Eur. Phys. J. B (2023) 96:147
https://doi.org/10.1140/epjb/s10051-023-00616-w

THE EUROPEAN
PHYSICAL JOURNAL B

®

Check for
updates

Regular Article - Solid State and Materials

Elastic properties and mechanical stability of bilayer
graphene: molecular dynamics simulations

Carlos P. Herrero*@® and Rafael Ramirez

Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas (CSIC),

Campus de Cantoblanco, 28049 Madrid, Spain

Received 15 September 2023 / Accepted 22 October 2023 / Published online 11 November 2023
© The Author(s) 2023

Abstract. Graphene has become in last decades a paradigmatic example of two-dimensional and so-called
van-der-Waals layered materials, showing large anisotropy in their physical properties. Here, we study the
elastic properties and mechanical stability of graphene bilayers in a wide temperature range by molecular
dynamics simulations. We concentrate on in-plane elastic constants and compression modulus, as well
as on the atomic motion in the out-of-plane direction. Special emphasis is placed upon the influence of
anharmonicity of the vibrational modes on the physical properties of bilayer graphene. We consider the
excess area appearing in the presence of ripples in graphene sheets at finite temperatures. The in-plane
compression modulus of bilayer graphene is found to decrease for rising temperature, and results to be
higher than for monolayer graphene. We analyze the mechanical instability of the bilayer caused by an in-
plane compressive stress. This defines a spinodal pressure for the metastability limit of the material, which
depends on the system size. Finite-size effects are described by power laws for the out-of-plane mean-square
fluctuation, compression modulus, and spinodal pressure. Further insight into the significance of our results

for bilayer graphene is gained from a comparison with data for monolayer graphene and graphite.

1 Introduction

Over the last few decades, there has been a surge
of interest in carbon-based materials with sp? orbital
hybridization, such as fullerenes, carbon nanotubes,
and graphene [1-3], continuously enlarging this research
field beyond the long-known graphite. In particular,
bilayer graphene displays peculiar electronic proper-
ties, which have been discovered and thoroughly stud-
ied in recent years [4,5]. It presents unconventional
superconductivity for stacking of the sheets twisted
relative to each other by a precise small angle [6,7].
Such rotated graphene bilayers show magnetic proper-
ties that may be controlled by an applied bias volt-
age [8,9]. Also, localized electrons are present in the
superlattice appearing in a moiré pattern, so that one
may have a correlated insulator [10]. Bilayer graphene
displays ripples and out-of-plane deformations akin to
suspended monolayers [11], thus giving rise to a lack of
planarity which may be important for electron scatter-
ing [12].

A deep comprehension of thermodynamic properties
of two-dimensional (2D) systems has been a challenge
in statistical physics for many years [13,14]. This ques-
tion has been mainly discussed in the field of biologi-
cal membranes and soft condensed matter [15,16], for
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which analyses based on the models with realistic inter-
atomic interactions are hardly accessible. In this con-
text, graphene is a prototype crystalline membrane,
appropriate to study the thermodynamic stability of
2D materials. This problem has been addressed in con-
nection with anharmonic effects, in particular with the
coupling between in-plane and out-of-plane vibrational
modes [17,18]. Bilayer graphene is a well-defined two-
sheet crystalline membrane, where an atomic-level char-
acterization is feasible, thereby permitting one to gain
insight into the physical properties of this type of sys-
tems [17,19-22].

Mechanical properties of graphene, including elas-
tic constants, have been studied using several theoreti-
cal [23-26] and experimental [27-32] techniques. These
methods have been applied to analyze monolayer as well
as multilayer graphene, including the bilayer [25,33—
36]. In this context, a theory of the evolution of phonon
spectra and elastic constants from graphene to graphite
was presented by Michel and Verberck [23]. In partic-
ular, for bilayer graphene on SiC, Gao et al. [32] have
found a transverse stiffness and hardness comparable
to diamond. More generally, mechanical properties of
graphene and its derivatives have been reviewed by Cao
et al. [37], and the various effects of strain in this mate-
rial were reported by Amorim et al. [38].

Several authors have addressed finite-temperature
properties of graphene using various kinds of atom-

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1140/epjb/s10051-023-00616-w&domain=pdf
http://orcid.org/0000-0002-5108-3358
mailto:ch@icmm.csic.es

147 Page 2 of 16

istic simulations [26,39-42]. In particular, this type of
method has been applied to study bilayer graphene
[19,20,22,33,35,43]. Thus, MD simulations were used
to study mechanical properties [43], as well as the influ-
ence of extended defects on the linear elastic constants
of this material [33].

In this paper, we extend earlier work on isolated
graphene sheets to the bilayer, for which new aspects
show up due to the interlayer interactions and the
concomitant coupling between atomic displacements in
the out-of-plane direction. We use molecular dynam-
ics (MD) simulations to study structural and elastic
properties of bilayer graphene at temperatures up to
1200 K. A special emphasis is laid on the behavior of
bilayer graphene under tensile in-plane stress and on
its mechanical stability under compressive stress. MD
simulations allow us to approach the spinodal line in
the phase diagram of bilayer graphene, which defines
its stability limit. We compare the results found for the
bilayer with data corresponding to monolayer graphene
and graphite, which yields information on the evolution
of physical properties from an individual sheet to the
bulk.

The paper is organized as follows. In Sect. 2, we
describe the method employed in the MD simulations.
In Sect. 3, we present the phonon dispersion bands and
the elastic constants at 7" = 0. In Sect. 4, we present the
results for structural properties derived from the simu-
lations: interatomic distances, interlayer spacing, and
out-of-plane atomic displacements. The in-plane and
excess area are discussed in Sect. 5, and in Sect. 6,
we analyze the elastic constants and compressibility
at finite temperatures, along with the stability limit
for compressive stress. Finite-size effects are studied in
Sect. 7. The papers closes with a summary of the main
results in Sect. 8.

2 Method of calculation

In this paper, we employ MD simulations to study
structural and elastic properties of graphene bilayers
as functions of temperature and in-plane stress. The
interatomic interactions in graphene are described with
a long-range carbon bond-order potential, the so-called
LCBOPII [44], used earlier to perform simulations
of carbon-based systems, such as graphite [44], dia-
mond, [44] and liquid carbon [45]. In more recent years,
this interatomic potential has been utilized to study
graphene [19,26,39,46], and in particular mechanical
properties of this 2D material [47,48]. The LCBOPII
potential model was also used to conduct quantum
path-integral MD simulations of graphene monolayers
[49] and bilayers [20], which allowed to assess nuclear
quantum effects in various properties of this material.
Here, as in earlier simulations [46,48,49], the original
LCBOPII parameterization has been slightly modified
to rise the bending constant x of a graphene monolayer
from 0.82 eV to a value of 1.49 eV, close to experimen-
tal results and ab-initio calculations [50]. Values of the
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Fig. 1 Top (upper) and side (lower) views of an atomic
configuration of bilayer graphene obtained from MD simula-
tions at 7" = 800 K. In the top view, red and yellow spheres
represent carbon atoms in the upper and lower graphene
sheets, respectively

parameters employed here for the torsion term of the
potential are given in Appendix A.1.

