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Abstract. Neuron models exist in different levels of complexity and biological modeling depth. The
Hindmarsh–Rose model offers a rich repertoire of neuronal dynamics while being moderately mathemati-
cally complex. Existing circuit realizations of this neuron model, however, require a large amount of opera-
tional amplifiers due to the model’s quadratic and cubic nonlinearity. In contrast to hardware realizations
of simpler neuron models, this leads to a higher power consumption. In this work, the Hindmarsh–Rose
model is approximated by an ideal electrical circuit that relies mostly on passive circuit elements and
thus reduces the power consumption. For this purpose, we analyze the power flows of an equivalent elec-
trical circuit of the Hindmarsh–Rose model and replace several nonlinear circuit elements by constant
ones. Moreover, we approximate the cubic nonlinearity by three memristors in combination with a neg-
ative impedance converter. This negative impedance converter represents the only active circuit element
required for the complete circuit, leading to an increased energy efficiency compared to the existing circuit
realizations. Simulations verify the circuit’s ability to generate spiking and bursting dynamics comparable
to the original Hindmarsh–Rose model.

1 Introduction

In recent years, the notion of energy efficiency has per-
meated everyday life as well as science. For cognitive
tasks, for instance, such an energy-efficient aspect can
be realized via hardware implementations of neuronal
networks. Then, a key ingredient is the neuronal model
that inspires the hardware realization. Mathematical
neuroscience has proposed a large number of differ-
ent model classes that vary in terms of their level of
complexity and implementation effort. To summarize
only the most prominent ones, the Hodgkin–Huxley
[1,2] and the Morris–Lecar models [3–6] are strongly
linked to biology in a close correspondence of dynam-
ical variables and model parameters to physiological
quantities. Furthermore, a simple, but well-established
model is the integrate-and-fire model, which is still bio-
logically inspired, but mathematically simplified. Sev-
eral variations have been proposed, even recently [7–10].
Inbetween these two levels of mathematical approxima-
tion are the more abstract models such as the Izhike-
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vich [11–13] and the Hindmarsh–Rose model [14–16].
In this work, we consider the Hindmarsh–Rose model
because of its mathematical complexity that is signifi-
cantly lower than the Hodgkin–Huxley model, but still
exhibits a large amount of different neuronal dynamics,
including bursting or spiking. Moreover, in contrast to,
e.g., the Izhikevich model, which comes with a discon-
tinuous reset, the Hindmarsh–Rose model is stated in
terms of continuous differential equations, favoring a
circuit implementation.

Existing circuit realizations of the Hindmarsh–Rose
model are usually either based on field programmable
gate arrays (FPGAs) [17] or integrator circuits [18,19].
Here, one of the main challenges lies in realizing the
cubic and quadratic nonlinearity of the Hindmarsh–
Rose model, which has, for instance, been realized by
multipliers [18,20]. Multiplierless approaches have been
recently proposed, e.g., in [21–23]. In contrast to this,
an equivalent electrical circuit of the Hindmarsh–Rose
model has been reported in [24] that only requires a
negative impedance converter (NIC) as an active com-
ponent. While this circuit is promising in terms of low-
power consumption, it exhibits several highly nonlin-
ear circuit elements that are difficult to realize without
leading to high implementation costs. Our aim in this
work is to simplify the equivalent circuit of [24] while
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still maintaining the generation of spiking and bursting
behaviors, the major functionalities of the Hindmarsh–
Rose model. For this purpose, we first analyze the power
flows of the nonlinear circuit elements of the equivalent
circuit to replace them by simpler, implementable pas-
sive circuit elements; cf. [25]. Second, we deploy memris-
tor models based on devices with a filament-based bipo-
lar switching [26] to approximate the cubic nonlinearity.
Since the considered memristor models account for pas-
sive circuit elements, this results in a lower power con-
sumption and, thus, an increased energy efficiency com-
pared to operational-amplifier-based hardware realiza-
tions. Memristors are, in general, a very promising cir-
cuit element, especially in the context of neuromorphic
engineering. This is especially because they can be used
for synapse realizations [27,28]. However, memristors
are also used for neuron models. For instance, the differ-
ential equation for the slow current of the Hindmarsh–
Rose model has been modified to account for memris-
tors [16,29,30], while in [31–33], Hindmarsh–Rose mod-
els with an additional fourth memristor-based differen-
tial equation have been considered. In contrast to these
approaches, in this work, we approximate the original
Hindmarsh–Rose model with a memristor-based circuit.

