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Abstract. In recent years, several experiments have highlighted a new type of diffusion anomaly, which
was called Brownian yet non-Gaussian diffusion. In systems displaying this behavior, the mean squared
displacement of the diffusing particles grows linearly in time, like in a normal diffusion, but the distribution
of displacements is non-Gaussian. In situations when the convergence to Gaussian still takes place at longer
times, the probability density of the displacements may show a persisting peak around the distribution’s
mode, and the pathway of convergence to the Gaussian is unusual. One of the theoretical models showing
such a behavior corresponds to a disordered system with local diffusion coefficients slowly varying in space.
While the standard pathway to Gaussian, as proposed by the Central Limit Theorem, would assume that
the peak, under the corresponding rescaling, smoothens and lowers in course of the time, in the model
discussed, the peak, under rescaling, narrows and stays sharp. In the present work, we discuss the nature
of this peak. On a coarse-grained level, the motion of the particles in the diffusivity landscape is described
by continuous time random walks with correlations between waiting times and positions. The peak is
due to strong spatiotemporal correlations along the trajectories of diffusing particles. Destroying these
correlations while keeping the temporal structure of the process intact leads to the decay of the peak. We
also note that the correlated CTRW model reproducing serial correlations between the waiting times along
the trajectory fails to quantitatively reproduce the shape of the peak even for the decorrelated motion,
while being quite accurate in the wings of the PDF. This shows the importance of high-order temporal

correlations for the peak’s formation.

1 Introduction

The erratic motion of particles diffusing in a fluid
medium (Brownian motion) has drawn considerable
attention of scientists since Robert Brown first system-
atically investigated it [1]. Einstein [2] was the first
to propose a mathematical description of this type
of motion (see [3] for a detailed historical account).
Einstein, who essentially did not know about Brown-
ian motion, found out that such a phenomenon is an
inavoidable consequence of the kinetic theory of heat
and closely connected it to diffusion. In this picture
of what we now call normal diffusion, the particles’
motion possesses two important properties [4]: (i) the
mean square displacement (MSD) of the particles from
their initial position grows linearly in time,

(r(t)?) = 2dDt (1)

(with d being the dimension of space, and D being
the diffusion coefficient), and (ii) the probability den-
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sity function (PDF) of the particles’ displacements at a
given time follows a Gaussian distribution
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The properties (1) and (2) were tested in many exper-
iments, and their confirmation laid a solid founda-
tion to our understanding of the atomistic structure
of matter [5]. The random walk approach used by Ein-
stein assumed that one can approximate the particle’s
motion by a sequence of independent steps in random
directions under the condition that the times necessary
to make a step are the same, and the displacement in a
single step has a finite second moment. This approach
was closely mirrored in many early experiments using
stroboscopic measurements. Independently of Einstein,
Smoluchowski [6] presented a more formal mathemat-
ical description of the Brownian motion which led to
the same results as Einstein’s, and set the ground to
a new branch of probability theory concerning the dif-
fusion processes [7]. After Einstein and Smoluchowski,
Langevin [8] proposed a new mathematical tool for the
description of the particle’s motion, the stochastic dif-
ferential equation.

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1140/epjb/s10051-023-00621-z&domain=pdf
http://orcid.org/0000-0003-2550-4566
http://orcid.org/0000-0002-4688-9162
mailto:adrian.pacheco@physik.hu-berlin.de
mailto:igor.sokolov@physik.hu-berlin.de

152 Page 2 of 13

The standard picture corresponds to the tracer’s
motion in a homogeneous, quiescent fluid. In the course
of time, many deviations from this kind of behavior
were found for other media. Numerous experiments on
transport in complex media (disordered solids, rocks,
biological media, etc.) showed that, instead of a linear
time dependence as given by Eq. (1), the MSD often
follows a power-law time-dependence (r(t)?) oc t7, with
0 < v < 1 (subdiffusion) or 1 < v < 2 (superdiffu-
sion). A system whose MSD shows such a time depen-
dence is said to exhibit anomalous diffusion. Depend-
ing on the specific case, different mathematical models
have been proposed to describe this anomalous behav-
ior by focusing on different aspects of the motion [9-14].
Some classical models are: the uncorrelated continuous
time random walks (CTRW) with power-law waiting
time distributions, the fractional Brownian motion, and
Lévy walks and Lévy flights. The PDF in these mod-
els may or may not be Gaussian. An alternative model
to uncorrelated CTRW which also produce anomalous
behavior is the annealed transit time model (ATTM)
[15], which introduces the idea of random diffusivities.
Several considered cases include variants or combina-
tions of different sources of anomalies: thus, diffusion in
strongly fluctuating Gaussian random potentials is con-
sidered in [16], and a combination of a random potential
and viscoelastic memory as described by the generalized
Langevin dynamics was discussed in [17,18].