For the interlayer interaction, we have considered
the same parameterization as that previously used in
simulations of graphene bilayers with this potential
model [19,20], presented in Appendix A.2. For the
minimum-energy configuration of bilayer graphene with
AB stacking, we find an interlayer binding energy of 25
meV /atom (50 meV /atom for graphite) [19].

Our simulations were carried out in the isothermal-
isobaric ensemble, where one fixes the number of carbon
atoms, 2N (i.e., N atoms per sheet), the in-plane stress
tensor, {7;;}, and the temperature, T. We have con-
sidered rectangular supercells with similar side lengths
in the z and y directions in the layer plane, L, ~ L.
These supercells included from N = 48 to 8400 car-
bon atoms per graphene sheet. Periodic boundary con-
ditions were assumed for x and y coordinates, whereas
C atoms were allowed to move freely in the out-of-plane
z coordinate (free boundary conditions).

To keep a given temperature T, chains of four Nosé—
Hoover thermostats were connected to each atomic
degree of freedom [51]. An additional chain includ-
ing four thermostats was connected to the barostat
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which regulates the in-plane area of the simulation cell
(xy plane), keeping the required stress {7;;} [51,52].
Integration of the equations of motion was performed
using the reversible reference system propagator algo-
rithm (RESPA), which permits to consider different
time steps for slow and fast degrees of freedom [53].
For the atomic dynamics derived from the LCBOPII
potential, we took a time step At = 1 fs, which gave
a good accuracy for the temperatures and stresses dis-
cussed here. For fast dynamical variables such as the
thermostats, we used 0t = At/4.

The configuration space has been sampled for 7" in
the range from 50 to 1200 K. Given a temperature,
a typical run consisted of 2 x 10> MD steps for system
equilibration and 8 x 10° steps for calculation of ensem-
ble averages. In Fig. 1, we show top and side views of
an atomic configuration of bilayer graphene obtained
in MD simulations at 7' = 800 K. In the top view, red
and yellow balls stand for carbon atoms in the upper
and lower graphene layers in AB stacking pattern. In
the side view, one can see atomic displacements in the
out-of-plane direction, clearly observable at this tem-
perature.

To characterize the elastic properties of bilayer
graphene we consider uniaxial stress along the z or
y directions, i.e., 7z # 0 or 7,y # 0, as well as 2D
hydrostatic pressure P (biaxial stress) [54], which cor-
responds to Ty = Tyy = — P, 7z, = 0. Note that P > 0
and P < 0 mean compressive and tensile stress, respec-
tively.

For comparison with our results for graphene bilay-
ers, we also performed some MD simulations of graphite
using the same potential LCBOPII. In this case, we
considered cells containing 4N carbon atoms (four
graphene sheets), and periodic boundary conditions
were assumed in the three space directions.

Other interatomic potentials have been used in the
last years to analyze several properties of graphene,
in particular the so-called AIREBO potential [55-59].
Both LCBOPII and AIREBO models give very similar
values for the equilibrium C-C interatomic distance and
for the thermal expansion coeflicient [49,56,59]. For the
Young’s modulus of graphene, we find that the result
obtained by employing the LCBOPII potential is closer
to those yielded by ab initio calculations [56].

3 Phonon dispersion bands and elastic
constants at 7' =0

The elastic stiffness constants, c;;, of bilayer graphene
calculated with the LCBOPII potential model in the
limit 7" — 0 can be used as reference values for the
finite-temperature analysis presented below. These elas-
tic constants are calculated here from the harmonic dis-
persion relation of acoustic phonons. The interatomic
force constants utilized to obtain the dynamical matrix
were obtained by numerical differentiation of the forces
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Fig. 2 Phonon dispersion bands of bilayer graphene,
obtained from diagonalization of the dynamical matrix for
the LCBOPII potential model

using atom displacements of 1.5 x 1073 A with respect
to the equilibrium (minimum-energy) positions.

The phonon dispersion of bilayer graphene, calcu-
lated by diagonalization of the dynamical matrix, is
presented in Fig. 2 along high-symmetry directions of
the 2D Brillouin zone. One finds 12 phonon bands,
corresponding to four C atoms (2 per layer) in the
crystallographic unit cell. Labels indicate the common
names of the phonon bands: eight branches with in-
plane atomic motion (LA, TA, LO, and TO, all of them
twofold degenerate), and four branches with displace-
ments along the out-of-plane direction (ZA, ZO’, and
a twofold degenerate ZO band). The phonon disper-
sion presented in Fig. 2 is analogous to those obtained
for other empirical potentials and DFT calculations
[60-63]. We emphasize the presence of the flexural ZA
band, which is parabolic close to the I' point (w ~ k?),
and typically appears in 2D materials [64-67]. Here k
denotes the wavenumber, i.e., k = |k|, and k = (k;, ky)
is a wavevector in the 2D hexagonal Brillouin zone.

Note also the presence of the optical mode ZO’, which
does not appear in monolayer graphene, and in the
case of the bilayer corresponds to the layer-breathing
Raman-active As, mode, for which a frequency of
89cm~! has been measured [68]. The LCBOPII poten-
tial yields for this band at the T point (k = 0) a fre-
quency of 92cm™!. This value is close to that found
from ab initio calculations for graphene bilayers [60].

The interatomic potential LCBOPII was used before
to calculate the phonon dispersion bands of graphene
and graphite [61]. However, the version of the poten-
tial employed in Ref. [61] was somewhat different from
that considered here, which gives a description of the
graphene bending closer to experimental results [46,50]
(see Appendix A.1).

The sound velocities for the acoustic bands LA and
TA along the direction I'M, with wavevectors (&, 0, 0),
are given by the slope (Ow/0k;)p in the limit k, —
0. The elastic stiffness constants can be obtained from
these velocities using the following expressions, valid for
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the hexagonal symmetry of graphene [69]:

dwra
cuzp(akz )F, (1)
5 2
0122611—2f0< g};m) ) (2)
/1

where p is the surface mass density of graphene. We find
c11 = 20.94 eV A=2 and ¢15 = 4.54 eV A=2. Note that
the dimensions of these elastic constants (force/length)
coincide with those of the in-plane stress. These c¢;; can
be converted into elastic constants C;; (units of force
per square length), typical of three-dimensional (3D)
materials, as C;; = ¢;;/do, using the interlayer dis-
tance dy of the minimum-energy configuration of bilayer
graphene. Taking do = 3.3372 A, we find for the bilayer
C11 = 1005 GPa and C75 = 218 GPa, near the values
found for graphite in the classical low-T limit, using
the LCBOPII potential: 1007 and 216 GPa, respectively
[67].

4 Structural properties

4.1 Interatomic distance

For bilayer graphene, the minimum-energy configura-
tion for the LCBOPII potential corresponds to planar
sheets and the interatomic distance between the near-
est neighbors in a layer amounts to 1.4193 A. This dis-
tance turns out to be a little smaller than that found
for monolayer graphene using the same interatomic
potential (ro = 1.4199 A). This fact was noticed by
Zakharchenko et al. [19] in their results of Monte Carlo
simulations of graphene bilayers.