The remainder of this work is structured as follows: In
Sect. 2, we briefly summarize the original Hindmarsh–
Rose model and the equivalent circuit presented in Ref.
[24]. The latter serves as the basis for the circuit sim-
plification discussed in Sect. 3. We verify the circuit’s
ability to generate spiking and bursting behaviors by
LTspice simulations in Sect. 4. We finish with some
conclusions in Sect. 5.

2 Original Hindmarsh–Rose model

2.1 Hindmarsh–Rose model

The original Hindmarsh–Rose model is given by the
following set of differential equations [14]:

dz1
dt

= − [
az21 + bz1

]
z1 + z2 − z3 + k (1a)

1
dz1

dz2
dt

= −z1 − 1
dz1

z2 +
c

dz1
(1b)

1
εs

dz3
dt

= z1 − 1
s
z3 − ϕ , (1c)

where the dynamical variables z1, z2, and z3 denote the
membrane potential, a fast current, and a slow current,
respectively. a, b, c, d, ε, and s are positive constants, ϕ
is the resting potential, and k represents the externally
applied current. The parameter b together with k can be
used to switch between bursting and spiking behavior;
see [15,16].

2.2 Equivalent electrical circuit

In [24], an equivalent electrical circuit for the
Hindmarsh–Rose model has been proposed. We briefly
recapitulate this circuit in this sequel, since it serves as
the starting point for the desired model simplification.
The equivalent circuit can be described by

C1
du1

dt
= −G1(u1)u1 + i2 − i3 + j1 (2a)

L2(u1)
f(u1)

di2
dt

= −u1 − R2(u1)
f(u1)

i2 + e2(u1) (2b)

L3
di3
dt

= u1 − R3i3 + e3 (2c)

with the circuit elements given by

G1(u1) =
au2

1 − bU0u1

R0U2
0

, C1 =
L0

R2
0

,

R2(u1) =
R0U0

d [ε + |u1|] , L2(u1) =
L0U0

d [ε + |u1|] ,

R3 =
R0

s
, L3 =

L0

εs
,

j1 = kI0 , e2(u1) =
cU2

0

du1
, e3 = −φU0 .

(3)

Here, U0 = 1 V, I0 = 1 mA, R0 = 1 kΩ, and L0 = 1 μH
are normalization constants, f(u1) is a smooth signum-
function, which can be realized as a tanh-function, and
ε = 10−3 ensures that the denominators of the induc-
tance and resistance functions do not become zero. As
proposed in [24], the smooth signum-function can be
implemented using a voltage-controlled switch in com-
bination with an NIC inverting the current, as illus-
trated in Fig. 1. Note that in contrast to [24], we have
not split G1(u1) into its quadratic and linear term,
because we approximate the combined terms as dis-
cussed in Sect. 3. The complete circuit then consists
of a capacitor, inductor, resistor, current source, and
voltage source, as well as a nonlinear inductor, a non-
linear resistor, a controlled voltage source, an NIC, and
a switch. For more information on the equivalent circuit
and its derivation, the interested reader is referred to
[24].

3 Circuit simplification

3.1 Power-flow analysis

The equivalent circuit of Fig. 1 consists of several non-
linear circuit elements, which are difficult to imple-
ment in practice. This is especially true for L2(u1) and
R2(u1). In particular, from a circuit-theoretic point of
view, both L2(u1) and R2(u1) are not well defined, since
they are controlled by a voltage not present at their
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Fig. 1 Equivalent circuit of the Hindmarsh–Rose model