Several recent experiments [19-35] reported a new
type of diffusion in which the MSD grows linearly in
time, like in the normal diffusion, yet the PDF of
displacements shows considerable deviations from the
Gaussian shape. Usually, the PDF of displacements is
well described by a Laplace (two-sided exponential) dis-
tribution. This behavior was called Brownian, yet non-
Gaussian (BnG) diffusion [22]. Some of the correspond-
ing systems show a crossover from the non-Gaussian
distribution to a Gaussian one at long times [19,34].
In several cases [19,22,23,28,30-35], for times at which
the crossover takes place, the PDF presents a peak close
to its mode. This peak resembles a part of the initial
Laplace distribution, while the parts of the distribution
further from its mode have already a more or less Gaus-
sian shape. This peak can be also seen in several the-
oretical works [36,37], whereas in other closely related
works, it is absent [38-40].

Many of the systems in which the BnG diffusion is
observed are pertinent to soft matter, and almost all of
the experimental systems with BnG diffusion may show
a great deal of spatial and temporal inhomogeneity, or
disorder. Thus, the medium in which the particle moves
may be spatially heterogeneous, or change in time. The
properties of the diffusing tracer may change in time as
well.

Different assumptions about the heterogeneity
involved lead to different classes of models which were
proposed for the description of BnG diffusion. The most
popular class corresponds to the diffusing diffusivity
(DD) models, see e.g., [41-45]. They assume slow ran-
dom changes of the diffusion coefficient in time. The
particular variant of the model used in [43] will be called
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“the minimal model” of diffusing diffusivity in what fol-
lows. Due to the versatility of this particular variant, it
has also been applied to the study of fractional Brown-
ian motion, a model presenting long-ranged time depen-
dences [46]. Another model describing BnG diffusion
is the diffusivity landscape model (DLM) [47], which
considers that the diffusion coefficient varies slowly in
space.

The possible connection between the diffusing diffu-
sivity and DLM was stated in Ref. [43]: the temporal
randomness of the diffusion coefficient can be consid-
ered as stemming from its spatial change along the
trajectory of a diffusing particle, so that the “mini-
mal model” is a kind of a mean-field approximation
for the case of spatial changes. Even if the DD and
DL models are gauged in such a way that they repro-
duce the main features of the phenomenon, their pre-
dictions differ in some details. Looking particularly into
these details may deliver valuable experimental insights
into the kind of disorder involved. Thus, the DLM (and
other models with correlated spatial disorder like the
one discussed in [48,49], not necessarily exhibiting the
BnG behavior) show a pronounced central peak at the
mode of the PDF of particles’ displacements. This cen-
tral peak is, however, absent in the minimal model. The
existence of this central peak in [48] was immediately
connected to the correlated nature of disorder.

Recently, in Ref. [50], we concentrated on the behav-
ior of the PDF of displacements close to its mode and
showed that the PDF of displacements in several clas-
sical strongly disordered systems displays such a peak
at its center. The behavior of this central peak is quite
peculiar, since its presence shows that the convergence
to a Gaussian (i.e., normal) behavior under homoge-
nization may follow a different pathway than the one
commonly known from the Central Limit Theorem
(CLT) applied to sums of many independent, identically
distributed (i.i.d.) random variables following some con-
tinuous distribution (in our case, this should be the
short-time Laplace one). This standard situation sug-
gests that the initially sharp peak would smoothen and
be lowered. However, under homogenization, the cen-
tral peak in the considered classical strongly disordered
systems gets narrower under the rescaling r — r/v/t,
p — t%?p implied by the CLT, while approximately
keeping the height. Passing from the spatially disor-
dered systems to their mean-filed counterparts (like the
corresponding CTRWsS, or the minimal model) restores
the standard convergence pathway like the one pre-
dicted by the CLT.

The differences in the convergence pathways have to
do with the fact that some important local informa-
tion about the system is erased when passing to the
pre-averaged (mean-field) description. Now, one could
ask, what is the important information erased? In the
present work, we try to answer this question by simu-
lating the particles’ trajectories in DLM (described as
a continuous-time random walk of particles on a lat-
tice with position-dependent waiting times) and erase
the correlations between the waiting times and posi-



Eur. Phys. J. B (2023) 96:152

tions, while fully preserving the temporal structure of
the walk. The result of the discussion shows that the
existence of the persistent peak is connected to spa-
tiotemporal correlations, and destroying them (while
fully preserving the temporal structure of the problem)
leads to a different kind of behavior. We note that the
answer to this question may apply in other similar sit-
uations in strongly disordered systems.

The article is structured as follows. In Sect.2, we
revisit the diffusivity landscape model being the base of
our investigation. Section3 explores the idea that the
DLM presents strong spariotemporal correlations which
ultimately leads to the PDF exhibiting a central peak.
We show that destroying these spatiotemporal correla-
tions while fully preserving the temporal structure of
steps reproduces the PDF in DLM at short times, but
leads to lowering and disappearing of the peak at long
ones. Section 4 provides a CTRW model with correlated
waiting times, which partially reproduces the behavior
found in this decorrelated DLM model, but fails to fully
describe the situation. In Sect.5, we discuss the role
of the particular shape of the correlation function of
diffusivities assumed in DLM by considering a slightly
different model. Finally, Sect. 6 presents the concluding
remarks.

