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Abstract. The emergence of digital computers has profoundly reshaped our interactions with technology
and the processing of information. Despite excelling in data processing and arithmetics, these computers
face limitations in tackling complex nondeterministic-polynomial (NP) problems. In response, researchers
have started searching for new computational paradigms that possess the natural tendency of solving these
problems. Oscillator-based optimizers are one such paradigm, where the idea is to exploit the parallelism
of oscillators networks in order to efficiently solve NP problems. This involves a process of mapping a
given optimization task to a quadratic unconstrained binary optimization program and then mapping the
resulting program onto an inter-oscillator coupling circuit encoding its coefficients. This paper presents a
comprehensive approach to constructing oscillator-based optimizers, offering both the rationale for employ-
ing oscillator networks and formulas for linking optimization coefficients to inter-oscillator coupling. Here,
we cover most aspects of oscillator-based optimization starting from the design of the network up to its
technical implementation. Moreover, we provide a platform-independent wave digital algorithm, which
allows for emulating our network’s behavior in a highly parallel fashion.

1 Introduction

Digital computers, based on the von Neumann architec-
ture [1], excel at many things such as complex calcula-
tions and data processing. However, when it comes to
optimization there remain some challenges when deal-
ing with certain problems, such as nondeterministic-
polynomial (NP) problems. These are optimization
problem that can not be efficiently solved in polyno-
mial time using classical algorithmic approaches [2]. As
a result, researchers have explored alternative computa-
tional paradigms, such as quantum computers [3,4] and
optical computers [5,6], which hold promise in tackling
these computationally difficult tasks.

A more recent approach for dealing with NP prob-
lems, lies in mapping them onto “the energy” of a
network of electrical oscillators and allowing the net-
work to run and naturally solve the problem. Here,
the underlying assumption is that the network has the
natural tendency of minimizing its “energy” consump-
tion, although the term energy is not clearly defined
but is to be understood in terms of a “generalized
energy” such as the one appearing in Lyapunov’s direct
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method [7]. An optimization program based on a net-
work of electrical oscillators is what we refer to as
oscillator-based optimization in this paper. In litera-
ture, these types of machines are usually referred to
as oscillator-based Ising machines for reasons that we
explain later on. To our utmost knowledge, the notion
of oscillator-based optimizers has been first presented
in the preprint of Wang and Roychowdury [8]. In their
published works [9,10], the authors discuss the func-
tionality of LC-oscillator networks as optimizers using
the theory of phase macromodels [11], which, in the case
of LC-oscillators, degenerate to the well-established
Kuramoto model [12]. This led to a series of pub-
lications, where different authors have attempted to
explain the functionalities of oscillator-based optimiz-
ers in more detail using different phase models [13–15].
Interestingly, it has also been shown that phase macro-
models can be reliably used for simulated annealing [14–
17]. Over the years, many hardware implementations of
oscillator-based optimizers have emerged of which we
can only list a few [13,18–21]. Most implementations
are based on ring oscillators due to their simplicity and
CMOS-compatibility [22,23].

The oscillator-based optimization that we deal with
in this work can be explained in three steps:
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1. A given optimization task is mapped onto a
quadratic unconstrained binary optimization prob-
lem (QUBO):

min
x

xTQx + rTx , with Q = QT . (1a)

Here xν ∈ {0, 1} are binary optimization variables
resulting from the solution of the problem, Q ∈
R

n×n and r ∈ R
n represent a matrix and vector

of optimization coefficients, respectively.
2. The QUBO is reformulated in terms of the so-called

Ising Hamiltonian:

H(s) = −sTJs − hTs , with J = JT ,
(1b)

where sν ∈ {±1} are equivalent binary optimization
variables that are usually referred to as spins. Here,
the bijective mapping,

s = 2x − 1 ⇔ x = [s − 1]/2 , (1c)

where 1 denotes a vector of ones, allows for reformu-
lating every QUBO (1a) as a minimization of (1b)
with:

J = −Q and h = 2Q1 − 2r . (1d)

In the following, we refer to the entries of Q as
quadratic optimization coefficients and the entries
of h as linear optimization coefficients.

3. The optimization coefficients are mapped onto the
couplings of an oscillator network. The optimizer
then runs and solves the problem. The solution can
be decoded from the phase configuration that the
network settles to. A (relative) phase shift of 0 (π)
corresponds to s = 1 (s = −1).

In a previous work [15], we have discussed how general
QUBOs, whose formulations are far more sophisticated
than (1a), can be mapped onto the Ising Hamiltonian
(1b). Together with the works of [24–27], which dis-
cuss the mapping of NP-problems onto QUBOs, steps
1 and 2 of the oscillator-based optimization program
can be achieved. The third step assumes the existence
of an oscillator network with the natural tendency of
minimizing the Ising Hamiltonian (1b); this is also the
reason why oscillator-based optimizers are referred to
as Ising machines [9,10].

The aim of this paper is to extensively discuss
the third step of oscillator-based optimization. This
involves the design of an oscillator network, which nat-
urally tends to minimize the Ising Hamiltonian (1b).
Contrary to most works, which attempt to explain the
functionality of oscillator-based optimizers based on
phase models, we explain their functionality based on
the concepts of synchronization and power minimiza-

tion. Our approach is motivated by the fact that phase
models only represent an approximation of the net-
work’s actual dynamics [28], and while they enhance
our understanding of network dynamics, they do not
explain the functionality of oscillator-based optimiz-
ers on a circuit level. Furthermore, our approach will
allow us to draw a clear relation between the opti-
mization coefficients of a QUBO problem and the inter-
oscillator coupling circuit that is to be used. Another
major advantage of our study is that we cover the entire
third step of oscillator-based optimization. Most works
on literature only partially cover this step by either
discussing the modeling, hardware implementation, or
mapping, separately. Therefore a clear relation between
theory and practice has never been drawn in one work.

Besides modeling and implementation, a large por-
tion of our work deals with the emulation of the pro-
posed oscillator-based optimizer. Here, we make use of
the wave digital (WD) concept as a powerful emulation
tool [29–31]. A major benefit of WD algorithms is the
fact that they can be massively parallelized, when deal-
ing with structurally identical circuits [16,32–36]. This
is especially beneficial for oscillator-based optimizers,
as they are composed of many oscillators of the same
topology. Thus, we can exploit the concept of vector-
valued wave digital models in order to efficiently emu-
late large networks on any platform in a highly parallel
fashion.

In total, the main contributions of this paper can be
summarized as follows:

I We give a constructive guide for building oscillator-
based optimizers;

II We give a physical justification for why oscillator
networks can be utilized as optimizers;

III We explain the relationship between the Ising
Hamiltonian (1b) and the synchronization tenden-
cies of oscillator networks. Here, we also present
a formula for mapping the coefficients of the Ising
Hamiltonian onto the inter-oscillator coupling;

IV We provide a compact electrical model for our
oscillator-based optimizers;

V We derive a massively parallel WD algorithm for
emulating our oscillator-based optimizer with an
arbitrary number of oscillators and inter-oscillator
couplings; and

VI We provide a technical blueprint of our in-house
optimizer, based on the theoretical model discussed
in this work.

The remainder of this paper is divided into three sec-
tions. Section 2 discusses the design of oscillator-based
optimizers (I–IV). Section 3 derives a wave digital algo-
rithm for our proposed oscillator-based optimizer (V).
Section 4 presents the technical implementation of our
in-house optimizer (VI). Finally Sect. 5 summarizes the
contributions of our work and provides an outlook on
future research in this context.
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Fig. 1 Top: circuit schematic of the FitzHugh-Nagumo
oscillator. Bottom: (i, u)-curve of the cubic nonlinearity
in(u) in the blue dashed box

2 Designing an oscillator-based optimizer

This section establishes the theoretical foundation for
the oscillator-based optimizer, whose implementation
is discussed in Sect. 4. We start by introducing our
oscillator model of choice, which constitutes the core
of our network. To understand how optimization prob-
lems can be mapped to an oscillator network, we then
discuss general synchronization tendencies of coupled
oscillators. Furthermore, we explain how (necessary)
optimization constraints can be set. Finally, we present
an electrical model that serves as a compact description
for our oscillator-based optimizer.