We have studied the change of the interatomic C—C
distance r (actual distance in 3D space) as a function of
2D hydrostatic pressure, P, at several temperatures. In
Fig. 3, we present the dependence of r on P at T' = 300
and 1000 K. For T' = 300 K, data derived from MD sim-
ulations are shown for three cell sizes: N = 240 (solid
circles), 448 (open squares), and 3840 (open diamonds).
We observe that the size effect on the interatomic dis-
tance is negligible, since differences between the results
for different cell sizes are much smaller than the symbol
size in Fig. 3. The data for T = 1000 K (open trian-
gles) correspond to N = 240. Note that 2D hydrostatic
pressure P > 0 corresponds to compressive stress.

Close to P = 0, this dependence can be fitted for T' =
300 K to an expression r = r,,, + P, where 7, = 1.4230
A is the interatomic distance for the stress-free bilayer
at this temperature and p = —0.0289 A3/eV. For T =
1000 K, we find 7,,, = 1.4314 A and o = —0.0302 A3 /eV.
This slope is slightly larger than that found for 7' = 300
K.

In connection with the interatomic distance r, we
note that for a strictly planar geometry, the area
per atom for an ideal honeycomb pattern is given by
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Fig. 3 Interatomic distance vs 2D hydrostatic pressure
for several cell sizes at T' = 300 and 1000 K. Data points
are derived from MD simulations. For T' = 300 K, the data
correspond to cell sizes: N = 240 (solid circles), 448 (open
squares), and 3840 (open diamonds). Open triangles corre-
spond to N = 240 at 1000 K. Error bars are less than the
symbol size

Sp = 3v/3r2/4. At finite temperatures, however, the
graphene layers are not totally planar and the actual
in-plane area per atom is smaller than that given by
the above expression, using the mean interatomic dis-
tance between the nearest-neighbor C atoms. This is
related with the so-called ezcess area and is discussed
below in Sect. 5.

In each hexagonal ring, two C—C bonds are aligned
parallel to the y direction (vertical in Fig. 1, top image),
and the four other bonds form an angle of 30 degrees
with the 2 axis (horizontal direction). A compressive
uniaxial stress along the y axis (7, < 0) causes a
decrease in the length of the former bonds and an
increase in the latter, and corresponds to a positive
Poisson’s ratio. The opposite happens for 7., < 0.

4.2 Interlayer spacing

For the minimum-energy configuration we find an inter-
layer distance dy = 3.3372 A, to be compared with a
distance of 3.3371 A obtained in Ref. [19] using an ear-
lier version of the LCBOPII potential. At T' = 300 K we
obtain d = 3.374 A, i.e., the interlayer distance increases
somewhat due to bending of the graphene sheets caused
by thermal motion.

The interlayer spacing is reduced in the presence of
a tensile 2D hydrostatic pressure. Thus, for P = —0.5
eV/A? and T = 300 K, we find d = 3.367 A. This
decrease is due to a reduction in the out-of-plane fluc-
tuations under a tensile stress. The effect of this rela-
tively high stress on the distance d is, however, smaller
than the thermal expansion up to 300 K. In the pres-
ence of a compressive stress in the xy plane, one has
an expansion of the interlayer spacing, but this kind of
stress causes an instability of the bilayer configuration
for relatively small values of P, as explained below.
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Fig. 4 MSF of the interlayer distance as a function of the
inverse cell size for T' = 100 K (circles) and 300 K (squares),
as derived from MD simulations of bilayer graphene

The mean-square fluctuation (MSF) of the interlayer
distance, (Ad)? = (d?) — (d)?, associated to thermal
motion at finite temperatures, is related to the interac-
tion between graphene layers. This MSF is expected to
depend on the size of the considered simulation cell,
and becomes negligible in the thermodynamic limit
(N — o). In Fig. 4, we display (Ad)? derived from
our MD simulations as a function of the inverse cell size
for stress-free bilayer graphene at T' = 100 K (circles)
and 300 K (squares). One observes that (Ad)? — 0 for
1/N — 0, and grows linearly for increasing inverse cell
size.

To connect these results with the energetics of bilayer
graphene, we have calculated the interlayer interaction
energy for several values of the spacing d near the dis-
tance dy corresponding to the minimum-energy configu-
ration. The interaction energy per atom can be written
as:

1
Bt = Epy + §k(d —do)?, (3)

where E? . is the energy for distance dg, and k is an
effective interaction constant which is found to amount
to 0.093 eV/A2. Then, for the whole simulation cell
(2N atoms in a bilayer), the energy corresponding to a
distance d close to dg is

Eine = E + EN(d — do)*. (4)
Thus, thermal motion at temperature T, associated to

the degree of freedom d, will cause an MSF of this vari-
able, (Ad)?, given by the mean potential energy:

EN(Ad)? = %kBT7 (5)

where kg is Boltzmann’s constant. This means that for
a given temperature, (Ad)? scales as 1/N, as shown in
Fig. 4.
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As indicated in Sect. 3, the phonon spectra of mono-
layer and bilayer graphene are similar. The main dif-
ference between them is the appearance in the latter
of the ZO’ vibrational band, which is almost flat in a
region of k-space near the I point (see Fig. 2). As noted
above, this vibrational mode of bilayer graphene is the
layer-breathing Raman-active A, mode [68]. The fre-
quency of the ZO’ band at T' (which will be denoted
here wp) can be related to the interlayer coupling con-
stant k as wy = (kN/Mred)l/Q, with ky = 2Nk and
the reduced mass Myeq = Nm/2 (m: atomic mass of
carbon). We find wy = 2(k/m)/2. and putting for the
coupling constant k = 0.093 eV A—2 /atom, one obtains
wo = 92 cm ™!, which coincides with the frequency of the
70O’ band derived from the dynamical matrix at the I’
point. Michel and Verberck [23] have studied the evo-
lution of this frequency wy with the number of sheets n
in graphene multilayers. They found an increase of wy
for rising n, which saturates to a value of 127 cm ™! for
large n (graphite).

The interlayer coupling in bilayer graphene was stud-
ied before by Zakharchenko et al. [19] by means of
Monte Carlo simulations. The low-frequency part of
the ZO’ band was described by these authors using
a parameter 7y, which is related to the parameters
employed here as v = pw?/4, where p is the surface
mass density. From this expression we find v = 0.035
eV A=* which agrees with the low-temperature result
derived from Monte Carlo simulations (Fig. 7 in Ref.
[19)).

Fluctuations in the interlayer spacing of bilayer
graphene at temperature T are related with the isother-
mal compressibility in the out-of-plane direction, Y.
[20]. In fact, x, can be calculated from the MSF (Ad)?
using the expression [20]

L,L
~ kgT (d)

<
>

&
[ V)

(6)

Xz

Using (Ad)? = 1.65 x 10* A% for N = 960 at T =
300 K, we find y, = 2.96 x 1072 GPa~!. This value is
a little larger than experimental results for graphite, of
about 2.7 x 1072 GPa~! [70,71]. This is consistent with
the fact that bilayer graphene is more compressible than
graphite in the z direction, since in the latter each layer
is surrounded by two other graphene layers, whereas in
the former each sheet has a single neighbor.