2 Diffusivity landscape model

In what follows, we use the model proposed by Post-
nikov et al. [47] which assumes the particles’ diffusion
in a heterogeneous medium modeled by a correlated dif-
fusivity landscape D(r). This motion is described by the
force-free Langevin equation with multiplicative noise

r =D €(1), Q

with €(t) being a Gaussian white noise with (§(¢)) =0
and (£,()&,(t')) = 6,,0(t —t') with p, v representing
Cartesian coordinates. This Langevin equation corre-
sponds to the Fokker—Planck equation

0

5P 1) = VI = a)VD(r) + D(r)Vip(r,t),  (4)
with a being the interpretation parameter taking values
in the interval 0 < oo < 1. The interpretation parame-
ter arises because of the different ways in which one
can integrate Eq. (3) (see e.g., [51] for a comprehen-
sive discussion). Among all the different values the
interpretation parameter could take, three values stand
from the rest [52]: @ = 0,1/2 and 1, which are known
as the interpretation of Ito, Stratonovich and Hénggi-
Klimontovich, respectively. Note that assuming differ-
ent interpretations (all complying with the idea of pure
diffusivity landscape, without any external potential)
leads to different stationary probability densities p(r, t),
which influence the sampling of trajectories of diffusing
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particles. The authors of [47] asked, under which con-
dition would Eq. (4) describe the BnG diffusion, and
found out that the two following conditions should be
met. First, Eq. (3) without external potential must be
interpreted in the Ito sense (a = 0; then, of course, any
other interpretation can be used by introducing the cor-
responding deterministic force [51]), and second, initial
positions of diffusing particles must be sampled from
the equilibrium distribution. Taking as a “stylized fact”
that the PDF at short times has been observed to follow
a Laplace distribution [19-35], one can then show that
the single-point PDF of the diffusion coefficients in the
corresponding landscape should be given by a Gamma

distribution:
B8 1 /D\"! D
w5 (5) (#5) ®

where I'(+) is a Gamma function, and 3 and D are shape
parameters dependent on the dimension of space.

In what follows, we will concentrate on the two-
dimensional situation, for which § = 5/2 and D =
5Dy /3, with Dg being the sampled diffusion coefficient,
i.e., the one defining the slope of the “experimental”
MSD assumed to strictly follow the linear dependence
(r(t)?) = 2dDqt [47].

A finite-difference discretization of the Fokker—Planck
equation, Eq. (4), with « = 0 on a square lattice
with lattice constant a leads to a master equation (see
Eq. (6) below) which, in its turn, defines a random walk
scheme. The corresponding random walks are exactly
what will be simulated in what follows.

For @ = 0, Eq. (4) can be rewritten in the form

p(D) =

%p(r7 t) = A[D(r)p(rv t)]a

and its discrete version is

4

Do)=Y Diep, )~ ). )
k=1

Here, the discretization point ¢ corresponds to coordi-
nates (x;,y;) on a rectangular grid with the lattice con-
stant a, and points ji are the four nearest neighbors of
the lattice point 1.

Under the above discretization, the random diffusiv-
ity field at each lattice point translates into correlated
values of local parameters D; = D(x;,y;), which are
generated according to the following algorithm, Ref.
[47]: one begins by constructing an array of indepen-
dent Gaussian random variables GG; with zero mean and
unit variance. Then one generates a correlated Gaussian
field G; by applying the Fourier filtering method [53] to
G;. Like in [47], we take the correlation function of the
correlated field to follow

rZ,
p(ri;) = (GiG;) = exp (‘ Q/L\J2> , (7)
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with A being the correlation length, and r;; the
Fuclidean distance between lattice points ¢ and j. We
note that the choice of Eq. (7) is not dictated by any
physical reasons, but by the ease of numerical imple-
mentation and further calculations. In Sect. 5, we will
explore the consequences of changing the correlation
function of the diffusivity landscape by considering a
checkerboard-like diffusivity landscape. R

Finally, the correlated Gaussian field G; is trans-
formed into the I'-distributed diffusivity landscape D;
by performing a probability transformation:

D; = f(G) = F;" {; [1 — erf (\%)] } (8)

where erf(-) is the error function and Fﬁ_l(x) is the
inverse of the cumulative distribution function (CDF)
Fg(D) for the PDF given by Eq. (5), which is given by

R = [ p0an = o (5.8

with (-, ) being the lower incomplete Gamma func-
tion. The procedure above generates a diffusivity land-
scape D; whose correlation function follows from that
of the correlated Gaussian field, Eq. (7), by a transfor-
mation which will be discussed in Sect. 4.1.

Figure 1 shows a realization of the diffusivity land-
scape D; for a lattice of 256 x 256 with a =1, Dy =1
and A = 10.