2.1 Oscillator model

Our oscillator of choice is the FitzHugh-Nagumo oscil-
lator (FNO) [37] depicted in Fig. 1. From a theoretical
point of view, this oscillator has the advantage that it
can be implemented in hardware. Furthermore, it only
contains one active nonlinear component that is respon-
sible for generating self-sustaining oscillations, which
makes the overall oscillator accessible from a mathe-
matical point of view.

The FNO can be described by the following set of
algebraic-differential equations:

C
du

dt
= ip(u) − i − in(u) − ic , (2a)

Table 1 FitzHugh-Nagumo oscillator simulation parame-
ters

Oscillator parameters

R0 = 4.7 kΩ L = 23.5 H C = 100 nF
Rp = 47 kΩ Rn = 5.2 kΩ U0 = 0.24 V

L
di

dt
= u − R0i , (2b)

Rnin(u) = u3/[3U2
0 ] − u , (2c)

Rpip(u) = ep − u . (2d)

Here, u and i denote the capacitor voltage and inductor
current, respectively. The electrical components R0, L,
and C constitute the oscillator’s RLC-tank. The current
ic is an external coupling current that results from the
oscillator’s interaction with other circuits/oscillators.
The cubic nonlinearity in(u), with the fitting param-
eters Rn and U0, represents an active electrical com-
ponent with a negative differential resistance −Rn < 0
that is used to maintain a constant energy landscape
in order to generate self-sustaining oscillations. The
activeness of the component can be verified from its
(i, u)-curve, which is depicted on the bottom of Fig.
1. Finally, the perturbation voltage source ep with the
internal resistance Rp is used to set optimization con-
straints, as we explain in Sect. 2.4. Note, the oscillator
parameters given in Table 1 lead to an oscillation period
of T0 ≈ 11.7ms.

2.2 Synchronization tendency of coupled oscillators

Now that we have covered our oscillator model, we make
use of it to demonstrate a general tendency observed in
resistively coupled oscillator networks. To this end, con-
sider two oscillators N1 and N2 with the outputs volt-
ages u1 and u2, respectively. Let us assume the oscilla-
tors to be coupled over a resistor G−

12, as depicted on
the left side of Fig. 2. In general, the conductance G−

12 is
proportional to the coupling strength between N1 and
N2. If the coupling strength is chosen to be sufficiently
strong, then the oscillators will always interact and have
the tendency to synchronize, see the bottom left plot in
Fig. 2. This general tendency is always present between
coupled nonlinear oscillators regardless of the number
of oscillators within the network. To our utmost knowl-
edge, there is no formal mathematical proof showing
the necessity of this behavior. However, we can justify
it from a physical perspective: Synchronization mini-
mizes power dissipation. To understand this statement,
let us write out the equations governing the electrical
coupling depicted on the left side of Fig. 2:

i−12 = G−
12v

−
12 , with v−

12 = u1 − u2 . (3a)

The instantaneous (dissipated) power reads:

p12(t) = v−
12i

−
12 = G−

12[u1 − u2]2 . (3b)
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Fig. 2 Graphical representation of two coupled oscillators, which are represented by the gray dashed boxes titled N1 and
N2. Left: two oscillators coupled over a resistor with the conductance G−

12, tend to synchronize in-phase through their
interaction. Right: using the same type of coupling as the left side but inverting one oscillator output leads to anti-phase
synchronization

As can be seen from (3b), the instantaneous power p(t)
is proportional to the squared voltage difference [v−

12]
2.

Therefore, we conclude that p(t) is minimized when
[v−

12]
2 is minimized, i.e. for u1 = u2, the case where

the both oscillators are synchronized. Overall, this lead
us to the hypothesis that our oscillator network has
the natural tendency of minimizing dissipated power
by minimizing the amount of interaction (interchanged
power) between oscillators. In physics, such tendencies
have been hinted at for a long time. The tendency of
a complex network to minimize a certain energy func-
tional is referred to as the principle of least energy dis-
sipation [38–40], which was first postulated by Onsager
[41].

It is noteworthy to state that the network’s tendency
to minimize power dissipation greatly depends on the
magnitude of the coupling conductance G−

12. For small
values of G−

12, the oscillator network may not minimize
power dissipation due to the (already) minimal interac-
tion caused by the high resistance. Hence, our hypothe-
sis only holds, when G−

12 is chosen in a suitable manner.
We cover this aspect again later on.

2.3 Mapping quadratic unconstrained binary
optimization problems to synchronization tendencies

The state of synchronization only encodes the state-
ment that two oscillators have reached a state of ”agree-
ment”. To encode binary optimization problems, such
as a general QUBO (1a), we also require the oppo-
site, a state of ”disagreement”. The simplest way to
encode the latter is by letting one oscillator experience
a perspective change. If, for example, N1 only perceives

the inverted output of N2, then N1 would synchronize
with the inverted signal, again, due to principle of least
energy dissipation [41]. This idea is depicted on the
right side of Fig. 2. The bottom plot shows the oscil-
lators asymptotically assuming an anti-phase configu-
ration, which corresponds to a state of ”disagreement”.
With reference to equations (1a) 1b, we associate agree-
ment with x = 1 (s = 1) and disagreement with x = 0
(s = −1).

2.3.1 Quadratic optimization coefficients

Up to this point, we have only discussed how oscilla-
tors can be brought to a phase of agreement or dis-
agreement. However, when mapping optimization prob-
lems onto oscillator networks, we have no prior knowl-
edge about the states resulting from the solution of
the encoded problem. Instead, we must draw a rela-
tion between the coefficients of the problem and the
tendencies of the network. To this end, let us consider
a version of (1b) with two coupled spins and no linear
optimization coefficients (h = 0):

H(s) = − [s1 s2]
[

0 J12

J12 0

] [
s1
s2

]
. (4a)

By varying the coupling coefficient J12, we obtain the
two implications:

J12 < 0 ⇒ arg
{

min
s

{H(s)}
}

= ±[1, 1]T , (4b)

J12 > 0 ⇒ arg
{

min
s

{H(s)}
}

= ±[1,−1]T .

(4c)
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Fig. 3 Coupling circuit for encoding optimization coefficients. The dashed gray boxes Nμ and Nν represent two arbitrary
adjacent oscillators with the output voltages uμ and uν , respectively. The top coupling circuit can be used to give a preference
for anti-phase synchronization. The bottom coupling circuit can be used to give a preference for in-phase synchronization

Hence, a negative coupling coefficient J12 < 0 implies
that the minimum of H(s) is achieved, when the spins
s1 and s2 have the same value. Meanwhile, a posi-
tive coupling coefficient J12 > 0 implies that the min-
imum of H(s) is achieved, when the spins have differ-
ent values. In the context of coupled oscillators, this
means that J12 > 0 and J12 < 0 should ideally cor-
respond to anti- and in-phase synchronization, respec-
tively. To promote this behavior in our oscillator net-
work, we can actively pick between the circuits depicted
in Fig. 2.

To map the value of the coefficients in addition to
their polarity, we start by normalizing all coefficients
Jμν , so they are in the interval [−1, 1]. Thus, we assume
in the following that Jμν ∈ [−1; 1], where Jμν ∈ R. With
reference to our earlier discussion, Jμν = 1 should pro-
mote in-phase synchronization, hence we would utilize
the coupling circuit on the left side of Fig. 2. Meanwhile,
the opposite case Jμν = −1 should promote anti-phase
synchronization, such that we would use the coupling
circuit on the right side of Fig. 2. We can map coeffi-
cients in the interval J2

μν < 1 by considering the super-
position of the two coupling schemes depicted in Fig. 2,
i.e. by utilizing the parallel connection of both circuits
as presented in Fig. 3. The electrical relation governing
this coupling reads:

ic = [G+ + G−]u , ic =
[
ic,μ
ic,ν

]
, u =

[
uμ

uν

]
,

(5a)

G+ =
[
1 1
1 1

]
G+

μν

2
, G− =

[
1 −1

−1 1

]
G−

μν

2
. (5b)

Here, the relation between the coupling conductances
G±

μν and the optimization coefficients Jμν is given by

G±
μν =

Gb

2

{
1 ∓ Jμν , Jμν �= 0
0 , Jμν = 0

, RbGb = 1 ,

(5c)

where Gb = 1/Rb is a multiplicative bias with the phys-
ical unit of a conductance. It can be used to adjust the
global coupling strength between oscillators, refer to the
discussion at the end of Sect. 2.2. As can be seen, the
extreme cases Jμν = 1 and Jμν = −1 lead to G+

μν = 0
and G−

μν = 0, respectively. In the first case, we promote
in-phase synchronization, since we effectively obtain the
coupling circuit on the left side of Fig. 2. In the second
case, we are promoting an anti-phase tendency, as we
effectively have the coupling circuit on depicted on the
right side of Fig. 2. For all values of J2

μν < 1, we are
giving a preference for one of the two synchronization
states. For Jμν > 0 we are encoding a preference for
in-phase synchronization:

Jμν > 0 ⇒ G−
μν > G+

μν .