4.3 Out-of-plane motion

The minimum-energy configuration for the graphene
layers, i.e., the classical low-temperature limit, corre-
sponds to planar sheets. At finite temperatures the
graphene sheets are bent. This bending is directly
related to the atomic motion in the out-of-plane z direc-
tion, whose largest vibrational amplitudes come from
low-frequency ZA modes with long wavelength (small
k). For stress-free graphene, the ZA phonon branch can
be described close to the I' point by a parabolic disper-
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Fig. 5 Atomic MSF in the z direction vs 2D hydrostatic
pressure for several cell sizes at T = 300 K. From left to
right: N = 3840 (triangles down), 960 (triangles up), 448
(diamonds), 308 (squares), and 240 (circles). Positive (neg-
ative) P means compressive (tensile) stress. Dashed lines
are guides to the eye

sion relation of the form w(k) = /k/pk?, with the
bending constant x = 1.49 eV (see Fig. 2).

It is known that the atomic MSF in the xy layer
plane is relatively insensitive to the system size, but the
out-of-plane MSF has important finite size effects. This
dependence on N has been studied earlier for stress-
free monolayer and bilayer graphene by means of Monte
Carlo and molecular dynamics simulations, in particu-
lar using the LCBOPII interatomic potential [49]. For
system size IV, one has an effective cut-off for the wave-
length A given by Apax = L, where L = (NS,)'/2, and
Sy is the in-plane area per atom. Thus, the minimum
wavenumber present for size N is kmin = 27/ Amax, and
the minimum frequency for ZA modes is

472 ( K ) 3
Wmin ~ - )
NS, \p

5o that wpyi, scales as N L.

For a graphene sheet, we call r = (x,y) the 2D posi-
tion on the layer plane and h(r) is the distance to the
mean plane of the sheet. In Fig. 5 we present the MSF
of the atomic positions in the z direction for bilayer
graphene, (Ah)? = (h?) — (h)?, as a function of 2D
hydrostatic pressure P for various cell sizes at T" = 300
K. Symbols represent results derived from our MD sim-
ulations, with cell size decreasing from left to right: N
= 3840, 960, 448, 308, and 240. One observes first that
(Ah)? appreciably increases for rising system size, as
expected from the earlier studies of 2D materials [72].
For the largest size displayed in Fig. 5, N = 3840, we
find at P = 0, (Ah)? = 0.22 + 0.01 A% (not shown in
the figure). The dependence of (Ah)? on N for stress-
free bilayer graphene will be analyzed below in Sect. 7.
Second, we also observe in Fig. 5 that the difference in

(7)
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atomic MSF between different system sizes is reduced
for increasing tensile stress (P < 0). (Ah)? grows as
the tensile stress is reduced (d(Ah)%?/dP > 0), and
eventually diverges at a size-dependent critical pressure
P.(N) > 0. Third, one sees that P.(N) approaches zero
for rising system size.

The dependence of the critical pressure P, on N will
be discussed below in relation to fluctuations of the in-
plane area S, which are also found to diverge in parallel
with (Ah)? for each size N. The origin of this instability
is related to the appearance of imaginary frequencies for
vibrational modes in the ZA flexural band for pressure
P.(N). This will be discussed in Sect. 6 in connection
with the 2D modulus of hydrostatic compression By,
which is found to vanish at P..

5 In-plane and excess area

The in-plane area, S, = L,L,/N, is the variable con-
jugate to the pressure P in the isothermal-isobaric
ensemble considered here. Its temperature dependence,
Sp(T), has been analyzed earlier in detail for mono-
layer and bilayer graphene from atomistic simulations
[19,20,49]. For the bilayer we find in the minimum-
energy configuration (T = 0) an area Sy = 2.6169
A2 /atom, in agreement with earlier calculations [19,20].
Here, we discuss the behavior of S, as a function of 2D
hydrostatic stress, both tensile and compressive.

In Fig. 6, we display the dependence of S, on P for
several cell sizes at T = 300 K. We present data for
N = 308, 448, 960, and 8400. For tensile stress P <
—0.05 eV/A2, S, data for different cell sizes are indis-
tinguishable at the scale of Fig. 6. In fact, we obtain
a nearly linear dependence with a slope dS,/dP =~
—0.12 At /eV. However, the differences appear close to
P = 0, and even more for compressive stress (P > 0).
For each size N, one observes a fast decrease in S,
close to the corresponding stability limit of the planar
phase. We obtain values of the in-plane area below 2.58
A2 /atom, not shown in the figure for clarity. Changes
in S, correspond to linear strain €7, as S, = Sp(1+€)?.
This means that the vertical range in Fig. 6 corresponds
to a strain range between e, = —7.1 x 1072 (compres-
sion) and 4.4 x 1073 (tension).

In our MD simulations, carbon atoms are free to
move in the out-of-plane direction (z coordinate), and
the real surface of a graphene sheet is not strictly pla-
nar, having an actual area larger than the area of the
simulation cell in the zy plane. Differences between the
in-plane area S, and real area S, were considered ear-
lier in the context of biological membranes [15,73,74]
and in recent years for graphene, as a paradigmatic
crystalline membrane [31,48]. An explicit differentia-
tion between both areas is relevant to understand cer-
tain properties of 2D materials [13]. Some experimental
techniques can be sensitive to properties connected to
the area S,., whereas other methods may be suitable to
analyze variables related to the area S, [31,75].
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Here, we calculate the real area S, of both sheets in
bilayer graphene by a triangulation method based on
the atomic positions along the simulation runs [20,48].
In the sequel, S, will denote the real area per atom.
The difference S, — S, has been called in the litera-
ture hidden area [31] or excess area [76,77]. We consider

the dimensionless excess area ® for a graphene sheet,
defined as [76,77]

P =2 8)

In the classical low-temperature limit, ® vanishes, as
the sheets become strictly planar for T — 0. We note
that this is not the case in a quantum calculation, where
one has ® > 0 for T — 0 due to atomic zero-point
motion [78].

The excess area is related to the amplitude of vibra-
tional modes in the z direction. This allows one to find
analytical expressions for ® in terms of the frequency
of those modes. The instantaneous real area S} may be
expressed in a continuum approximation as [48,73,74]

1 L, Ly
ng/ dedy /11 [Vh(@DE,  (9)
N 0 0

where h(r) represents the distance to the mean xy plane
of the sheet, as in Sect. 4.3. Expanding h(r) as a Fourier
series with wavevectors k = (kz, k) in the 2D hexago-
nal Brillouin zone, the real area S, = (S}) may written
as [13,15,48]

S, =S5,

1+§;mwwﬂ, (10)

where H (k) are the Fourier components of h(r) (see
Appendix B). Taking into account that the MSF of a

Page 7 of 16 147

p—_—
okl IN=960 ]
i s 1
—_ ——0’//
o T =1000 K §
s [ o
MO 6 ’—’D’/D’ i
f-e 600 K 1
4_ -
i .
o ——o————O == =TT 1
T 300 K i
T
07 03 02 01 :
P (eV A"z)