Let us now return to our Eq. (6). Defining the tran-

sition rates as
D 1(a\ ' 11
a? 4 \4D; 4T
0

-6
-5

100
-4
Y -3
-2

200
-1

0 100 T 200

Fig. 1 A two-dimensional realization of the diffusivity
landscape D(r) in the diffusivity landscape model. It corre-
sponds to a 256 x 256 lattice with correlation length A = 10
and sampled diffusion coefficient Dy = 1

Wi—j =
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with
a2

9
being the mean waiting time at a site, and 1/4 corre-
sponding to the probability to choose one of the four

neighbors to jump to. We put Eq. (6) into a standard
form of a master equation

4
t) = Z Wi, —iDsjy, (t
k=1

T —

) = > winpilt)
k=1

which can be rewritten as
4
1 1 1
pl =1 ,;, — ;ipi(t) (10)

In Ref. [47], Eq. (10) was solved using the forward Euler
method. Here, we employ another approach.

Note that Eq. (10) which arose from the discretiza-
tion of the Fokker—Planck equation corresponds to a
lattice model with static random traps [54,55]. Like in
Ref. [50], we use the fact that the master equation (10)
corresponds to a CTRW with a site-dependent expo-
nential distribution of waiting times on the sites. Thus,
to solve the master equation, i.e., to obtain the evolu-
tion of the PDF, we generate random walk trajectories
whose waiting times follow the exponential waiting time

density
1 t
i) = ~exp (1),
T T

with 7; given by Eq. (9). Taking the lattice spacing to
be the length unit of the problem (a = 1), we get

’(/J(t|D2) = 4Dz exp (—4Dit) . (11)

Note that the single-step displacements in our CTRW
are i.i.d. random variables (each step has a unit length
and arbitrary, random direction), while waiting times
are not independent since D; at neighboring points are
correlated. An illustration of the procedure to generate
random trajectories can be seen in panel (a) of Fig. 2.
As we shall see, this alternative method allows us to
study the role of space-time correlations in the DLM,
which would be impossible to do by solving the ordi-
nary differential equations (ODEs). Moreover, generat-
ing random trajectories is considerably less computa-
tionally expensive than solving ODEs, and allows us to
have much better statistics of the desired quantities.

3 Space—time correlations

In the last decades, several correlated CTRW models
were proposed which led to interesting behaviors [56—
58]. However, all these correlated models focus only on
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Fig. 2 Schematics of the procedure to decouple space and time. The real particle follows the blue trajectory, whereas the
decoupled particle follows the red trajectory. Notice that the waiting times for both particles are the same, and they depend

only on the positions of the real particle

either the temporal part or the spatial part separately
or simultaneously, but leave the spatiotemporal corre-
lations out of the picture. The reason for this is that
dealing with such cross-correlations is, in general, a very
complex task, even from a computational point of view.
All (semi-)analytical results usually come from apply-
ing mean-field techniques which partially or completely
ignore the fine-scale structure of the system, so that
some interesting features of the spatially disordered sys-
tems are not reproduced. This is the case, e.g., for the
behavior of the central peak seen in the DLM [50],
which is not reproduced in such pre-averaged models
like the CTRW description of the DLM [50], or the min-
imal model of BnG [43]. Tt is in this regard that we seek
to know to what extent the spatiotemporal correlations
are responsible for the persistence of the central peak
and the unusual art of convergence to a Gaussian distri-
bution by narrowing of the central peak under rescaling
r—r/\Vt,p— t4/2p, instead of its lowering. To assess
the effects of spatiotemporal correlations in the DLM,
we remove them by randomization of step directions
and see what changes by comparing the PDF in the
decorrelated motion with that in the correlated one.
Let us consider a particle whose initial position is rg
and follow its true motion as given by a random walk
scheme corresponding to the master equation (6). At
that position, the particle waits for a time ¢y, which is
drawn from the exponential distribution ¢ (t|Dy) given
in Eq. (11), with Dy = D(rg). Next, the particle ran-
domly jumps to one of its neighboring lattice points,
whose position is ry, and then waits for another time
t1, which is now drawn from the exponential distribu-
tions ¢ (t|Dy), with D; = D(ry). This process of jump-
ing and waiting is repeated until the maximal simula-
tion time t,,4, is exceeded by the sum of waiting times.
At the end, the trajectory of our particle (which we
will call real particle to distinguish its motion from
its randomized counterparts) is given by a list of posi-
tions {rg,ry,ro,... }, which correspond to a simple ran-
dom walk, and a list {to,?1,t2,...} of the correspond-

ing waiting times between subsequent jumps which are
drawn from the exponential distributions v (¢|D;) with
D; = D(r;), and which are therefore dependent on the
particles’ positions. This dependence of the exponential
distribution on the value of the local diffusion coefficient
generates the spatiotemporal correlations in the DLM.
The procedure to obtain the trajectories of a real par-
ticle is sketched in panel (a) of Fig. 2.