This allows more current to flow through the coupling
conductances G−

μν , hence giving a preference for in-
phase synchronization. Evidently, in the other case, we
are giving a preference for anti-phase synchronization.
Thus, we have now developed a concept for mapping
optimization coefficients onto the coupling circuit of our
network.

2.3.2 Linear optimization coefficients

The Ising Hamiltonian (1b) contains two terms. In Sect.
2.3 we have covered how the quadratic term sTJs
can be mapped onto the oscillator network at hand.
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Fig. 4 Circuit for encoding linear optimization coefficients. The voltage uref denotes the voltage of a reference oscillator
Nref . The latter is (unidirectionally) resistively coupled to every oscillator Nμ via a controlled voltage source

In this section, we discuss, how the second term hTs,
sometimes referred to as the Zeeman term [24], can be
mapped to the network as well. To this end, we start
out by rewriting the Ising Hamiltonian (1b) as:

H(s) = sTe Jese , Je =
[

J h/2
hT/2 0

]
, se =

[
s
1

]
.

(6)

Interpreting this equation, we see that a linear term
hTs can be treated just like a quadratic one in case a
slack variable with a fixed value sref = 1 is appended
to the vector of spins s such that:

se =
[
sT sref

]T
, where sref = 1 .

In terms of our networks this means that we must
expand it by one oscillator Nref with a fixed phase
and couple that oscillator to the μ-th oscillator in case
hμ �= 0. The sign of hμ determines whether we must give
a preference to in- or anti-phase synchronization. This
type of coupling can be realized by the coupling circuit
depicted in Fig. 4, where we make use of a controlled
voltage source to couple Nref to the μ-th oscillator Nμ.
The advantage of this coupling scheme is that Nref does
not perceive any feedback or load from its coupling with
the other oscillators Nμ. Removing feedback is impor-
tant so that the phase of Nref is kept fixed. Besides the
controlled voltage source, the coupling is resistive and
identical to the one in Fig. 3. Here, the coupling current
iμ,ref in Fig. 4 is given by

iμ,ref =
G−

μ,ref

2
[uμ − uref ] +

G+
μ,ref

2
[uμ + uref ] ,

(7a)

which is essentially identical to the coupling current in
(5). The coupling conductances G±

μ,ref can be calculated
in a similar fashion as (5c):

G±
μ,ref =

Gb

2

{
1 ∓ hμ/2 , hμ �= 0
0 , hμ = 0

. (7b)

Here, we are implicitly working with normalized coef-
ficients hμ ∈ [−1; 1] similar to Sect. 2.3. Note, it is
important to normalize both the entries J and h by
the same value. In other words, we are normalizing the
entries of Je from (6). Thus, we are now able to fully
map a QUBO problem of the form (1) to our oscillator
network.

2.4 Optimization constraints

The most fundamental property of QUBOs, that makes
them especially difficult to deal with, is their discrete
solution space. In other words, our optimization vari-
ables xν are only allowed to assume two discrete values
xν ∈ {0, 1}. Although we have shown that two oscil-
lators can be brought to a state of agreement or dis-
agreement, which resembles the two discrete states of
a QUBO problem, we have yet to discuss whether a
network composed of more than two oscillators would
also naturally (only) assume these two discrete states.
In fact, since our hypothesis only states that coupled
oscillators attempt to minimize dissipated power, there
may be other phase configurations besides the two dis-
crete states of agreement/disagreement that minimize
the dissipated power even more.

To understand this statement, consider the network
depicted on the left of Fig. 5, which presents an oscil-
lator network composed of three oscillators. Here, the
oscillators are coupled via the circuit presented in
Fig. 3. The optimization task is assumed to have the
coefficients Jμν = −1. This way, the coupling circuit of
Fig. 3 degenerates to the one presented on the right side
of Fig. 2. This type of coupling imposes all three oscil-
lators to assume an anti-phase configuration, which, in
this case, leads to a contradiction. The solution of the
underlying NP problem is for two (arbitrary) oscillators
to be in-phase, while the last one is in anti-phase w.r.t.
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Fig. 5 Left: three coupled oscillators solving an optimization problem with the coefficients Jμν = −1. Center: output
voltage uμ of the oscillators over time. Right: dissipated power p(t) over time

the other two. The oscillator voltages uμ are presented
in the center of Fig. 5. Here, we see that the network
is able to find the actual solution of the problem for
20ms < t < 80ms. However, it eventually leaves this
state for t > 80ms and assumes a three-phase configu-
ration. To interpret this behavior, we have plotted the
(overall) power,

p(t) =
∑
μ<ν

pμν(t) , pμν(t) = G−
μν [uμ(t) + uν(t)]2 ,

(8)

dissipated by the coupling network on the right side of
Fig. 5. Here, we see that the three-phase configuration
(t > 110ms) leads to even lower power dissipation than
the solution of the underlying NP problem.

This simple example shows us one important prop-
erty of oscillator-based optimizers. Even though they
tend to naturally minimize the dissipated energy p(t),
there is no guarantee that the minimum of p(t) coin-
cides with the minimum of (1b). In the following
subsection, we will demonstrate how we can enforce
binary constraints such that the oscillators are forced to
achieve either in-phase our anti-phase synchronization.

Since we have shown the general problem with per-
forming oscillator-based optimization without binary
constraints, we now shed some light on how oscillator
phases can be binarized. Here, we present the general
methodology for introducing this kind of constraint and
present a method that can be used to check, whether
the constraints are enforced effectively.

The basic idea for applying a binarization constraint
is to perturb the oscillator by an external sinusoidal
signal, whose frequency is approximately double that
of the oscillator’s eigenfrequency. The eigenfrequency
f0 is defined as the inverse of the oscillation’s period
T0, i.e. f0 = 1/T0. This type of perturbation is referred
to as subharmonic injection locking (SHIL) [42,43] and
has, for example, been shown to lead to bi-stable phase
behavior in coupled metronomes [44] or even in gen-
eral LC oscillators [43]. For relaxation-type oscillators,
whose output voltages are generated by charging and
discharging a capacitor, a perturbation can be achieved
by injecting a source current at the node of the capaci-
tor. In this work, we have already pre-built an external
perturbation source ep into our oscillator, see Fig. 1,
which can be used to inject the SHIL signal defined as:
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Fig. 6 Top: perturbation voltage ep(t), which is composed
of SHIL and short voltage pulses. Center: oscillator output
voltage u after being perturbed by the top signal (dashed
black) and a reference oscillation (blue). Bottom: output
voltages uμ when solving the problem depicted in Fig. 5 but
with SHIL

Table 2 SHIL parameters that have been used for obtain-
ing the results in Fig. 6

Network parameters

êSHIL = 700 mV êb = 1 V T0 = 11.7 ms Rb = 70 kΩ

eSHIL(t) = êSHIL sin(2Ω0t) + êb , Ω0 = 2π/T0 .
(9)

Here, êSHIL denotes the amplitude of the SHIL signal,
while êb is a bias voltage relating to the strength of
the SHIL signal. Both these values must be chosen in a
suitable manner in order to observe any effect.
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Let us now consider the results depicted in Fig. 6
based on the parameters in Table 2. The top plot shows
the perturbation signal ep(t). Here, ep(t) is by a com-
position of the SHIL signal eSHIL defined in (9) and two
short voltage pulses that are intended to demonstrate
the bi-stable phase behavior. The central plot presents
the oscillator’s output voltage (dashed black) against a
reference signal (blue) that is perturbed by SHIL but
not by the two voltage pulses. This plot illustrates the
influence of SHIL on the oscillator’s output:

1. t < 40ms: When an oscillator is perturbed by SHIL
but not by any other external signal, we can observe
a slightly distorted version of the oscillator’s output
compared to the case when it is not perturbed by
SHIL, compare Figs. 2 and 6.