Fig. 7 [Excess area per atom vs 2D hydrostatic pressure
P for cell size N = 960 at T = 300 K (circles), 600 K
(squares), and 1000 K (diamonds). Open symbols are data
points derived from MD simulations of bilayer graphene.
Dashed lines are guides to the eye

mode with frequency w;(k) is given by kT /mw;(k)?,
m being the atomic mass of carbon, one finds for the
excess area

kgT k?
= BL N 11
2mN £~ w;(k)?’ (11)
Jik

where the sum in j is extended to phonon branches with
atomic motion in the z direction, i.e., ZA, ZO, and ZO’.
For small k, the contribution of ZO and ZO’ modes
to the sum in Eq. (11) vanishes for & — 0, as in both
cases w;(k) converges to positive values. For the flex-
ural ZA band with negligible effective stress, we have
wza (k) o< k?, and k? /wza (k)? o< k72, so that the con-
tribution of ZA modes with small k£ is dominant in
the sum in Eq. (11). The minimum wavenumber ki,
available for cell size N scales as ky, ~ N—1/2 (see
Sect. 4.3). Thus, its contribution to ® grows linearly
with N, and diverges for stress-free graphene in the
thermodynamic limit. This divergence disappears in the
presence of a tensile in-plane stress (even small), be it
caused by internal tension or by an external pressure.
In Fig. 7, we display ® for bilayer graphene as a func-
tion of 2D hydrostatic pressure P. Symbols represent
data derived from our MD simulations at three tem-
peratures: T = 300 K (circles), 600 K (squares), and
1000 K (diamonds). Dashed lines are guides to the eye.
These data were obtained for system size N = 960.
The excess area ® increases as T is increased, in agree-
ment with the growing amplitude of the out-of-plane
vibrational modes (see Eq. 11). In fact, a classical har-
monic approximation (HA) for the vibrational modes
predicts a linear increase of ® with temperature. From
the results shown in Fig. 7 for P = 0, we find the ratios
®(1000 K)/®(300 K) = 3.14 and ®(600 K)/P(300 K)
= 1.93, a little less than the corresponding tempera-
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ture ratios (3.33 and 2.0). For a pressure P = —0.5
eV/A?, we find for those ratios at the same tempera-
tures values of 3.28 and 1.99, respectively, closer to the
harmonic expectancy. An in-plane tensile stress causes
a decrease in the vibrational amplitudes in the z direc-
tion, and then the modes are better described by a har-
monic approach.

6 Elastic constants and compressibility at
finite temperatures

6.1 Temperature dependence

Using MD simulations one can gain insight into the
elastic properties of materials under different kinds of
applied stresses, e.g., hydrostatic or uniaxial. In par-
ticular, we consider elastic stiffness constants, c;;, and
compliance constants, s;;, for 2D crystalline materials
with hexagonal structure such as graphene. We call 7;;
and e;; the components of the stress and strain tensors,
respectively. 7;; is the force per unit length parallel to
direction 7, acting in the xy plane on a line perpendic-
ular to the j direction. We use the standard notation
for strain components, with e;; = ¢;; for i = j, and
ei; = 2¢; for i # j [79,80]. More details on elastic
properties of 2D crystals can be found in Ref. [54].

In terms of the compliance constants, we have for
applied stress {7;;}:

Exx S11 S12 0 Trx
Eyy = | S12 S11 0 Tyy | - (12)
Cay 0 0 2(811 - 812) Try

The matrix of stiffness constants {c;;} is the inverse of
{sij}, so that we have the relations

511
o st — 5T (13)
512
C12 = . (14)
5%2 - 5%1

In Fig. 8 we present the stiffness constants as a func-
tion of temperature, as derived from our MD simula-
tions of bilayer graphene, using Eq. (12) (open circles).
Panels (a) and (b) show results for ¢;; and c;2, respec-
tively. Solid squares at T' = 0, signaled by arrows, indi-
cate results for ¢y; and cq2 obtained from the phonon
dispersion bands as indicated in Sect. 3, using Egs. (1)
and (2). We find that finite-temperature data for the
stiffness constants converge at low T to the results
of the HA for both ¢;; and c¢y2. For rising tempera-
ture, the stiffness constants decrease rather fast. This
decrease is especially large for ¢12, which is found to be
1.18 eV/A? at T = 1200 K vs the classical low-T" limit
of 4.54 eV /A2,

Comparing the elastic constants ¢;; and c¢12 found
here for bilayer graphene with those corresponding to
monolayer graphene [81] and graphite [67] (normalized

@ Springer

Eur. Phys. J. B (2023) 96:147

2171
r -
~ 0Pkg (@
;< L \§\ 4
S 181 2Ny .
) L ~3. _
SN \\\
= 16 5\\ 1
o L ~~2_ _
14 — = ~
! | L | L | L | 1 | ! |
0 200 400 600 800 1000 1200
S——T—T—T—T—T—— 1T

v -— i
) L N i
o< 3k & _
> 3f 5 _
L oL S8 _
~ L = - i
o 1k i —%-__3 |
0 [ L | L | L | L | L | 1 | ]

0 200 400 600 800 1000 1200

Temperature (K)

Fig. 8 Temperature dependence of the elastic stiffness
constants of bilayer graphene, as derived from MD simu-
lations for N = 960 (open circles): a ci1, b ci2. Dashed
lines are guides to the eye. Solid squares at T' = 0, indicated
by arrows, show the values of ¢11 and c12 derived from the
HA using Egs. (1) and (2)

to one layer), we find that they increase for the sequence
monolayer—bilayer—graphite. This agrees with the fact
that interaction between layers reduces the amplitude
of out-of-plane vibrational modes, thus favoring an
increase in the “hardness” of the layers. This trend is
similar to that discussed below for the 2D compression
modulus B,,.

The Poisson’s ratio v can be obtained as the quotient
c12/c11. This yields for T'= 0 (HA) v = 0.22. From the
results of our simulations, we find v = 0.15 and 0.09 for
T = 300 and 1000 K, respectively, with an important
reduction for rising 7', as a consequence of the decrease
in ¢1o. Calculations based on the self-consistent screen-
ing approximation [82-84] (SCSA) predict for P = 0
in the thermodynamic limit (N — oo0) a Poisson’s
ratio v = —1/3. A negative value for this ratio is also
expected from the calculations presented by Burmistrov
et al. [85] for N — oo. From the results of our MD
simulations, we do not find, however, any indication
for a negative Poisson’s ratio in the parameter region
considered here. This is in line with earlier results of
Monte Carlo simulations by Los et al. [26] for mono-
layer graphene in a region of system sizes larger than
those considered here for bilayer graphene.

The 2D modulus of hydrostatic compression B, is
defined for layered materials at temperature T' as [54]

_Sp (0P
n \0Sp T'

Note the factor n (number of sheets) in the denomina-
tor, i.e., By is the compression modulus per layer. P

By, = (15)
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and S, appearing on the r.h.s. of Eq. (15) are variables
associated to the layer plane, and in fact, the pressure in
the isothermal-isobaric ensemble used here is the con-
jugate variable to the area .S,.