We now use the above trajectories of true motion
of particles, which we refer to as “real trajectories”
in what follows, to generate new trajectories in which
space and time are uncorrelated. Let us start by taking
the temporal part of a real trajectory, i.e., the list of
waiting times {to,t1, ...}, and discard the spatial part.
Then we proceed as follows: Let us consider a new par-
ticle, which we will call the decoupled particle, whose
initial position is the same as for the real one, i.e., ry.
The decoupled particle then waits a time equal to the
first waiting time of the real particle, namely ¢y, and
makes a jump to one of the neighboring lattice points
with position r}. At this position, the decoupled par-
ticle waits a time equal to the second waiting time of
the real particle, namely 1, to make the next jump in
a random direction. This process is repeated until the
same number of steps as for a real particle is done, and
the maximal time ¢,,4, is exceeded. Hence, one ends up
with a trajectory for the decoupled particle consisting
of a list of the positions {rg,r,r}, ...} being sums of
i.i.d. random steps, and exactly the same list of waiting
times {to, t1,. ..} as for the real one, which are however
decoupled from the corresponding particle’s positions.
This process is depicted in panel (b) of Fig. 2. The tra-
jectories of real and decoupled particles are then used
for obtaining the PDF's of displacements in a given real-
ization of the landscape. Similar PDFs are obtained for
different realizations of the diffusivity landscapes and
then weighted-averaged under the equilibrium condi-
tion: the corresponding weight is proportional to the
waiting time ¢y at rg in the corresponding landscape.
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Fig. 3 A comparison of the one-dimensional cut of the PDF ¢(¢) = p(x, 0)t of rescaled displacements ¢ = z:/+/t for the real
particle (black) and decoupled particle (red), see text for details. Each panel represents a particular time. The flattening of
the the central peak in the PDF of positions of the decoupled particle is evident at longer times

The resulting PDFs for real and decoupled parti-
cles are displayed in Fig. 3. The four panels of the plot
present four different maximal times: ¢4, = 10', 102,
103, and 10*. Each panel presents a comparison of the
PDF for the real (black dots) and decoupled (red dots)
particles. Each PDF is the average over 10* realizations
of the diffusivity landscape over a lattice of 2048 x 2048
with A = 10 and Dy = 1. Each realization contains
10° particles. Plotted in Fig.3 is a cut of PDF p(x,y;t)
through the origin at y = 0. Moreover, following [50],
we plot the PDF as a function of the rescaled displace-
ment ¢ = z/v/t. To keep the normalization of the PDF,
it has to be rescaled as ¢(&) = ¢ - p(€). Figure 3 shows
that the decoupling of the spatial and temporal aspects
of the motion changes the art of convergence to the
Gaussian from the unusual one, by narrowing of the
central peak, to the CLT-like convergence, by lowering
and smoothening the peak.

In Refs. [48] and [50], the existence of the central peak
was connected with the set of particles which started
their motion in a patch with a very low local diffusiv-
ity, so that they could hardly leave the patch until very
long times. The randomization results show that this is
only a partial explanation, since at the beginning of its
motion a decoupled particle experinces the same, very
long waiting times as the real one provided it started
in such a patch. The trajectory of a decoupled parti-
cle is simply a different realization of a random walk
with the same starting point associated with the same
list of waiting times, so that only kind of correlations
which are destroyed by our procedure correspond to
what happens if the particle returns to a patch with
a low local diffusivity value. The real particles again
experience long waiting times and therefore are sam-
pled with a higher probability and show a tendency of
accumulation in the domains with low local diffusivity

@ Springer

values. Such an accumulation phenomenon is clearly
seen in Fig. 5 or Ref. [47]. On the other hand, decou-
pled particles do not show such an accumulation: new
long waiting periods occur at different, random posi-
tions. Thus, it is a behaviour after an excursion that
makes the peak persistent.

Figure 3, however, shows that the central peak for a
decoupled motion is still present at times as long as 103.
The reason for its existence may only be connected with
correlations between waiting times along the trajectory,
which are not destroyed by decoupling. Therefore, our
next step will be to include the temporal correlations
into a space—time decoupled CTRW model.

4 Time-correlated continuous-time random
walk

Reference [50] presented a mean-field description of the
DLM. This mean-field description is constructed as an
uncorrelated CTRW model whose waiting time distri-
bution is found by averaging the mean waiting time
distribution at a site (Eq. (11)) over the distribution
of the diffusion coefficients, which is given by the one-
point distribution of the diffusivity landscape (Eq. (5)).
This mean-field waiting time distribution is given by

o = [Tvppmian =2 (1) (2) 7
(12)

for Dy = 1. The corresponding waiting time density
corresponds to a Pareto type II distribution with mean
waiting time (t) = 1/4 and second moment (t?) = 3/8.
The fact that the initial state of the system in the DLM
must be at equilibrium should also be included in its
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mean-field description. This is done by taking the first
waiting time to follow the PDF [59]

(= |1- Otwt')dt'} -3 (2)/(2 " t)_m,

(13)
which is also a Pareto type II distribution with a dif-
ferent exponent.