2. 40ms < t < 110ms: When the oscillator is per-
turbed by an external signal, in this case a short
voltage pulse, we see a phase jump of 180◦.

3. t > 110ms: When the oscillator is, again, disturbed
by a short voltage pulse, the phase of the voltage
again jumps by 180◦, such that it effectively returns
to case 1.

We would like to highlight that this experiment also
serves as a guideline for testing SHIL in hardware.
Essentially, we can try to replicate these three cases
in hardware in order to calibrate the SHIL signal for
our specific setup.

Using the SHIL signal, we solved the same problem
depicted in Fig. 5. Our results are presented at the bot-
tom of Fig. 6. Here, we see that SHIL forces the oscilla-
tor network to seek out a phase configuration from the
discrete solution space of the QUBO problem. Indeed,
we obtain the optimal solution for the mapped problem.
Thus, we conclude that SHIL can be used to enforce
binary constraints on the oscillator network.

2.5 Compact electrical model

In this section, we provide a compact electrical model
describing a network composed of n+1 oscillators solv-
ing QUBO problems of the form (1). This model serves
as the fundamental for the wave digital model derived
in the next section and can also be used to simulate
the network with standard numerical integrators. To
this end, we start by introducing the state voltage and
current vector

u = [u1 . . . un uref ]
T and i = [i1 . . . in iref ]

T

(10a)

comprising the capacitor voltages and inductor current
of every oscillator, respectively. The [n + 1]-th entry of
each vector represents the quantities of the reference
oscillator Nref . Hence, our network is composed of n
oscillators representing the problem and one reference
oscillator for implementing linear optimization coeffi-
cients. Similar to the two state vectors, we also intro-

duce a vector of perturbation voltages and a vector of
perturbation currents, given by:

ep = ep1 and ip = [ip,1 . . . ip,n ip,ref ]
T

.
(10b)

The vector ep is a scaled vector of ones, because we
are assuming that only one voltage source is used to
perturb with an SHIL signal for the sake of efficiency.
Furthermore, we introduce a vector-valued function
in(u) : Rn+1 �→ R

n+1, defined as:

in(u) = [in(u1) . . . in(un) in(uref)]
T

. (10c)

This function evaluates the cubic nonlinearity (2c) for
every entry of u and returns a corresponding [n + 1]-
dimensional vector. To accommodate for all the intro-
duced vectors, we now introduce the following parame-
ter matrices:

C = diag(C1, . . . , Cn, Cref) , (10d)
L = diag(L1, . . . , Ln, Lref) , (10e)

R0 = diag(R0,1, . . . , R0,n, R0,ref) , (10f)
Rp = diag(Rp,1, . . . , Rp,n, Rp,ref) , (10g)

where diag(·) denotes the diag operator. The μ-th diag-
onal entry of each of these matrices represents the elec-
trical parameter of the μ-th oscillator. Thus, if all oscil-
lators are assumed to be identical, they simplify to

C = C1 , L = L1 , R0 = R01 , Rp = Rp1 ,
(10h)

where 1 denotes the unit matrix. Although not nec-
essary, we will work with the assumption of identical
oscillators in the following section. Using all introduced
quantities, we can now rewrite (2) for the case of n + 1
coupled oscillators:

C
du
dt

= ip(u) − i − in(u) − ic , (11a)

L
di
dt

= u − R0i , (11b)

Rpip(u) = ep − u . (11c)

Here, we make use of a vector of coupling currents

ic = [ic,1 . . . ic,n ic,ref ]
T

, (11d)

whose entries are given by

ic,μ =
1
2

∑
μ,ν

G+
μν [uμ + uν ] + G−

μν [uμ − uν ] ,

(11e)

for every pair of coupled oscillator with the index μ
and ν. Using the two matrices G± = [G±]T ∈ R

n×n,
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with the entries G±
μν defined in (5c), and the vectors

g±
ref ∈ R

n with the entries G±
μ,ref defined in (7b), we

introduce the coupling matrices

G±
c =

1
2

[
G± g±

ref
0T 0

]
, (11f)

where 0 denotes a vector of zeros. Here, the unidirec-
tional coupling depicted in Fig. 4 is reflected by the last
zero row. Using these coupling matrices, we can now
give a compact formulation for the coupling relation:

ic = Gcu ,

Gc = [diag(G+
c 1) + G+

c ] + [diag(G−
c 1) − G−

c ] .
(11g)

3 Wave digital emulation

This section utilizes the compact electrical model pre-
sented in Sect. 2.5 to derive a real-time capable wave
digital (WD) algorithm for emulation purposes. This
algorithm serves as a tool for deriving parameters for
the optimizer’s technical implementation, which we dis-
cuss in the next section. It can therefore be used for
designing and testing the optimizer prior to its actual
production in order to seek out potential problems or
derive suitable parameters. This section is divided into
three subsections. The first subsection briefly recapitu-
lates the WD concept. The second subsection derives a
highly parallel WD algorithm for emulation purposes.
Finally, the third subsection presents emulation results,
where we have solved NP problems using the derived
WD algorithm.

3.1 Wave digital concept

The WD concept is a powerful tool for the emulation of
electrical circuits [29,31]. The idea lies in mapping a ref-
erence circuit onto a recursive digital structure known
as the WD model. The platform-independent WD algo-
rithm is then obtained from iteratively emulating the
latter. To derive the WD model, we start by decompos-
ing the reference circuit into a set of one- and multi-
ports. A port is defined as a pair of terminals, where the
in-flowing current is equal to the out-flowing current. It
is characterized by three quantities, the port voltage u,
the port current i, and the port resistance R > 0. A
general m-port is assigned m port resistances Rμ > 0
and governed by a constitutive relationship relating the
port voltage uμ to the port current iμ at the μ-th port,
where μ = 1, . . . ,m. If we comprise all port voltages uμ,
port currents iμ, and port resistances Rμ into a voltage
vector u ∈ R

m, a current vector i ∈ R
m, and a port

resistance matrix R = diag(Rμ) ∈ R
m×m, respectively,

we can translate any m-port into the WD domain by
applying the bijective transformation:

[
a
b

]
=

[
1 R
1 −R

] [
u
i

]
⇔

[
u
i

]
=

1
2

[
1 1
G −G

] [
a
b

]
,

(12)

where RG = 1. In the WD domain, the port-wise struc-
ture of a circuit is retained. However, electrical m-ports
translate to WD structures, where voltages uμ and cur-
rents iμ are replaced by incident waves aμ and reflected
waves bμ. Here, a suitable choice of the port resistance
Rμ can greatly simplify the resulting WD structure.
Now, we comprise all wave quantities aμ and bμ into a
vector of incident wave a ∈ R

m and a vector of reflected
waves b ∈ R

m, respectively. The constitutive equation
relating u and i in the electrical domain translates to
a scattering equation,

b = Sa , with S ∈ R
m×m , (13)

relating the reflected wave vector b to the incident wave
vector a in the case of a memoryless m-port. Electrical
components with memory, such as capacitors or induc-
tors, are governed by differential equations. These ele-
ments must first be discretized via a numerical inte-
gration method [29] before the bijective transformation
(12) is applied. Here, we make use of the trapezoidal
rule [29].