One can also calculate the modulus B), based on the
fluctuation formula [48,86,87]

 kpTS,
P AN(AS,)T 16

where (AS,)? is the mean-square fluctuation of the
area Sp, which is calculated here from MD simulations
at P = 0. This formula provides us with a practical
procedure to obtain B, vs calculating the derivative
(0S,/0P)r by numerical methods, which requires addi-
tional MD simulations at hydrostatic pressures close
to P = 0. For some temperatures we have verified
that results for B, found with both procedures coin-
cide within statistical error bars, which is a consistency
check for our results.

The modulus B, can be also obtained from the elas-
tic constants of bilayer graphene. Taking into account
Eq. (12), the change of the in-plane area, AS, due to a
2D hydrostatic pressure P, is given by

AS
5 L= erp +eyy = —2(s11 + s12) P. (17)
P
Combining Egs. (15) and (17), one finds
1
B,=——— (18)

2(s11 + s12)”

which can be also written as B, = (c11 + ¢12)/2. These
expressions are valid for 2D materials with hexagonal
symietry.

In Fig. 9, we present the modulus B, of bilayer
graphene as a function of T, as derived from our
MD simulations. Solid circles represent results obtained
from the in-plane area fluctuation (AS,)? by employ-
ing Eq. (16). Open squares are data points calculated
from the elastic constants. Both sets of results coincide
within error bars. At low temperature, B, converges to
the value given by the expression

S, 0°E

B i
T 0 9s2

(19)

where F is the energy. For bilayer graphene we have By
= 12.74 eV/A?, which agrees with the extrapolation
of finite-T" results to 7' = 0. The modulus B, derived
from MD simulations is found to decrease fast as the
temperature is raised, and at T" = 1200 K it amounts
to about 60% of the low-T limit Bjy.

For monolayer graphene, the same interatomic poten-
tial yields in an HA: By = 12.65 eV/A?, somewhat
less than the value found for the bilayer. This differ-
ence is larger at finite temperatures. Even though inter-
layer interactions are relatively weak, they give rise
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to a reduction in the vibrational amplitudes of out-
of-plane modes, and as a result the graphene sheets
become “harder” in the bilayer, so that the modulus
B, increases with respect to an isolated sheet. More-
over, the difference between the modulus B, per sheet
for bilayer and monolayer graphene grows for rising sys-
tem size N (see Sect. 7).

The in-plane Young’s modulus F, can be obtained
from B, through the expression E, = 2B,(1 —v). This
yields for the bilayer at T = 0, E, = 19.87 eV/A2,
which translated into units of force per square length
gives E,/d = 0.954 TPa, similar to values appearing in
the literature [37,56].
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6.2 Mechanical instability under stress

The modulus B, is particularly interesting to study the
critical behavior of bilayer graphene under 2D hydro-
static pressure. In Fig. 10 we present the dependence
of B, on P, including tensile and compressive stresses.
Symbols represent values derived from MD simulations
for various cell sizes. From left to right: N = 8400, 960,
448, 308, and 240. For each size N, increasing in-plane
compression causes a fast decrease in B,, which van-
ishes for a pressure P.(N), where the bilayer graphene
with planar sheets becomes mechanically unstable. This
is typical of a spinodal point in the (P,T) phase dia-
gram [18,88-90]. For P > P., the stable configuration
corresponds to wrinkled graphene sheets, as observed
earlier for monolayer graphene [48].

For given N and T, there is a pressure region (com-
pressive stress) where bilayer graphene is metastable,
i.e., for P < P,.. The spinodal line, which delineates the
metastable phase from the unstable phase, is the locus
of points P.(N,T') where B, = 0. This kind of spinodal
lines has been studied earlier for water [91], as well as
for ice, SiO2 cristobalite [88], and noble-gas solids [89]
near their stability limits. In recent years, this question
has been investigated for 2D materials, and in particu-
lar for monolayer graphene [18,92].

According to Eq. (16), vanishing of B, for finite
N corresponds to a divergence of the area fluctuation
(AS,)? to infinity. Moreover, the MSF of the atomic 2
coordinate, (Ah)?, diverges at the corresponding spin-
odal pressure, as mentioned in Sect. 4.3. For graphene
bilayers, this spinodal instability is associated to a soft
vibrational mode in the ZA branch. In fact, for each
N this instability appears for increasing P when the
frequency of the ZA vibrational mode with minimum
wavenumber, ki, reaches zero (wmin — 0).

Close to a spinodal point, the modulus B, behaves as
a function of P as B, ~ (P.— P)/? (see Appendix C).
This pressure dependence agrees with the shape of the
curves shown in Fig. 10 near the spinodal pressure P,
for each size N. Note that P. moves to smaller compres-
sive pressures as N increases. This size effect is analyzed
below in Sect. 7. We also note that, for a given size N,
the critical stress P, depends on temperature, as shown
before for monolayer graphene [93]. It was found that
P, increases for rising temperature, as a consequence
of a raise in vibrational amplitudes in the out-of-plane
direction. We have checked that something similar hap-
pens for bilayer graphene, but a detailed study of this
question requires additional MD simulations, which will
be the subject of future work.

7 Size effects

As noted above, some properties of 2D materials display
important size effects. In this section, we concentrate
on the size dependence of the MSF (Ah)?, the modulus
By, and the spinodal pressure P, for bilayer graphene,
and study their asymptotic behavior for large N.
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In Fig. 11, we present in a logarithmic plot the
atomic MSF (Ah)? in the z direction as a function
of system size at T = 300 K. Results derived from
MD simulations for stress-free bilayer graphene are
shown as open squares. For comparison we also dis-
play data for monolayer graphene (circles) and graphite
(diamonds), obtained from MD simulations with the
LCBOPII interatomic potential. For the system sizes
presented in Fig. 11, (Ah)? may be expressed in the
three cases as a power of N: (Ah)? ~ N®. We find for
the exponent « values of 0.78, 0.69, and 0.56 for mono-
layer, bilayer graphene, and graphite, respectively.

The MSF in the z direction can be written in an HA
as

kT
(Ah (20)
NpS Z wj

where the sum in j is extended to the phonon bands
with atomic motion in the out-of-plane direction, i.e.,
ZA, 70O, and ZO’ for bilayer graphene (as above in
Eq. 11). The sum in Eq. (20) is dominated by ZA modes
with wavevector close to the I' point, i.e., small fre-
quency w. The inputs of bands ZO and ZO’ are almost
independent of the system size, and they give a joint
contribution of ~ 8 x 1072 A2 to (Ah)? in Eq. (20).

For the ZA band, putting a dispersion pw? = rk*,
one finds [72]

C kpTS,N

Ah)2s =

(21)
where C' = 6.03 is a constant. Thus, in an HA the ZA
band yields a contribution proportional to N and an
exponent o = 1. The result of the HA including the
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inputs of the three phonon bands ZA, ZO, and ZO’ is
shown in Fig. 11 as a dotted line. For large N, (Ah)? is
dominated by atomic displacements associated to ZA
modes and we find that it increases linearly with N.
For small N, one observes a departure from the linear
trend due to the contributions of ZO and ZO’ modes.