As we have shown in [50], this mean-field description,
being a pre-averaged model (cf. Eq. (12)) neglecting all
correlations, does not show any peak at the center of
the distribution, except for a decaying remains of the
initial condition at r(0) = 0. The PDF of the particles’
displacements in this model is shown in Fig.5 to be
compared with the results for a decoupled particle and
for a CTRW model reproducing the serial correlations
along the trajectory discussed below.

4.1 Correlation function of the diffusion coefficient
along the trajectories

We would like to know to what extent the PDF for the
decoupled particle can be replicated if temporal corre-
lations are included. To do so, let us first determine
the correlations of the diffusion coeflicients along the
trajectories of the random walk.

Let us start by finding an approximation for the cor-
relation function of the diffusivity landscape D(r) in
terms of that of the correlated Gaussian field G defined
in Eq. (7). The correlation function of the diffusivity
landscape is, by definition,

D D(r
Covlr) = gr) = PPN _ (DODOI =D
o) o3
(14)
with ¢% the variance of the local diffusivity, and
dD(r) = D(r) — D. In our case, D = 5/3 and 0% =
10/9, for Dy =1 in two dimensions.

Let us turn our attention to the mean (D(0)D(r)) in
the last expression of Eq. (14). Just for convenience, let
us denote D(0) and D(r) as D; and Ds, respectively.
By doing so, one can write

(D(0)D(r)) = (D1 Ds)

= / / ledDgp(Dl,DQ;I‘)DlDQ.
0 0

(15)
Now, we make use of the invariance of the probability
measures,

dD1dDspp(D1, Do, 1) = déldaﬂ)(}(éla @2;r),

with

1 G2 + G2 — 2G1,Gap(r)
2(1 = p(r)?)
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being the bivariate distribution of the correlated Gaus-
sian field used in the first stage of construction of the
diffusivity landscape, with p(r) being the correlation
function of this field given by Eq. (7). We note that
the r-dependence in this expression is fully due to the
one of the correlation function p(r), and concentrate
only on this p-dependence, introducing the function
9(G1, Ga; p) = p(G1, Ga; ). Now, we can write Eq. (15)
as

~

i) = [ N / " 4G1dCag(Gr. Gai p) () 1 (),

— 00 o0

(16)
with f (@) being the function that transforms the cor-
related Gaussian field into the diffusivity landscape,
Eq. (8). Note that according to Egs. (16) and (8), the
value of the function (D;Ds) is a function of p only,
and therefore passing to the correlation function of dif-
fusivity landscape, which differs from (D(0)D(r)) by
shift and rescaling, we see that £(r) = £[p(r)], and the
dependence &(p) is not influenced by a particular shape
of the correlation function of the Gaussian landscape.
Thus, the transformation from the Gaussian field to a
Gamma-distributed landscape corresponds to a point-
wise transformation of their correlation functions. This
property will be used several times.

The integration in Eq. (16) can only be performed
numerically. However, one can still find an analytical
approximation to this integral. We begin by Taylor
expanding the function f(G) around zero up to the
fourth order:

f(é) R ap + alé + a2é2 + a3@3 + a4é4 + O(és),

with ag = 1.4505, a; = 0.9704, as = 0.2194, a3 =
0.0130 and a4 = 0.0011 for the values of parameters
used. The coefficients correspond to the numerical eval-
uation of the analytical expressions of the correspond-
ing derivatives of f which is easily done with Mathemat-
ica. This last expression can now be used to compute
the integral in Eq. (16) as a function of p, since the cor-
responding integral reduces to the sum of moments of
a bivariate Gaussian weighted with different prefactors.
Keeping contributions up to the fourth order in p we
find

(D(0)D(r)) ~ b + b1p + bap® + bsp® + bap* + O(p°),

with by = 2.77717, by = 1.01867, by = 0.09043, b3 =
0.00101 and by = 0.00003. The first coefficient (bg) is
equal to EQ; therefore, it vanishes when plugging back
into Eq. (14). Moreover, since the coefficients b3 and by
are small compared to b; and bs, they can be neglected.
Under this approximation, we get Cpp(r) = &[p(r)]
with the function

~ bip+bap?

= - 2 17
£(p) bt b c1p + cap”, (17)

@ Springer
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with ¢; = 0.918465 and co, = 0.081535. This simple
quadratic approximation has the relative accuracy bet-
ter than 0.0005 in the whole domain 0 < p < 1 as
compared to the result of high-precision numerical inte-
gration.