3.2 Wave digital model of oscillator-based optimizer

The electrical model derived in Sect. 2.5 can be equiva-
lently represented by the port-wise decomposed circuit
on the left side of Fig. 7. Let us briefly assume ic = 0.
In this case, the circuit on the left side of Fig. 7 would
describe n uncoupled FNOs, see Fig. 1. Hence, this cir-
cuit can be (virtually) thought of as a vector of FNOs
and we generally refer to it as a vector-valued circuit. To
allow for an interaction between the entries of this vir-
tual vector, we incorporate the coupling relation defined
in (11g), which leads to the multi-port resistor associ-
ated with the conductance matrix Gc (highlighted in
orange on the left side of Fig. 7). Translating our vector-
valued circuit into the WD domain will also result in
a vector-valued WD model, which allows for a mas-
sive parallelization of the associated WD algorithm. We
refer the interested reader to [32] for a great exposition
on the parallelization of WD algorithms.

In order to obtain a WD model, the general proce-
dure is to individually translate each electrical com-
ponent into the WD domain and interconnect them
according to the topology of the reference circuit via
so-called WD adaptors. These are signal flow diagrams
that result from translating Kirchhoff interconnections
into the WD domain. For example, a series (paral-
lel) connection translates to a series (parallel) adaptor,
which is symbolized by the squared box containing the

( ) symbol in Fig. 7.
A common phenomenon occurring in WD algo-

rithms are so-called directed delay-free loops. These are
implicit relationships, which hinder the evaluation of
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Fig. 7 Left: a port-wise decomposed equivalent circuit for the electrical model given in (11). For ic = 0, the circuit
represents n uncoupled FNOs, see Fig. 1. A multi-port resistor associated with the conductance matrix Gc is used to
represent the resistive coupling between oscillators (orange box). Right: corresponding wave digital model. The coupling
network translates to a scattering relation in the wave digital domain (orange box). The block with the letter τ (purple
dashed box) represents an iterator for solving (algebraic) directed delay-free loops

the WD model. There are generally two ways to deal
with such loops depending on their type:

1. Topological loops occur when a reflected wave
depends on its corresponding incident wave with-
out any delay in between. To resolve such loops, we
can make use of reflection-free ports [29]. Every WD
adaptor is allowed to have exactly one reflection-
free port, which is indicated by a T-shaped sym-
bol in Fig. 7. This essentially eliminates the rela-
tionship between the incident and reflected wave (at
the reflection-free port) but has the restriction that
the corresponding port resistance is determined as a
function of the other port resistances.

2. Algebraic loops occur due to the presence of alge-
braic dependencies that make the incident wave
depend on its corresponding reflected wave with no
delay separating the two; usually this type of loop
occurs when dealing with nonlinear elements [45].
Here, we can make use of iterative methods, such as
a fixed-point iteration, to solve such implicit rela-
tionships in the WD model, cf. [45].

Although, we have yet to discuss our WD model, we
would like to mention that we have already optimally
distributed reflection-free ports in Fig. 7 in order to
avoid topological loops. To achieve this, we have made
every port interconnecting two adaptors reflection-free
from left to right. Moreover, we have inserted an itera-
tor element, symbolized by the box containing the letter
τ , in order to deal with an algebraic loop that we cover
at the end of this subsection.

Let us now individually translate all electrical com-
ponents into the WD domain, cf. [29].

1. The inductors and capacitors associated with the
inductance matrix L and the capacitance matrix C
translate to a delay element with and without a sign
inversion, respectively. Their port resistance matri-
ces are given by:

RC =
T

2
C−1 and RL =

2
T
L , (14)

where T denotes the sampling period of the WD
algorithm.

2. Real voltage sources generally translate to reflec-
tive wave sources. However, in case their port resis-
tances can be chosen freely, they can be made non-
reflective. We have exploited this degree of freedom
for the perturbation source with the supply voltage
ep. Hence, it translates to a wave source supplying
with the incident wave ap = ep in Fig. 7.

3. Resistances can be thought of as degenerate cases
of real voltage sources, where the supply voltage is
zero. Thus, they also generally translate to reflective
wave sources in the WD domain. In the case of the
resistances associated with the resistance matrix R0,
we have also matched their port resistances matrix
to their resistance value, such that they translates to
a wave source supplying the reflected wave bR0 = 0.

4. The coupling relation of the multi-port resistor (11g)
is associated with the conductance matrix Gc, see
the orange box on the left side of Fig. 7. The consti-
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tutive relation of a general multi-port resistor trans-
lates to a simple scattering equation (13). In this
case, we have:

bc = Scac , with (15a)

Sc = [1 + GcRc]−1[1 − GcRc] and
(15b)

Rc = [R−1
n + [R−1

p + R−1
C ]]−1 . (15c)

Here, (15c) is a consequence of our choice of
reflection-free ports.

It remains to translate the cubic nonlinearity in(u) into
the WD domain. Here, it is modeled as an ideal con-
trolled current source, see the left side of Fig. 7. This
is necessary, because the nonlinearity is formulated in
terms of an (i, u)-curve and not in terms of a varying
resistance. Ideal current sources translate to reflective
wave sources in the WD domain, which, in this case, is
governed by the following relation:

an = bn − 2Rnin(u) , with u =
an + bn

2
.

(16)

This relationship is implicit, because the calculation of
an depends on the voltage vector u, which is a function
of an itself. This type of implicit relationship is what
is referred to as an algebraic loop [45]. To resolve this
implicitness, we make use of a fixed-point iteration to
approximate the value of an at every time instant. The
use of an iteration method is indicated by the iterator
symbol on the right handside of Fig. 7.

3.3 Emulation results and discussion

In this subsection, we present emulation results where
we have solved two optimization problems utilizing the
wave digital model derived in the previous subsection.
All our computations were performed on a lab computer
in MATLAB. The first problem is the so-called max-cut
problem, which asks us to partition a given graph into
two subgraphs, such that the number of edges connect-
ing the two graphs is maximal. According to [9,15,24],
the max-cut problem can be mapped to the Ising Hamil-
tonian by using the coefficients:

J = −A and h = 0 , (17)

where A denotes the adjacency matrix of the under-
lying graph. We will not cover how these coefficients
can be derived from the baseline formulation of the
optimization problem, but refer the interested reader
to [15,24] for a good exposition on this topic. Besides
the max-cut problem, we solve the so-called minimal
vertex cover problem. This problem asks us to find the
minimal number of vertices that need to be marked,
such that every edge in the graph is incident to one of
the marked vertices.

Fig. 8 The Tutte–Coxeter graph [46]

To map this problem onto the Ising machine, we
choose the coefficients:

J = −A and h = [2A − 41]1 . (18)

Contrary to the max-cut problem, the minimal vertex
cover problem also requires a vector of linear optimiza-
tion coefficients h. We make use of this problem to
prove the validity of our mapping approach, when it
comes to linear optimization coefficients. Note, both
problems are based on the graph depicted in Fig. 8.
Also, we have used the oscillator parameters provided in
Table 1 and the network parameters provided in Table
3 for both problems.

Our emulation results are depicted in Fig. 9. The top
row presents our results for the max-cut problem, while
the bottom row presents our results for the minimal
vertex cover problem. Let us first consider the max-cut
problem and hence the first row of Fig. 9. The left plot
depicts the oscillator voltages uμ over time. Here, we see
that the oscillator voltages quickly converge to steady-
state phase configuration encoding the solution of the
problem after just about 20ms. In the center, we have
attempted to extract the oscillation phases denoted by
ϕμ. This plot clearly demonstrates the influence of the
SHIL signal, which enforces a bi-stable phase behavior
with a phase shift of π. The right plot uses the phases
ϕμ to approximate the cut size over time. Here, a phase
of ϕμ = 0 is associated with a spin value of sμ = 1,
while a phase of ϕμ = π is associated with a spin value
of sμ = −1. The graph in Fig. 8 has a maximal cut of
45 edges. As can be seen, the max-cut is successfully
determined by the optimizer after just about 10ms.