The size dependence of (Ah)? obtained from MD sim-
ulations for stress-free bilayer graphene can be under-
stood assuming an effective dependence for the fre-
quency of ZA modes as pw? = £ k°, where & is a mod-
ified bending constant and 3 is an exponent control-
ling the frequency of long-wavelength (small frequency)
modes. This expression assumes an effective shape for
the ZA band at finite temperatures, as a consequence
of anharmonicity in the vibrational modes, and is sim-
ilar to that considered earlier for monolayer graphene
[26,72,94]. Assuming such a dispersion for ZA modes
in the bilayer, we have for large N:

kpT 1
Ah)2 e ~ —2 —
( h)eﬁ Rnrsp - k[j ) (22)

where the sum is extended to k points in the 2D Bril-
louin zone.

Taking into account the relation between the mini-
mum wavenumber ki, and the size N, and replacing
the sum in Eq. (22) by an integral, one finds a size
dependence

(M) = ko T (5,N) 5, (23)

where D is an integration constant. This means that our
exponent « can be related to 8 as a = (3/2 — 1, which
yields for bilayer graphene [ = 3.38. Similar effective
exponents can be derived from MD simulation results
for monolayer graphene and graphite, for which we find
[ = 3.56 and 3.12, respectively.

The 2D modulus of hydrostatic compression B, intro-
duced in Sect. 6 also displays finite-size effects. In
Fig. 12 we show in a logarithmic plot the dependence
of B, on N at T" = 300 K. Open squares represent
results obtained for bilayer graphene from MD simula-
tions. For comparison, we also display data for mono-
layer graphene (circles), as well as for graphite (dia-
monds). For N > 500, B,, can be fitted for the bilayer to
an expression B, ~ N—¢, with an exponent ¢ = 0.086.
From similar fits for monolayer graphene and graphite,
we find the exponents 0.159 and 0.033, respectively.
Note that the exponent ( for the bilayer is about one
half of that corresponding to the monolayer. This indi-
cates that the size effect is less important for the former
than for the latter, as visualized in Fig. 12.

Looking at Eq. (16), and taking into account that S,
changes slowly with N, we have for the area fluctuation
a size dependence: (AS,)? ~ N¢~1. This means that
(AS,)%/(AS,)3, ~ N7%073 where the subscripts B
and M refer to bilayer and monolayer, respectively. For
small N, the area fluctuation is similar for bilayer and
monolayer graphene, but they become comparatively
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smaller for the bilayer as the size increases. Our expo-
nent for the monolayer can be translated to a depen-
dence on the cell side length B, ~ L~%¢, with 2¢ =
0.318, close to the exponent 0.323 found by Los et al.
[26] for the dependence of B, on L.

The size dependence of the critical pressure P, intro-
duced in Sect. 6 is shown in Fig. 13, where we have
plotted values of P, derived from MD simulations at
T = 300 K for several cell sizes. One observes at first
sight a linear dependence of P, with the inverse cell size,
N~!. This dependence may be understood by consider-
ing the effect of a compressive stress on ZA vibrational
modes, as follows.

For a single graphene layer under a 2D hydrostatic
pressure P, the dispersion relation of ZA modes may
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be written as

pw? = ok* + kk?, (24)
where 0 = —P [18,81]. For increasing compressive
stress, w is reduced, i.e., dw/dP < 0. Thus, for sys-
tem size N, a graphene layer becomes unstable when
the frequency of the ZA mode with wavenumber ki,
vanishes. This occurs for

g krznin + K kﬁlin = 07 (25)
which yields a critical stress
oo = —kk2;,. (26)

As indicated above, the minimum wavenumber k present
for cell size N is kmin = 27/(NS,)'/2. For bilayer
graphene, the in-plane critical pressure is given by

P. = —20,, from where we have
2

pN=3Th (27)
Sp

Putting x = 1.49 eV and S, = 2.617 A?/atom, we
find P. N = 44.95 ¢V/A?, which is the line displayed
in Fig. 13. This line matches well the results of our
MD simulations (solid circles), with the exception of the
result for the largest size presented in the figure. This
deviation from the general trend of smaller sizes may be
due to three reasons. First, the presence in the graphene
layers of a residual (small) intrinsic stress at 7' = 300 K,
which is not detected for small N, due to the larger
values of the corresponding pressure P, [46,93]. Sec-
ond, the graphene bilayer can remain in a metastable
state along millions of MD simulation steps for large
cell size. This means that observation of the true tran-
sition (spinodal) point could require much longer sim-
ulations, not available at present for such large system
sizes. Third, the dispersion relation for the ZA band in
Eq. (24), utilized to obtain Eq. (27), may be modified
for small k (long wavelength), so that the exponent 4
on the r.h.s. could be renormalized in a similar way to
the exponent 3 found for the size dependence of (Ah)2.

Calculations based on the SCSA predict a univer-
sal behavior for scaling exponents in the thermody-
namic limit (N — o) [82-84]. This means that the
exponents presented above should coincide for 2D sys-
tems (including monolayers and bilayers) in the large-
size limit. According to such calculations, universality
is approached for system size larger than a crossover
scale given by the so-called Ginzburg length, Lg. This
temperature-dependent length can be estimated for
graphene (using the bending constant x and Young’s
modulus F,) to be around 40 — 50 A at T = 300 K
[95,96]. This corresponds in our notation to a system
size Ng ~ 900. For bilayer graphene, we have consid-
ered here simulation cells with length sides up to 150 A,
well above those values of L. One can, however, under-
stand Lg as a reference length for the crossover to a
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regime where universality is approached, and a direct
detection of this universality could be only found for
lengths clearly larger than L. In any case, from the
results of our simulations for bilayer (with L up to
150 A) and monolayer graphene presented here, we do
not find any evidence or trend indicating that such a
kind of universality will appear for results derived from
simulations using larger cells. Thus, if such kind of uni-
versality is in fact a physical aspect of 2D crystalline
membranes, as predicted by the SCSA, it has not yet
been observed from atomistic simulations with interac-
tion potentials mimicking those of actual materials, as
graphene.

8 Summary

MD simulations allow us to gain insight into elastic
properties of 2D materials, as well as on their sta-
bility under external stress. We have presented here
the results of extensive simulations of bilayer graphene
using a well-checked interatomic potential, for a wide
range of temperatures, in-plane stresses, and system
sizes. We have concentrated on physical properties such
as the excess area, interlayer spacing, interatomic dis-
tance, elastic constants, in-plane compression modulus,
and atomic MSF in the out-of-plane direction.

The elastic constants are found to appreciably change
as a function of temperature, especially ¢15. This causes
a reduction of the Poisson’s ratio for rising 7. The in-
plane compression modulus B, has been obtained from
the fluctuations of the in-plane area, a procedure which
yields results consistent with those derived from the
elastic constants of the bilayer.

For bilayer graphene under in-plane stress, we find a
divergence of the MSF (Ah)? for an in-plane pressure
P.(N), which corresponds to the limit of mechanical
stability of the material. This divergence is accompa-
nied by a vanishing of the in-plane compression modu-
lus, or a divergence of the compressibility £, = 1/B,,.