Fig. 2 Power flow of R2(u1) (top), change of stored energy of L2(u1) (top center), power of e2(u1) (bottom center), and
total energy consumption (bottom) for a spiking (a) and a bursting behavior (b). Note that some of the plotted signals
exceed the vertical axis limits. We have cut off those signals for the sake of clarity

own respective port. As a result, this leads to high
implementation costs in a hardware realization. For
this reason, we aim for a simplification of the resistive
and inductive part of the second differential equation
[Eq. (1b)] while still maintaining a comparable spiking
and bursting behavior. We additionally consider a sim-
plification of e2(u1), because it is governed by a similar
nonlinearity. Again, this simplification should preserve
the major functionality of the Hindmarsh–Rose model,
that is, the generation of comparable spiking and burst-
ing dynamics. To this end, we investigate the respective

power flows as well as the energy consumption of the
complete circuit for a spiking and bursting behavior, as
shown in Fig. 2a and b. The power flows and the energy
consumption can be calculated via

pR2 = R2i
2
2 , pe2 = e2 i2 , Ė2 = u2 i2 , (4a)

E =
∫ tend

0

u1 [u1G1 + i1 + j1]

+ i2 [i2R2 + u2 + e2] + i3 [i3R3 + u3 + e3] dt .
(4b)
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Table 1 Hindmarsh–Rose parameters

Hindmarsh–Rose parameters

a = 1 c = 1 d = 5 bS = 3 kS = 5
s = 4 ε = 0.05 ϕ = −1.6 bB = 2.2 kB = 2.5

The indices S and B indicate parameters for the spiking and
bursting behavior

The results have been obtained by solving Eq. (2) with
a standard ODE solver in Matlab. The utilized param-
eters are given in Table 1.

Let us first consider the total energy consumption
of the circuit depicted in the bottom of Fig. 2. This
shows that one spike during a spiking activity leads to
an energy consumption of 0.13 nJ. During one burst,
0.12 nJ energy is consumed, while in the quiescence
phase between bursts, 2.48 nJ energy is consumed.
Hence, while a burst and a spike during regular spik-
ing consumes similar energy, most energy is consumed
in the non-active state of the neuron circuit during a
bursting behavior.
Concerning the power flows, several high power spikes
and high spikes for the change of stored energy can
be seen for R2(u1), e2(u1), and L2(u1). These spikes
occur when u1 gets close to zero, since in this case,
R2(u1), L2(u1), and e2(u1) become maximal. These
power spikes are extremely narrow, because for the
parameter set utilized in this work, u1 is only a transi-
tion point and not an equilibrium; see, e.g., [24]. Hence,
the influence of these spikes on the overall power flow
and thus on the functionality of the circuit is negligible.
This in turn indicates that the nonlinearities of R2(u1),
L2(u1), and e2(u1) themselves are negligible, cf. [25],
since they are directly linked to the occurring power
spikes. Hence, we choose L2, R2, and e2 constant by
leaving out their dependency on u1. To sum up, the
linear circuit elements now read

C1 =
L0

R2
0

, L2 =
L0

d
, L3 =

L0

εs
,

R2 =
R0

d
, R3 =

R0

s
,

j1 = kI0, e2 =
cU0

d
, e3 = −φU0. (5)

3.2 Memristive switch

The voltage-controlled switch together with the NIC
used in the circuit of Fig. 1 implements the smooth
signum-function f(u1). Typically, the switch switches
very fast between two positions. For a technical imple-
mentation, this could be problematic, as it can lead
to peak currents and hence damage the inductor. For
this purpose, we replace the switch by memristors that
enable a slower switching process. Their design is based
on the following main idea: Overall, the switch should
allow for changing the polarity of the current i2 by
alternating between two current paths. In particular,
the path containing the NIC inverts the current i2,

while the path with the short circuit passes on the non-
inverted current. This switching between the two paths
requires the currently active path to become highly
conductive relative to the inactive path. As such, this
behavior can be realized by two complementary switch-
ing memristors. In this work, we use memristor mod-
els inspired by filament-based memristors with a bipo-
lar switching; see, e.g., [26]. Such memristors can be
described by

is = Wsus±, Ws = Ws0 + zs [Ws1 − Ws0] , (6a)
dzs
dt

= σ (zsν) σ (us± − Up,s) [us± − Up,s] Sp,s

− σ (1 − zsν) σ (−us± + Un,s)
[−us± + Un,s] Sn,s , (6b)

where us± = us for Wsa and us± = −us for Wsb. zs is the
state variable, Ws1 is the high conductance state, and
Ws0 is the low conductance state. σ(·) is the Heaviside
function with