The Ising Hamiltonian encoding the minimal vertex
cover problem consists of two terms [15,24]:

H = H0 + H1 . (19)
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in
in

in in in

max-cut

Fig. 9 Emulation results of the max-cut (top) and vertex cover (bottom) problem belonging to the graph in Fig. 8. Left
column: oscillation voltages uμ over time. Central column: approximation of oscillation phases ϕμ over time. Right column:
cut size over time with reference to the max-cut (top) and Hamiltonian belonging to vertex cover problem over time (bottom)

The first term H0 ≥ 0 represents a counter that counts
the number of vertices that have been marked by the
optimizer. The second term H1 ≥ 0 is a penalty term.
This term can only reach zero if all edges are incident
to a vertex from the solution set. Thus, H is only min-
imized, when a valid vertex cover is found (imposed
by H1) that is also minimal (imposed by H0). Looking
at the bottom row of Fig. 9, we see that the oscilla-
tor voltages, again, quickly converge to a steady-state
phase configuration after just about 20ms. By extract-
ing the phase values ϕμ out of the oscillation voltage
uμ, we were able to depict the values of H0 and H1 over
time in the right plot. Here, we also mark the size of the
minimal vertex cover using a black dashed line, which,
in this case, is 15. Both the Hamiltonian H0 and H1

converge to a constant value once the solution is found.
Since a valid vertex cover is found, the penalty term H1

converges to zero. Meanwhile, the counter H0 converges
to its optimal/minimal value H0,opt = 15, which is the
size of the minimal vertex cover.

Overall, we have shown that the oscillator network
designed in this section indeed serves as an optimizer
for QUBO problems. How different problems can be
mapped to this optimizer is a question that has been
extensively discussed in [15,24]. Note that the wave dig-
ital model presented in the previous section can be used
to simulate arbitrarily large network. In Appendix A,
we demonstrate the runtime of the associated wave dig-
ital algorithm for different network sizes.

We would now like to briefly comment on one impor-
tant aspect of our oscillator-based optimizer. Like every
other optimizer, our device has a set of parameters that
must be suitably chosen in order to obtain good solu-
tions:

1. The multiplicative bias Gb = 1/Rb, appearing in
(5c) 7b, needs to be chosen adequately, being nei-
ther too high nor too low. In the first case, the inter-

action is too strong, such that the oscillators are
usually unable to settle to one phase configuration.
In the second, case, the oscillators are effectively
uncoupled, such that the power exchange between
them is too weak for optimization purposes. Here,
the network usually converges to a suboptimal solu-
tion. These two cases are illustrated in Fig. 10a, b.

2. The SHIL signal has two parameters, namely the
amplitude êSHIL and the bias êb, see (9). Both these
parameters need to be chosen adequately. When the
amplitude and bias are too high, the oscillators tend
to lock (or even get stuck) to their current phases.
These parameters must be chosen so a perturba-
tion can have the chance to influence the oscillator’s
phase, as shown in Sect. 2.4. The consequences of
strong and weak SHIL are illustrated in Fig. 10c, d,
respectively.

3. A good balance between the multiplicative bias and
the SHIL signal must be found. At first glance, these
parameters seem independent of each other. How-
ever, if, for example, the SHIL signal is too strong,
then this effect can be mitigated by increasing Gb,
as this would lead to a greater perturbation by adja-
cent oscillators that may be enough for the oscillator
to escape its current phase. Conversely, if the mul-
tiplicative bias is too high, the interaction between
the oscillators may be too strong such that the bi-
stable phase behavior is lost. In this case, increasing
SHIL may restore bi-stability.

The emulation parameters in Table 3, which have
been used to solve the optimization tasks presented in
this section, have been chosen on the basis of this dis-
cussion. Here, the wave digital algorithm was used as a
flexible tool to test and find the correct parameters. In
Sect. 4, this tool is also used to determine the parame-
ters of the implemented circuit.
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Fig. 10 Simulations of an oscillator-based optimizer solving the max-cut problem depicted on the left side. The solution
of the problem is given by two partitions composed of two and three arbitrary oscillators, respectively. Plots a, b showcase
the effects of using inadequate optimization parameters. a High values of Gb lead to a strong coupling, which does not allow
the network to settle to one phase configuration. b Low values of Gb lead to the oscillators getting stuck in a certain phase
configuration, usually determined by their initial values. c Similar to b, a strong SHIL signal leads to the oscillators getting
stuck in a certain phase configuration and not correctly solving the problem. d Weak SHIL does not lead to bi-stable phase
behavior, which (often) does not allow the network to settle to one binary phase configuration

Table 3 Emulation parameters that have been used for the
results in Fig. 9

Emulation Parameters

êSHIL = 400mV êb = 1V T0 = 11.7 ms Rb = 47 kΩ

4 Technical implementation

The third and final part of this work discusses the tech-
nical implementation of our oscillator-based optimizer.
This section is divided into three subsections. The first
subsection discusses the technical implementation of
the FNO. Here, we also present a method for enhancing
the wave digital model of the oscillator, so it can emu-
late the real oscillator in a more accurate fashion. The
second subsection discusses the different circuits used
for problem mapping. This also includes the circuits
required for setting optimization constraints. Finally,
the third subsection provides measurements from our
in-house oscillator-based optimizer, where we solve dif-
ferent small-sized optimization problems to validate the
findings of this manuscript.

4.1 Oscillator circuit

Our FNO implementation is depicted in Fig. 11. The
circuit is composed of the same two elements as in
Fig. 1: the cubic nonlinearity and the RLC-tank. For
the sake of efficiency, the perturbation source ep is not
embedded into the oscillator itself. Instead, we make
use of one common signal generator for all oscillators
in the network. We cover this aspect in more detail
in the next section. The RLC-tank is composed of the

resistor R0, the capacitor C and inductor L just like in
Fig. 1. However, the inductor is realized with the help
of a capacitive gyrator. A gyrator is an ideal lossless
two-port with the ability of inverting current-voltage
characteristics [47]. With reference to Fig. 12, a capac-
itive gyrator is able to emulate an inductor described
by:

L
di

dt
= u , with L = R2

gCg , (20a)

where Rg is the so-called gyration resistance. Thus,
a gyrator allows for emulating large inductances with
small capacitors by adequately adjusting the gyration
resistance. This is important for our oscillator imple-
mentation, because the oscillation frequency of the
unperturbed FNO is mainly determined by the induc-
tance L of its RLC-tank. The larger L is, the slower the
frequency will be. Slow frequencies, on the other hand,
are helpful for circuit testing, as they eliminate most
parasitic high frequency effects. The capacitive gyra-
tor in Fig. 11 has two resistances Rg,1 and Rg,2. These
resistances relate to the gyration resistance in (20a) as
follows [48]:

Rg =
√

Rg,1Rg,2 (20b)

Thus, for a desired inductance L, we require a capacitor

Cg =
L

R2
g

=
L

Rg1Rg,2
, (20c)

where the latter equality is a direct consequence of
(20b).
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Fig. 11 Technical implementation of the FNO depicted in Fig. 1

Fig. 12 An inductor can be realized by a capacitive gyra-
tor

The cubic nonlinearity is realized by the paral-
lel interconnection of a negative impedance converter
(NIC) and a diode clipper, see the blue box in Fig. 11.
The negative impedance converter is used to produce a
negative resistance:

iNIC = −Gnu , with GnRn = 1 . (21a)

In combination with the diode clipper, we obtain

in(u) = id1(u) − id2(u) + iNIC , (21b)

where idν
denotes the currents flowing through the

diodes dν . The diode clipper effectively limits the
amount of voltage that is perceived by the NIC. Com-
bining the negative resistance of the latter with the rec-
tification of the diode clipper, we obtain an N-shaped
(i, u)-curve with the negative differential resistance Rn,
see Fig. 14. Here, we see that the N-shaped nonlinearity
is able to approximate the characteristics of the original
cubic nonlinearity (2c).

To enhance our wave digital model, we suggest mod-
eling the diodes by the Schockley equation

id1/2(u) = Is [exp (±u/UT ) − 1] , (21c)

Fig. 13 Realization of the coupling depicted in Fig. 3 in hardware. The gray boxes titled Nμ and Nν are used to compactly
represent two FNOs just as in Fig. 11. Here, we only draw the capacitors to clearly demonstrate the coupling node. Both
oscillators are equipped with a unity gain buffer and an inverter. The coupling circuit used in Fig. 3 can be found in the
yellow box
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Fig. 14 Original cubic nonlinearity (2c) (dashed black),
N-shaped nonlinearity produced by the circuit in Fig. 11
(solid blue), and the (i, u)-curve of the model (21) based on
the fitted Shockley equation (dashed red)

Table 4 Parameters of the FNO circuit in Fig. 11

Oscillator circuit parameters

R0 = 4.7 kΩ C = 100 nF Cg = 4.7µF
Rn = 10 kΩ Rg,1 = 1kΩ Rg,2 = 4.7 kΩ
RF = 1kΩ

with the scale current Is = 20nA and the thermal
voltage constant UT = 51.8mV. By fitting the latter,
we were able to obtain good fit for our model (21) using
the parameters in Table 4, see Fig. 14. Hence, for achiev-
ing more accurate results with the wave digital model
of Sect. 3.2, we recommend replacing (2c) with (21)
in the electrical model (11), which effectively modifies
(16). For the sake of completeness, we would like to
mention that our technical implementation uses the op-
amp model TL071 and the diode model 1N4148.