The transformation &(p) is invertible, and gives there-
fore the possibility to construct a Gaussian field whose
probability transformation would produce a Gamma-
field with a desired two-point correlation function. We
will use this possibility in what follows, when consid-
ering the correlated CTRW scheme in Sect. 4.2. The
inverse transformation is given by the solution of the
quadratic equation, giving the inverse function

o(€) = () P LAy

262 202 202

Substituting the expression for p(r), Eq. (7), into
Eq. (17), we get the approximation for the correlation
function of the diffusivity landscape:

r? r?
Cpp(r) = ¢ exp <—2>\2) + o exp (—)\2> . (19)

Now, we can use this approximation to find the correla-
tion function of the diffusivity landscape along the tra-
jectories, or in other words, as a function of the number
of steps Cpp(n). To do so, Eq. (19) has to be averaged
using the PDF f(r|n) of the displacements given the
number of steps n:

Cpp(n) = /dr Cpp(r) f(r|n). (20)

Given that the spatial part of the motion is a two-
dimensional simple random walk, the PDF f(r|n) can

x 102

72 L | L | L | L | N
05 2 i, 6 8 10

Fig. 4 Correlation function Cpp(n) as a function of the
number of steps for the two-dimensional case with A = 10
and Dy = 1. We compare the numerical results obtained in
simulations of particle diffusion in the diffusivity landscapes
(green line), with the approximation Eq. (22) (red line).
The standard errors of the mean (SEM) are represented by
the light green area. Excellent agreement is observed in the
whole range of the steps’ numbers
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be safely approximated by a two-dimensional Gaussian
distribution

d \? dr?
f(xln) = <2ﬁa2n> P <_ 2a2n>

1 r?
T e -
2wo2n *P 202n )’

with d = 2, a = 1 and, respectively, 02 = 1/2. Within
this approximation, Eq. (20) takes the form

(21)

Cpp(n) = (1 + 2i/\2)_1 + cy (1 + %>_1. (22)

Figure 4 shows a comparison between this approximate
expression and the result from simulations of particle
diffusion on the diffusivity landscape. Excellent agree-
ment is observed in the whole range of steps’ numbers.
Note that the correlation function of diffusion coeffi-
cients is extremely long ranged.

4.2 Correlated CTRW

Let us now use the correlation function of the diffusiv-
ity values along the trajectories, Eq. (22), to construct
a time-correlated CTRW scheme. The process of gen-
erating correlated waiting times is similar to the one
used for generating the landscape. Starting from values
of £(n) = Cpp(n) given by Eq. (22), we use Eq. (18)
to obtain the correlation function p(n) of a Gaussian
vector, which then will be transformed to the one of
diffusivity values and finally into waiting times along
the trajectory.

We proceed by generating a one-dimensional uncor-
related Gaussian vector g; by assigning to each entry
of the vector a random number drawn from a Gaus-
sian distribution with zero mean and unit variance.
Then, using the Fourier filtering method [53], we gen-
erate a correlated Gaussian vector g; with correlation
function p(n) with n = |i — j|. Using the probability
transformation, Eq. (8), we transform this correlated
Gaussian vector into a one-dimensional array of diffu-
sion coefficients D; with the desired correlation func-
tion Cpp(n) = &(n). The array of correlated diffu-
sion coeflicients D; is then used to generate waiting
times of our CTRW scheme by drawing random num-
bers t; from an exponential waiting time distribution
Y(t|D;) = 4D; exp(—4D;t). In each realization of the
process, one repeats the procedure until obtaining such
a number n’ of drawn elements that the sum of the first
n’ elements does not exceed t,,4,, but the sum of the
first n’ 4+ 1 does. The number of elements n’ is then the
number of steps performed by a walker until ¢,,4,. The
PDF of displacements for this correlated CTRW can be
estimated by the average

p(r,tmaz) = <f(r‘n/)>7l’a
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100 . . . ; . ;

1072

q(€)

10—4

q(§)

100 . . . ; . ;

(b) t = 103

Fig. 5 A comparison of the one-dimensional cut of the PDF ¢(¢) = p(x,0)t of rescaled displacements & = x/+/t for the
decoupled particle (red) and the correlated CTRW (black) for ¢t = 10% and 10% when the differences between the behaviors
are considerable. The data for the decoupled particles are the same as in Fig. 3, the result for coupled CTRW corresponds
to 8- 10° independent realizations, see text for details. The green dots show the results for an uncorrelated CTRW model

as given by Egs. (12) and (13)

with f(r|n) being the PDF of displacements for a given
number of steps, Eq. (21), weighted with the waiting
time of the first step.

Figure 5 shows the resulting PDF for two different
times tper = 102, and 103, one time per panel. Each
panel presents a comparison between the PDF of the
decoupled particle and that in the correlated CTRW.
The PDFs for decoupled particles are the same as the
ones in Fig. 3 for the corresponding times. For the cor-
related CTRW, each PDF corresponds to the average
over 8 x 108 different realizations of the correlated array
of diffusion coefficients D;, constructed with A = 10. As
one can see, both PDFs are indistinguishable in their
wings, and both present a central peak which, instead
of narrowing, flattens out. However, the shapes of the
peaks in both cases are significantly different. We note
that the uncorrelated CTRW model shows a very differ-
ent behavior in the wing (its convergence to a Gaussian
is much faster) and does not show any peak except for
some remains of initial condition at a shorter time.