σ(z) =
{

0, z < 0
1, z ≥ 0 ,

Up,s and Un,s are the positive and negative threshold
voltages, respectively, and Sp,s and Sn,s are the slopes
for an increasing and decreasing state variable, respec-
tively.
We use two of these memristors to implement the
desired switching behavior, as depicted in Fig. 3. In
contrast to the switch proposed in [24], the memristive
switch is not controlled by the voltage u1 but rather
by its own voltage us, as this leads to well-defined cir-
cuit elements. Moreover, the memristive switch adds
an additional resistive term to the second differential
equation [Eq. (2b)]. This can be seen when evaluating
the mesh and node rules of Fig. 3. As a result, the new
circuit is an approximation of the originally equivalent
electrical circuit of the Hindmarsh–Rose model.
To keep this approximation as close as possible to the
equivalent circuit, the choice of the memristor parame-
ters is important. First, it should hold that 1

Ws0
<< R2.

This way, the voltage drop at the memristive switch
is small compared to the voltage present at the series
interconnection of L2, R2, and e2, and thus alters the
original circuit’s dynamics only marginally. Second, Ws1

should be significantly larger than Ws0, such that the
memristive switch switches between the two current
paths given by the NIC and the short circuit. Third,
the threshold voltages Up,s and Un,s should be close to
0 V, so that the switching occurs every time the volt-
age us changes its polarity. Finally, the slopes should
enable a complete switching from the low to the high
conductance state and vice versa for the time period by
which the voltage us retains its polarity.
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Fig. 3 Hindmarsh–Rose circuit with two memristors as switch

3.3 Memristive approximation of G1(u1)

The conductance G1(u1) stems from the cubic non-
linearity of the original Hindmarsh–Rose model in
Eq. (1a). Together with the quadratic nonlinearity in
Eq. 1b, an implementation of this nonlinearity for
electrical circuits has been extensively dealt with in
recent literature; see, e.g., [22,23]. However, while some
approaches have managed to mitigate the use of multi-
pliers and have hence reduced the implementation cost,
a larger amount of operational amplifiers and transis-
tors is still necessary. For this reason, in this work, we
take an alternative approach by approximating G1(u1)
by memristors, such that the only active component
required for the complete circuit is the NIC.
Inspired by [22], where the cubic nonlinearity has been
fitted by three parametrized tanh-functions and an
additional constant, we split G1(u1) into three parts
that can be fitted by [1 + tanh]-terms. In general, tanh-
functions as well as [1 + tanh]-terms can be realized in
different ways, where one solution approach is the use of
transistors [22,34]. Moreover, a [1 + tanh]-term is sim-
ilar to an activation function for neuron models and
neuronal networks, and can be realized, for instance,
by memristors in combination with operational ampli-
fiers [35]. However, since we aim for a purely memris-
tive solution, we first consider the [1 + tanh]-terms to
be nonlinear conductances and replace them with mem-
ristor models later.

In contrast to pure tanh-terms, this results in non-
negative conductance definitions that can be imple-
mented by nonlinear resistors. The approximation for
G1(u1) then yields

G1(u1) ≈ gn1(u1) − gn2(u1) + gn3(u1) ,

gn1(u1) = Gn1

[
1 + tanh

(−u1 − Uth,1

Usl,1

)]
,

gn2(u1) = Gn2

[
1 + tanh

(
u1 − Uth,2

Usl,2

)]
,

gn3(u1) = Gn3

[
1 + tanh

(
u1 − Uth,3

Usl,3

)]
, (7)

where Gn1, Gn2, and Gn3 are the maximum conduc-
tance values, Uth,1, Uth,2, and Uth,3 are the thresh-

Table 2 Results for the fitting of G1(u1)