4.2 Problem mapping

In this subsection, we demonstrate how the circuits pre-
sented in Sect. 2 translate to hardware in order to build
an oscillator-based optimizer. The first part of this sec-
tion discusses the mapping of optimization coefficients
Jμν . The second part explains the injection of SHIL.
The third and final part discusses the mapping of lin-
ear optimization coefficients.

4.2.1 Quadratic optimization coefficients

In order to map optimization coefficients onto our in-
house optimizer, we make use of the circuit depicted in
Fig. 13. Here, we see a coupling between two arbitrary
oscillators Nμ and Nν , which are (compactly) repre-
sented by the gray filled boxes with the capacitances
Cμ and Cν . Essentially, every oscillator can be con-
sidered to have two outputs ports, the first being the
one parallel to the capacitor and the second being an
inverted output. The latter is realized by interconnect-
ing the upper capacitor node to a unity gain buffer and
inverter, which invert the output voltages uμ and uν , see
the blue shaded boxes. In practice, these components
are necessary, as all lower capacitor nodes are connected

to the ground, such that a signal inversion, like in Fig. 3,
via a cross-over circuit is not possible. Using these two
outputs, we can now interconnect the two oscillators
in the same was as in Fig. 3, i.e. the non-inverted out-
put of Nμ is connected to the non-inverted output of
Nν via a resistor with the conductance G−

μν , while the
inverted outputs of Nμ and Nν are each cross-coupled to
the non-inverted output via a resistor with the conduc-
tance G+

μν . Contrary to the coupling in Fig. 3, the cou-
pling conductances in Fig. 13 are halved in their value.
This is because, the lower capacitor nodes in Fig. 3 are
assumed to have different potentials, while the nodes in
Fig. 13 are connected to the ground. This way, the two
coupling schemes can only be identical, when the con-
ductances are halved, such that the coupling currents
ic,μ and ic,ν are the same as in (5).

4.2.2 Linear optimization coefficients

As we have seen in Fig. 4, the linear constraints can be
essentially implemented in the same way as all other
optimization coefficients. However, as explained in
Sect. 2.3.2, the coupling must be unidirectional, i.e. the
reference oscillator Nref must perceive no load/feedback
from the rest of the circuit in order to retain a fixed
phase. The simplest solution to eliminate feedback is to
make use of a unity gain buffer, whose output voltage is
then used to couple the reference oscillator to all other
oscillators. We have depicted this type of coupling in
Fig. 15 on the example of our reference oscillator Nref

being coupled to one arbitrary oscillator Nμ. The unity
gain buffer is highlighted in red. As can be seen in this
figure, both outputs of the reference oscillator are con-
nected to a unity gain buffer, which decoupled it from
the rest of the circuit. This way, Nref perceives no load
allowing its output voltage uref to retain a fixed oscil-
lation phase.

4.2.3 Optimization constraints

In order to implement binary constraints, we have used
SHIL in Sect. 2.4. Here, SHIL current was injected
using the perturbation source that we have pre-built
into the oscillator model depicted in Fig. 1. However,
from a practical standpoint, this type of implementa-
tion is inefficient, as it necessitates one signal generator
per oscillator. To reduce the number of components, we
suggest injecting SHIL by using a common signal gen-
erator, see Fig. 16. Here, one voltage source ep is used
to perturb all oscillators at the same time. The currents
ip,ν then result as a result of the current divider law.

4.3 Results and discussion

The set up for the measurements can be seen in Fig. 17.
The printed circuit board (PCB) consists of 20 oscilla-
tors of which only the necessary amount is used for each
measurement. The PCB is screwed onto an aluminum
plate that is grounded to reduce the noise. To couple
the oscillators additional bread boards are used with
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Fig. 15 Realization of the coupling depicted in Fig. 4 in hardware. The gray boxes titled Nμ and Nref are used to compactly
represent an arbitrary oscillator Nμ and the reference oscillator Nref , respectively, just like in Fig. 4. The controlled voltage
source in Fig. 4 is realized by the unity gain buffer highlighted in red, while the resistive coupling circuit is highlighted in
yellow

Fig. 16 Circuit schematic demonstrating SHIL injection
at the capacitor node. The voltage source ep represents a
signal generator supplying (9). The gray dashed boxes enti-
tled Nμ are a compact version of the oscillators depicted in
Fig. 11

variable resistances. The SHIL signal is supplied to the
oscillators via a function generator (Keysight 33500B)
and the oscillator voltages are measured with a Pico
Scope and the corresponding computer program (Fig.
17).

With the laboratory setup in Fig. 17 and the param-
eters in Table 5, we have solved the four optimization
problems depicted in the left column in Fig. 18. Here,
every node Nμ represents a FNO, as depicted in Fig. 11,
while every edge represents a resistive connection as

depicted in Fig. 13. Problems (a) and (b) are used as
simple benchmarks to reaffirm the discussions of Sects.
2.2 and 2.3. Problems (c) and (d), on the other hand,
are small-sized examples for demonstrating the behav-
ior of our oscillator-based optimizer. The middle col-
umn in Fig. 18 depicts the output voltages uμ over time.
Here, a red line is used to indicate the time instant at
which SHIL is turned on. The right column in Fig. 18
shows the instantaneous power p(t) over time. This sig-
nal is not measured but rather reconstructed by using
the known coupling matrix Gc, the measured voltage
vector u(t), and the coupling relation (11g):

p(t) = uT(t)ic(t) = uT(t)Gcu(t) . (22)

Note that all results in the central column of Fig. 18
represent extracts of our measurements, i.e. the time
instant t = 0 only denotes the time at which the record-
ing has been started.

Let us first consider problem (a) in Fig. 18, which is
a simple max-cut problem with two coupled oscillators.
According to (17), we have J12 = −1. Therefore, we
use the coupling circuit depicted on the right side of
Fig. 2 in order to promote anti-phase synchronization.
Looking at the voltages uμ in Fig. 18a, we observe that
the oscillators achieve anti-phase synchronization even
without the use of SHIL. According to our hypothesis,
this outcome is natural, since anti-phase synchroniza-
tion minimizes power dissipation, which is evident from
the right plot in Fig. 18a. Once SHIL is turned on for
t > 60ms, we see an interesting phenomenon. Prior to
turning on the SHIL signal, the voltage signals are sym-
metrical about the t-axis. This allows for a destructive
superposition of the two signals, such that u1 +u2 = 0,
when anti-phase synchronization is achieved; this also
implies no power dissipation such that p(t) = 0. Once
SHIL is turned on, we can observe a slight distortion
in the voltage signals; they are now asymmetric about
the t-axis. In this case, the two signals can not sum to
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Fig. 17 Photograph of the experimental set up. On the left side the complete set up is shown with the printed circuit board
(PCB) and bread boards placed on a grounding plate. The PCB is connected to voltage sources and a function generator
(used for SHIL). For data logging a Pico Scope is used with the according computer software. The PCB shown from above
on the right side contains 20 oscillators which get coupled via resistors on separate bread boards. On the breadboard is an
additional unity gain buffer placed that is necessary to decouple the reference oscillator in the Vertex Cover Problem

Table 5 Parameters of the laboratory setup in Fig. 17

Circuit parameters

êSHIL = 700mV êb = 2V T0 = 10.7 ms Rb = 100 kΩ

zero, such that p(t) = 0 is not possible anymore. There-
fore, we observe higher power dissipation, when SHIL
is used. However, since anti-phase synchronization still
minimizes power dissipation, we see that the oscilla-
tors assume this states nonetheless. This phenomenon
is very important and has not been pointed out in litera-
ture so far. Depending on the problem, we see that SHIL
can greatly influence the tendencies of coupled oscil-
lators. This can even mean that the optimal solution
of the considered problem does not map to the phase
configuration minimizing the dissipated power p(t) any-
more, when SHIL is active. Also, this analysis reveals
that it may be beneficial to use oscillators with symmet-
ric oscillations for oscillator-based optimization, since
this guarantees that the optimal solution of the consid-
ered problem is mapped to the minimum of p(t), when
the mapping of Sect. 2.3 is used.