It is worth mentioning that to generate the PDF's of
the correlated CTRW, we have used an extremely high
number of realizations, namely 8 x 10%; in our simula-
tions, this number was subdivided into five independent
runs, and the results were both considered separately
and pooled for the plot in Fig.5. The analysis of the
subsets shows that the height of the peak in different
sets of 1.6 x 10° realizations still fluctuates considerably,

1

so that this height is dominated by rare events, while ¥

both in the initial model and in the decoupled variant
thereof the behavior in the peak may be considered as
much more typical.

Since the approximations used to construct the corre-
lated CTRW are quite accurate and the number of real-
izations is high enough to guarantee sufficiently good
statistics, the differences suggest that our correlated
model fails to capture important details of temporal
correlations. Since serial correlations along the trajec-
tories are reproduced correctly, one can conclude that
these are the higher-oder correlations that play a key

2
3

role in the development of the central peak but are of
minor importance in the wings.

5 The checkerboard model

Let us now go a few steps back and consider how
critical our assumption about the shape of the correla-
tion function p(r), Eq. (7), is, i.e., what happens if this
function is chosen differently. To do so, we consider a
DLM with a checkerboard-like diffusivity landscape. On
a lattice, a checkerboard-like diffusivity landscape con-
sists of an array of N x N squares containing 2¢ x 2¢
lattice points. A constant diffusion coefficient D) is
assigned to each square. These diffusion coefficients are
drawn from the distribution given by Eq. (5), the condi-

0 D(z,y)
-6
-5
00
-4
-3
00
- 2
-1
00 -0
0 100 x 200 300

Fig. 6 A two-dimensional realization of the diffusivity
landscape D(r) for the checkerboard model. It corresponds
to a 300 x 300 lattice, where each cell has a size of 2¢ with
¢ = 10, and sampled diffusion coefficient is Dy = 1
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109

Fig. 7 A one-dimensional cut of the PDF ¢(§) = p(z,0)t
of rescaled displacements ¢ = x/+/% for the diffusion of par-
ticles in the checkerboard model. The straight line corre-
sponds to the Laplace distribution, whereas the dotted line
corresponds to the Gaussian distribution. The inset shows a
close-up of the central part of the distribution exposing the
peak

tion needed for the diffusion to be BnG. This choice of
diffusivity landscape strongly changes the shape of the
correlation function. Moreover, the changes in diffusion
coeflicients on the borders of the squares are now dis-
continuous, while the previous diffusivity landscape was
assumed to model a smooth situation. In this model,
defines the correlation length of the landscape; to com-
pare to the results of the above DLM, we set ( = A. Fig-
ure 6 shows one realization of the checkerboard-like dif-
fusivity landscape on a lattice of 300 x 300 with ¢ = 10
and Dy = 1.

As in the case of the DLM, we perform random walk
simulations of particles diffusing on an ensemble of
checkerboard-like landscapes, from which the PDF of
displacements can then be constructed. Figure 7 shows
the time evolution of the PDF averaged over 2 x 10* dif-
ferent realizations of the landscape, each one using 10%
particles. The landscape was constructed with N = 109
and ¢ = 10, i.e., we consider a lattice of size 2180 x 2180.
One can see that the central peak is preserved. More-
over, the transition to the Gaussian limits follows the
same type of convergence by its narrowing. This sug-
gests that the form of the correlation function of the dif-
fusivity landscape does not change the overall behavior.
A closer look, though, reveals the presence of some dis-
continuities near the center of the distribution, which
are expected from the fact that the diffusivity landscape
itself is discontinuous.

6 Conclusions

In this work, we study the diffusivity landscape model
(DLM) characterized by a diffusion coefficient slowly
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varying in space. Under specific conditions, this model
leads to a Brownian, yet non-Gaussian diffusion, that
is, the MSD is linear in time, but the shape of the PDF
changes from a Laplace distribution at short times to
a Gaussian distribution at long ones. The art of con-
vergence to the Gaussian is quite a peculiar one, since
the PDF at all times displays a central peak that does
not decay with time, but narrows under rescaling. We
show that the persistence of the peak is due to strong
spatiotemporal correlations introduced by correlations
of local diffusion coefficients in space. Destroying the
spatiotemporal correlations on the level of single tra-
jectories (by considering a different relaization of steps’
directions while keeping the same list of waiting times
as for the real motion) lets the peak to lower and to dis-
appear at longer times. This kind of behavior is quali-
tatively reproduced by a correlated CTRW model with
serial correlations of waiting times along the trajec-
tory mimicking the ones observed in simulations. The
model, however, fails to quantitatively reproduce the
PDF for the decoupled case, showing a considerably
lower peak. We attribute this fact to an important role
of higher-order correlations which are not reproduced
by the model. By considering a different variant of cor-
related disorder (the checkerboard model), we moreover
show that the existence of the peak is insensitive to the
exact shape of the correlation function of local diffusiv-
ities, and its shape is hardly sensitive to it.
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