Fitting of G1

Gn1 = 3.5 mS Uth,1 = 1 V Usl,2 = 0.7 V
Gn2 = 0.7 mS Uth,2 = 0.3 V Usl,2 = 0.4 V
Gn3 = 0.5 mS Uth,3 = 1.9 V Usl,3 = 0.3 V

old voltages, and Un,1, Un,2, and Un,3 determine the
slopes of the tanh-functions. Note that every term
gnμ, μ = 1, 2, 3, represents a single conductance, such
that, in total, three nonlinear conductances are required
to implement G1(u1). This leads to one conductance
switching between 0 S and −Gn2, indicating an active
component. However, since we already exploit an NIC,
which can also enable negative conductances, we can
implement the desired conductance without requir-
ing an additional active component by placing a non-
negative conductance at the port of the NIC.

The results of this fitting procedure are illustrated in
Fig. 4 and the corresponding parameters are shown in
Table 2.

Figure 4b shows the three parts of G1(u1) being fit-
ted by gn1(u1), gn2(u1), and gn3(u1), highlighted by the
shaded areas. These parts cover the operation range of
the Hindmarsh–Rose model for the parameters given
in Table 1. As can be seen from Fig. 4a, the combined
nonlinear conductances fit G1(u1) well within the oper-
ation range. A small deviation can be seen at 0V, which
is caused by both gn1(u1) and gn2(u1) entering regions
where they become nearly constant; see Fig. 4b.

The overall behavior of the nonlinear conductances
gn1(u1), gn2(u1), and gn3(u1) is to switch between 0 S
and their maximum conductance values. This switching
behavior can be approximated by filament-based mem-
ristors with a bipolar switching, although deviations
between the memristive solution and the nonlinear con-
ductances are to be expected due to the threshold-based
switching of the memristors. Similar to the memristive
switch, the utilized memristor models yield

inμ = Wnμu1± , μ ∈ [1, 2, 3] ,

Wnμ = Wnμ0 + znμ [Wnμ1 − Wnμ0] , (8a)
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Fig. 4 Fitting G1(u1) by three nonlinear conductances based on [1 + tanh]-terms, with umin = −1.5 V, umax = 2 V,
Gmin = −1.4 mS, and Gmax = 0.6 mS. (a) Comparison between G1(u1) and the complete fitting result and (b) comparison
of G1(u1) and the individual nonlinear conductances gn1(u1), gn2(u1), and gn3(u1)

Fig. 5 Equivalent circuit of the simplified Hindmarsh–Rose model with three additional memristors Wnμ, μ = 1, 2, 3,
replacing the conductance G1(u1)

dznμ

dt
= σ(znμ)σ(u1± − Up,nμ)

[u1± − Up,nμ] Sp,nμ − σ(1 − znμ)
σ(−u1± + Un,nμ) [−u1± + Un,nμ] Sn,nμ .

(8b)

Here, u1± = u1 for Wn2 and Wn3 and u1± = −u1 for
Wn1. znμ is the state variable, Wnμ1 is the high con-
ductance state, and Wnμ0 is the low conductance state.
Up,n,μ is the positive threshold voltage, Un,nμ is the neg-
ative threshold voltage, and Sp,nμ and Sn,nμ are the
slopes for an increasing and decreasing state variable,
respectively.

G1(u1) depends on the bifurcation parameter b and
is an important factor for the dynamic behavior of
the original Hindmarsh–Rose model. The choice of the
memristive parameters approximating this conductance
thus strongly influences the exhibited dynamic behavior
of the simplified circuit. In general, the low conductance
states Wnμ0 are freely selectable as long as Wnμ0 � 1mS
is satisfied. The high conductance states should be cho-
sen similar to Gn1, Gn2, and Gn3 from Eq. (7). All neg-
ative threshold voltages Un,nμ should be close to 0 V.
This is the closest approximation of gn1(u1), gn2(u1),
and gn3(u1) from Fig. 4, which start switching even
before the voltage u1 becomes negative. Concerning the
positive threshold voltages, Up,nμ1 should also be close
to 0 V, as this is again the closest approximation of
Gn1(u1) from Fig. 4. Up,nμ2 and Up,nμ3 should be cho-
sen similar to Uth,2 and Uth,3 from Eq. (7), respectively.