Let us now consider problem (b) in Fig. 18. Here, we
attempted to recreate the theoretical scenario depicted
in Fig. 5. Again, we have J12 = J13 = J23 = −1,
as in Fig. 5. As has been pointed out in that sec-
tion, this type of coupling leads to a contradiction, as
there is no binary phase configuration that can lead to
p(t) = 0. Therefore, the oscillators actively search for

other phase configurations that minimize p(t), which
are not binary. The same results depicted in Fig. 5 can
be clearly observed in our voltage measurements in
Fig. 18b. The oscillators assume a three-phase config-
uration, when SHIL is turned off (t < 60ms). However,
due to parameter mismatches (leading to a frequency
mismatch between the oscillators), the oscillators do
not fully lock to this state, but rather lock to it for
short time intervals and oscillate around it otherwise.
Once SHIL is turned on, the optimizer is now forced to
search for binary solutions, and it successfully finds the
same solution as in Fig. 5, which indeed corresponds to
the problem’s solution. In the right plot of Fig. 18b, we
again see that the three-phase configuration minimizes
the dissipated power p(t) even more than the solution
of the mapped problem, just like in Fig. 5.

The third problem depicted in Fig. 18c is an
unweighted max-cut problem with a maximal cut size of
6 edges. There are multiple partitions that can lead to
an optimal solution and we were able to achieve every
one of these partitions using our oscillator-based opti-
mizer. In the graph of Fig. 18c, we have depicted one
of the optimal partitions that have been found by our
optimizer. We would like to point out that the edge
connecting N5 and N6 is grayed out, because is does
not belong to solution of the problem, since we only
count the edges that connect the two partitions, refer
to Sect. 3.3. Looking at the central plot in Fig. 18c, we
see that the optimizer finds this optimal partition even
before the SHIL signal is turned on. In other words,
we can clearly see that the optimal partition has been
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Fig. 18 Measurement results of four different optimization problems (a–d). The left column depicts the graph associated
with the optimization task. The central column depicts the measured oscillator voltages uμ over time, where the signal
colors are correlated to the boundary colors of the nodes of the graphs in the left column. For all time instants preceding
the red line, no SHIL signal is used. Afterwards SHIL is turned on. The right column depicts the dissipated power p(t) over
time

successfully minimized to the phase configuration min-
imizing the dissipated power. In order to clearly decode
the solution, we turn on SHIL at t = 60ms. Here, we
see that the optimizer simply reassumes the solution
of the problem. However, due to SHIL, the oscillation
phases are exactly locked to 0 or π, which allows us
to easily decode the solution. The right plot in Fig. 18c
shows the same phenomenon observed in Fig. 18a: turn-
ing on SHIL leads to more power dissipation due to the
distorted voltage signals.

Our final measurement is depicted in Fig. 18d. Here,
we attempted to solve a minimal vertex cover problem
with 6 nodes. As pointed out in Sect. 3.3 (see equa-
tion (18)), the minimal vertex cover problem contains
a Zeeman term, hence we require a seventh reference
oscillator in order to implement the coefficients hμ. This
problem is used as a proof-of-concept in order to show
that our oscillator-based optimizer can also deal with
problems containing the Zeeman term. We would like
to point out that the graphs depicted in Fig. 18c, d are

isomorphic. The minimal vertex cover problem, how-
ever, has a different solution than the max-cut prob-
lem. Specifically, we require at least four nodes in order
to color every edge in the graph, while the max-cut
problem requires two or three nodes in order to achieve
the largest possible cut size. The four nodes represent-
ing the solution of the problem (N1, N4, N5, N6) are
drawn as a partition in the graph of Fig. 18d. We would
like to point out that we have colored the edges in the
same color as the incident nodes belonging to the solu-
tion of the problem. Prior to turning on the SHIL sig-
nal, the solution of the problem can not be identified
from the output voltages uμ depicted in the center of
Fig. 18d. However, once the SHIL signal is turned on,
the optimizer successfully finds the optimal solution,
which translates to the graphical solution depicted on
the left of Fig. 18d. The right plot in Fig. 18d, again,
shows that the binary solution corresponds to a state
of higher power dissipation, when compared against the
state the oscillators assumed prior to turning on the
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SHIL signal. If we compare the right plots in Fig. 18c,
d, however, we see that the solution of the vertex cover
problem dissipates less power than that of the max-cut
problem. This proves that adding a seventh reference
oscillator with adequate coupling weights indeed refor-
mulates the original max-cut problem as a minimal ver-
tex cover problem. This observation is very important
since the matrix J is identical in problems (c) and (d),
compare equations (17, 18).

5 Conclusion and outlook

In this work, we have covered the fundamental aspects
of oscillator-based optimization. We started by explain-
ing the theoretical design of oscillator-based optimiz-
ers with the goal of solving quadratic unconstrained
binary optimization (QUBO) problems. Here, we pro-
pose to build an oscillator-based optimizer using resis-
tively coupled FitzHugh-Nagumo oscillators. The resis-
tive coupling results as a natural consequence of the
synchronization tendencies of coupled oscillators. The
main hypothesis supporting it is that a network of cou-
pled oscillators has the natural tendency of minimiz-
ing interactions, as this minimizes power dissipation.
In addition to explaining how QUBOs can be mapped
onto the resistive couplings of our network, we have also
discussed the enforcement of optimization constraints.
In the second part of our work, we derived a real-time
capable wave digital algorithm, which allows for emu-
lating our proposed optimizer. This algorithm serves as
a testing tool for seeking out potential problems prior
to implementing the network. The third and final part
of this work presents our own in-house oscillator-based
optimizer. Here, the theoretical circuitry presented in
the first part of this work is fully implemented in analog
hardware. The resulting circuit is then tested on four
different optimization problems, which validate our pro-
posed methodology for building oscillator-based opti-
mizers.

In future works, we plan to enhance the circuit imple-
mentation presented in this work by reducing the num-
ber of active components both in the coupling as well as
in the oscillator itself. Besides that, we aim to explore
the use of memristors for dynamic topology formation
[49]. Memristors are resistors with memory that remem-
ber the last state they are programmed to. Usually,
these devices are built, so they switch between a high-
and low-ohmic state. By coupling the oscillators using
memristors instead of resistors, we can thus implement
a dynamic connection, which allows us to ”rewire” the
network when dealing with new problems. When the
memristor is in the high-ohmic state, the oscillators are
effectively uncoupled. Otherwise, if the memristor is in
the low-ohmic state, then the oscillators are coupled.
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A Simulation time

In Fig. 19, we recorded the simulation runtime as a function
of the network size. For every network size, we construct a
complete network, in which every oscillator is connected to
every other oscillator. The resulting network maps a max-
cut problem of a complete graph for a given network size. All
simulations were carried out on a lab computer (in MAT-
LAB) with an Intel Core i7 processor running at 2.9 GHz,
using 32GB of RAM and Windows 10.

As can be seen from Fig. 19, the wave digital concept
allows for simulating large networks with up to 4500 oscil-
lators with a reasonable runtime of about 3 min. At this
point, we would like so stress that the wave digital con-
cept is a platform-independent tool. By programming the
wave digital algorithm in low-level programming languages
such as C or C++, a significant improvement can be made.
In other words, the simulation runtime of a wave digital
algorithm is strongly dependent on the platform that it is
programmed on.
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Fig. 19 Simulation runtime of the wave digital algorithm
as a function of the network size. In every simulation, a com-
plete graph is considered, where every oscillator is connected
to every other oscillator
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