Finite-size effects are found to be important for sev-
eral properties of bilayer graphene. The spinodal pres-
sure P, is found to scale with system size as 1/N. A sim-
ilar scaling with the inverse size is obtained for the MSF
of the interlayer spacing: (Ad)?> ~ N~!. The atomic
out-of-plane MSF also follows a power law (Ah)? ~ N
with an exponent a = 0.69. For B,,, we find for N > 500
at T'= 300 K a dependence B, ~ N—¢, with an expo-
nent ¢ = 0.086.

Comparing the simulation results with those obtained
from an HA gives insight into finite-temperature anhar-
monic effects. Thus, for the atomic MSF in the out-of-
plane direction, an HA predicts a linear dependence of
(Ah)? with system size N, to be compared with the
sublinear dependence obtained from the simulations.

The change with system size N of (Ah)? and the
modulus B, for bilayer graphene is slower (i.e., less
slope in Figs. 11 and 12) than for the monolayer. This
is indeed due to interlayer interactions, which mani-
fests themselves in the presence of the layer-breathing
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70O’ phonon branch. According to calculations based on
the SCSA, the size dependence of physical observables
such as (Ah)? or the in-plane modulus B, should be
controlled, for large NN, by universal exponents inde-
pendent of the particular details of the considered 2D
system (monolayer or bilayer graphene in our case). We
have not observed this universality from our MD sim-
ulations for cell size up to 150 A, and a clarification of
this question remains a challenge for future research.
We finally note that MD simulations as those pre-
sented here can give information on the properties
of graphene multilayers under stress. This may yield
insight into the relative stability of such multilayers
in a pressure-temperature phase diagram. Moreover,
nuclear quantum effects can affect the mechanical prop-
erties of graphene bilayers and multilayers at low tem-
peratures, as shown earlier for graphite. This question
can be addressed using atomistic simulations with tech-
niques such as path-integral molecular dynamics.
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Appendix A: Updates of the LCBOPII model

1. Torsion term

The torsion term ¢;; in the original LCBOPII model [44] was
modified to improve the value of the bending rigidity, x, in
graphene. Equation (36) in the original paper was changed
in the following way:

ti5(9,2) = (1= 2°) (1 4+ 2(1 + 2)x(§))70(§) + 2°71(),
(A1)

where the variables g, Z are defined as in Ref. [44]. The new
functions are

70(9) = An + Awf®(3 - 25°), (A.2)
. Bu+ Bi2§® + Biag®

T(9) = 1+ Buai? , (A.3)

X(@) = Cin + Ciaif”. (A.4)

Values of the constants are Ay; = —0.049, Ay = —0.022,
By = —0.295, Biys = —3.361, Bz = 1.150, Bia = 19.616,
Cy = 3.35, Cia = —2.6. Units of energy and length are eV
and A, respectively, as in the original paper.

2. Long-range interaction

The longe-range term V" (r) of the original LCBOPII model
[44] has been modified to improve the value of the interac-
tion energy between both graphene layers in the bilayer. The
long-range interaction V”(r) between two carbon atoms,
given in Eq. (42) of the original paper [44], is changed by a
new one, but only when the two carbon atoms at a distance r
are located at different graphene layers. The modified long-
range interaction has the following form:

Vri;rod(T)
—2a(r—rg)
— (cle—a(r—ro) _ % + 036 g ) Sﬁroufn(r)7
ifr <5.1A4,
(A.5)
Vgod(r) = [(d1 + dor)(r — 6)2] Sldrow"(r),if 51A
<r<6A,
(A.6)
Vi (r) =0, ifr > 6 A. (A.7)

The function Sg°*"(r) smoothly cuts off the long-range
interactions at 6 A and it is defined in Table 1 of Ref. [44].
Values of the constants are ro = 3.7157, ¢1 = 3.0748 X
1073, co = 353.1877, c3 = 334.9434, a = 54767 x 10 %d; =

@ Springer
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—4.2249 x 1073, and do = 6.1914 x 10~*. Units of energy
and length are eV and A, respectively, as in the original
paper.

Appendix B: Excess area

A relation between the in-plane and real areas can be
obtained from a continuum description of a graphene sheet,
which considers the vibrational modes in the z direction.
The instantaneous real area per atom, S;, can be expressed
in the continuum limit as [48,73,74]

1 [Le [Ly
Sy = —/ / dzdy+/1+|Vh(r)?,
NJo Jo

where r = (z,y) is the 2D position and h(r) indicates the
height of the surface, i.e., the distance to the mean zy plane

(B1)

of the sheet. For small |VA(r)|, i.e., (0h/0x)* + (Oh/Oy)?

1 (which is verified here), one has
simt [ dway [14 Lvae? B2
ey [ sy [ givnoE] @2)

The out-of-plane displacement h(r) can be written as a
Fourier series

h(r) = \/LN 3 e H(K) (B3)
k

with wavevectors k = (kz, ky) in the 2D hexagonal Brillouin
zone, i.e., ky = 27ny /L, and ky = 2mn, /L, with integers
ng and ny [46]. The Fourier components are given by

VN
LaoLy Jo 0

Y .
H(k) = drdye ™h(r).  (B4)
The thermal average of the atomic MSF in the z-direction
is given from the Fourier components by

1 2
= N%:(\H(k) (B5)
From Eq. (B3), we have
Vh(r) = Vi ;kel TH(k), (B6)
and
(IVA()[) = & Z E*(|H (k (B7)

because (H(ki)H (k2)*) = 0 for k; # ko.
Then, using Egs. (B2) and (B7), the mean real area per
atom can be written as

S, =(S;) = <1+Zk (|H (k ) (B8)

with S, = L, L, /N. For uncoupled vibrational modes in the
out-of-plane z direction (i.e., in an HA), (|H(k)|?) may be
expressed as a sum of MSF's:

(HW)) = > (& ®)1%)

J

(B9)
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with (|&(k)|?) = kT /mw;(k)?, so that we have for the

excess area:

oo S =S _ kT 'S

Sp 2mN Tk w]'(k)Q ’ (B].O)

The sum in j in Egs. (B9) and (B10) runs over the phonon
bands with atom displacements in the z direction (ZA, ZO’,
and the twofold degenerate ZO branch). We note that the in-
plane area fluctuates in our simulations, but its fluctuations
are not considered in the harmonic calculation presented
here.

Appendix C: Spinodal pressure

Close to a spinodal point, the free energy at temperature T’
can be written as [92,97,98]

F=F.+a1(Sp—5S5)+as(Sp — S5)° + (C1)
where F.. and S are the free energy and in-plane area at the
spinodal point. At this point one has 82F/8S§ =0, so that
a quadratic term does not appear on the r.h.s of Eq. (C1),
i.e., az = 0. The coefficients a; are in general dependent of

the temperature.
The pressure is
OF

P=—-——=

asp —a1—3a3(Sp—Sf,)2+---,

(C2)
and P. = —a1 is the spinodal pressure, as it corresponds to
the area S,. The 2D modulus of hydrostatic compression is
given by

S, O*°F _ S5, OP
— 2P = 3
P n 082 n 98, (C3)
where n is the number of sheets in the 2D material. Then,
to leading order in an expansion in powers of S, — S, we
have
6@3 c
BP =—35; (SP - Sp)v (04)
or, considering Eq. (02),
_ 2 c 1/2
B, = E\/:sag Sy (P.— P)'/~. (C5)
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