Finally, the slopes Spμ and Snμ should enable a com-
plete switching from the low to the high conductance
state and vice versa for the time period by which the
voltage u1 does not change its polarity.

Replacing the nonlinear conductance G1(u1) by the
three memristors Wn1,Wn2, and Wn3 as depicted in
Fig. 5, the simplified Hindmarsh–Rose circuit is now
governed by

C1
du1

dt
= − [Wn1 + Wn2 + Wn3] u1

+
Wsa − Wsb

Wsa + Wsb
i2 − i3 + j1 (9a)

L2
di2
dt

= −u1 − R2i2 − 1
Wsa + Wsb

i2 + e2 (9b)

L3
di3
dt

= u1 − R3i3 + e3 (9c)

dzsν
dt

= σ(zsν)σ(us± − Up,s)

[us± − Up,s] Sp,s − σ(1 − zsν)
σ(−us± + Un,s) [−us± + Un,s] Sn,s (9d)

dznμ

dt
= σ(znμ)σ(u1± − Up,nμ)

[u1± − Up,nμ] Sp,nμ − σ(1 − znμ)
σ(−u1± + Un,nμ) [−u1± + Un,nμ] Sn,nμ ,

(9e)
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Fig. 6 Negative impedance converter (a) and its imple-
mentation by a controlled voltage and current source

Table 3 Memristor parameters for the simplified
Hindmarsh–Rose model

Wsν

Ws0 = 500 mS Ws1 = 1.5 S Up,s = 1.5 mV
Sp,s = 10 GHz

mV
Sn,s = 10 GHz

mV
Un,s = −0.1 mV

Wn1

Wn10 = 10 μS Wn11 = 2.2 mS Up,n1 = 50 mV
Sp,n1 = 0.5 GHz/V Sn,n1 = 1 GHz/V Un,n1 = −0.1 V
Wn2

Wn20 = 10 μS Wn21 = 1 mS Up.n2 = 0.3 V
Sp,n2 = 2 GHz/V Sn,n2 = 10 GHz/V Un,n2 = −50 mV
Wn3

Wn30 = 10 μS Wn31 = 0.6 mS Up,n3 = 1.4 V
Sp,n3 = 1 GHz/V Sn,n3 = 5 GHz/V Un,n3 = −0.1 V

with ν ∈ [a, b] and μ ∈ [1, 2, 3].

4 Simulation results

In this section, we discuss numerical results based on
LTspice simulations of the circuit shown in Fig. 5
to verify the simplified circuit’s ability to generate a
bursting and spiking behavior. For this purpose, we
implement the NIC by a controlled voltage and current
source, as illustrated in Fig. 6. For a practical circuit
implementation, the NIC can, for instance, be realized
by operational amplifiers [36,37] or current conveyors
[38]; cf. [24]. Memristors are modeled by implementing
each equation by a controlled voltage source.

We also simulate the model from Sect. 3.1 (cf. Fig. 3)
with an ODE solver in Matlab to investigate the
intermediate modeling steps. To compare the results
to the equivalent circuit of the original Hindmarsh–
Rose model, we further simulate Eq. (2). The param-
eters used for the memristors of the simplified circuit
are given in Table 3.

Simulation results are shown in Fig. 7, which depicts
the time series of u1 next to the corresponding trajec-
tory in the three-dimensional phase space.
Before exploring the bursting regime, we first consider
the spiking behavior. In Fig. 7a, the original model gen-
erates eight spikes and exhibits a spike-frequency adap-
tion. In contrast to this, the models from Sects. 3.1

