR Inter 191 RMED Motor 221 SMBVR Motor 251 VB02 Motor
132 OLQDR Sensory 162 PVT Inter 192 RMEL Motor 222 SMDDL Motor 252 VB03 Motor
133 OLQVL Sensory 163 PVWL Inter 193 RMER Motor 223 SMDDR Motor 253 VB04 Motor
134 OLQVR Sensory 164 PVWR Inter 194 RMEV Motor 224 SMDVL Motor 254 VB05 Motor
135 PDA Motor 165 RIAL Inter 195 RMFL Motor 225 SMDVR Motor 255 VB06 Motor
136 PDB Motor 166 RIAR Inter 196 RMFR Motor 226 URADL Motor 256 VB07 Motor
137 PDEL Sensory 167 RIBL Inter 197 RMGL Inter 227 URADR Motor 257 VB08 Motor
138 PDER Sensory 168 RIBR Inter 198 RMGR Inter 228 URAVL Motor 258 VB09 Motor
139 PHAL Sensory 169 RICL Inter 199 RMHL Motor 229 URAVR Motor 259 VB10 Motor
140 PHAR Sensory 170 RICR Inter 200 RMHR Motor 230 URBL Inter 260 VB11 Motor
141 PHBL Sensory 171 RID Inter 201 SAADL Inter 231 URBR Inter 261 VC01 Motor
142 PHBR Sensory 172 RIFL Inter 202 SAADR Inter 232 URXL Inter 262 VC02 Motor
143 PHCL Sensory 173 RIFR Inter 203 SAAVL Inter 233 URXR Inter 263 VC03 Motor
144 PHCR Sensory 174 RIGL Inter 204 SAAVR Inter 234 URYDL Sensory 264 VC04 Motor
145 PLML Sensory 175 RIGR Inter 205 SABD Inter 235 URYDR Sensory 265 VC05 Motor
146 PLMR Sensory 176 RIH Inter 206 SABVL Inter 236 URYVL Sensory 266 VD01 Motor
147 PLNL Inter 177 RIML Inter 207 SABVR Inter 237 URYVR Sensory 267 VD02 Motor
148 PLNR Inter 178 RIMR Inter 208 SDQL Inter 238 VA01 Motor 268 VD03 Motor
149 PQR Sensory 179 RIPL Inter 209 SDQR Inter 239 VA02 Motor 269 VD04 Motor
150 PVCL Inter 180 RIPR Inter 210 SIADL Inter 240 VA03 Motor 270 VD05 Motor
151 PVCR Inter 181 RIR Inter 211 SIADR Inter 241 VA04 Motor 271 VD06 Motor
152 PVDL Sensory 182 RIS Inter 212 SIAVL Inter 242 VA05 Motor 272 VD07 Motor
153 PVDR Sensory 183 RIVL Inter 213 SIAVR Inter 243 VA06 Motor 273 VD08 Motor
154 PVM Sensory 184 RIVR Inter 214 SIBDL Inter 244 VA07 Motor 274 VD09 Motor
155 PVNL Inter 185 RMDDL Motor 215 SIBDR Inter 245 VA08 Motor 275 VD10 Motor
156 PVNR Inter 186 RMDDR Motor 216 SIBVL Inter 246 VA09 Motor 276 VD11 Motor
157 PVPL Inter 187 RMDL Motor 217 SIBVR Inter 247 VA10 Motor 277 VD12 Motor
158 PVPR Inter 188 RMDR Motor 218 SMBDL Motor 248 VA11 Motor 278 VD13 Motor
159 PVQL Inter 189 RMDVL Motor 219 SMBDR Motor 249 VA12 Motor
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