and 3.2 generate four and six spikes, respectively,
but show a long-lasting first spike instead of a spike-
frequency adaption. The model from Sect. 3.3, however,
again shows a spike-frequency adaption while generat-
ing seven spikes. It should also be noted that the input
current has been drastically increased for all modified
models from j1 = 2.5 mA to j1 = 9 mA. This shows
that the neglected nonlinearity of the original circuit
elements and the associated power spikes are compen-
sated by a larger input current. Additionally, it can be
seen that the spike shape changes for the models of
Sects. 3.2 and 3.3. In particular, the spikes now exhibit
a distinct hyperpolarization phase, which can be inter-
preted as a behavior close to biology.
Observing the phase-space trajectories in Fig. 7b, two
groups can be seen. The first group contains the origi-
nal model and the model from Sect. 3.1, which show a
similar limit cycle, but differ in terms of their transient
approach to the limit cycle. The second group contains
the model from Sects. 3.2 and 3.3 and show a simi-
lar, yet differently shaped limit cycle. Overall, there are
two different limit cycles for the four models, with one
model per limit cycle showing a spike-frequency adap-
tion in the transient phase.
The bursting behavior is depicted in Fig. 7c. While
each models generates bursts consisting of three spikes,
the original model exhibits two bursts, the model
from Sect. 3.1 shows five bursts, and the models from
Sects. 3.2 and 3.3 show three bursts. It is likely that
the linearized circuit elements cause the increase of
the burst frequency, as this increase can already be
observed from the model of Sect. 3.1. This is also sup-
ported by the fact that the input current is again raised
once the linearized circuit elements are introduced. Sim-
ilar to the the spiking behavior, it can be observed that
the models from Sects. 3.2 and 3.3 exhibit a clearly vis-
ible depolarization phase. Additionally, another intra-
burst spike starts at the end of a burst, but is strongly
damped when the quiescence phase begins. As this first
appears for the model of Sect. 3.2, this is probably
caused by the introduction of the memristive switch.

Considering the spike trajectories of Fig. 7d, one can
see that the limit cycles of the original model and the
model from Sect. 3.1 are distantly similar. On the other
hand, the limit cycles of the models from Sects. 3.2 and
3.3 are extremely similar. For this reason, the group-
ing of the models mentioned for the spiking behavior
applies for the bursting behavior, as well.

5 Conclusion

In this work, we have analyzed the power flows of an
equivalent circuit of the Hindmarsh–Rose model. Based
on this analysis, we have simplified the equivalent cir-
cuit by replacing a nonlinear inductance, resistance,
and voltage source by constant circuit elements. In
addition, we have replaced the switch proposed for the
equivalent circuit by two memristors. These memris-
tors enable a smooth, continuous switching between two
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Fig. 7 The membrane potentials (a, c) and the state trajectories (b, d) for a spiking (left) and bursting behavior (right).
Depicted are the results of the original Hindmarsh–Rose model (top row), the model from Sect. 3.1 (second row from the
top), the model from Sect. 3.2 (second row from the bottom), and the model from Sect. 3.3 (bottom row). The utilized
parameters for the spiking are kS = 9, kS = 9, and kS = 7.5 for the results of Sect. 3.1, Sect. 3.2, and Sect. 3.3, respectively.
Concerning the bursting behavior, kB is chosen to kB = 9, kB = 7.5, and kB = 7 for the results of Sect. 3.1, Sect. 3.2, and
Sect. 3.3, respectively

competing current paths, preventing high current peaks
occurring during the switching process. Moreover, we
have approximated the cubic nonlinearity of the orig-
inal Hindmarsh–Rose model by three memristors, act-
ing as passive circuit elements. In total, our simplified
Hindmarsh–Rose circuit only requires one active com-
ponent given by a negative impedance converter. In
contrast to other approaches reported in the literature,
this significantly reduces the amount of required tran-
sistors and operational amplifiers.

We have verified our circuit’s ability to generate spik-
ing and bursting dynamics by LTspice simulations.
While the amount of spikes and bursts have changed,
the qualitative behavior is maintained by the simplified
circuit.

Considering a practical circuit implementation, there
are several challenges that need to be addressed in
future research. For example, a sensitivity analysis of
the circuit parameters with respect to the desired neu-
ronal dynamics, as well as implementation with more
advanced software tools such as PSPICE can aid the
design process. Even more importantly, as discussed in,
for instance, [39], memristors suffer from large manufac-
turing variability and might even undergo irreversible

changes. Hence, more reliable, available memristors are
required. How reliable the parameters of these mem-
ristors should be can be investigated in advance, for
example, by bifurcation analyses with respect to the
memristor parameters used for the approximated cubic
nonlinearity.
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