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Abstract. Nonlinear systems play a significant role in numerous scientific and engineering disciplines, and
comprehending their behavior is crucial for the development of effective control and prediction strategies.
This paper introduces a novel data-driven approach for accurately modeling and estimating parameters of
nonlinear systems utilizing trust region optimization. The proposed method is applied to three well-known
systems: the Van der Pol oscillator, the Damped oscillator, and the Lorenz system, which find broad
applications in engineering, physics, and biology. The results demonstrate the efficacy of the approach
in accurately identifying the parameters of these nonlinear systems, enabling a reliable characterization
of their behavior. Particularly in chaotic systems like the Lorenz system, capturing the dynamics on the
attractor proves to be crucial. Overall, this article presents a robust data-driven approach for parameter
estimation in nonlinear dynamical systems, holding promising potential for real-world applications.

1 Introduction

Nonlinear dynamical systems are ubiquitous in various
fields, encompassing engineering, physics, and biology,
exhibiting intricate behaviors such as bifurcations, limit
cycles, and chaos [1,2]. Accurate parameter estimation
plays a vital role in effectively modeling these systems
[3–6]. Trust region optimization, a powerful technique
for solving nonlinear optimization problems, has shown
successful applications in diverse domains [7]. In this
article, we propose a method for parameter estimation
in three classic nonlinear dynamical systems: the van
der Pol oscillator, Damped oscillator, and Lorenz sys-
tem, utilizing trust region optimization.

The article provides an overview of each system, high-
lighting their applications in modeling real-world phe-
nomena, and emphasizes the challenges associated with
accurately estimating their parameters due to the inher-
ent nonlinearity. It is structured into several sections,
commencing with a review of trust region optimization
and an examination of prior work in parameter esti-
mation of nonlinear systems. Subsequent sections elab-
orate on the proposed method for parameter estima-
tion in each system. Finally, the article provides exper-
imental results to validate the proposed method and
concludes by highlighting the importance of carefully
evaluating the performance of estimated models.
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2 Earlier approaches

Parameter estimation of nonlinear dynamical systems
is a crucial problem encountered in diverse disci-
plines, including engineering, physics, and biology [8,
9]. Numerous optimization algorithms have been pro-
posed for this task, such as the Nelder–Mead algo-
rithm, Levenberg–Marquardt algorithm, and genetic
algorithms [10–12]. However, these methods may suffer
from limited global convergence guarantees and sensi-
tivity to initial parameters and optimization settings.

Trust region optimization, on the other hand, has
emerged as a powerful technique for addressing non-
linear optimization problems. It is known for provid-
ing global convergence guarantees and fast convergence
speeds [13]. In recent years, trust region optimization
has been successfully applied to parameter estimation
of nonlinear systems [14–16]. For instance, Ardenghi
et al. [16] proposed a trust region optimization algo-
rithm for parameter estimation in the field of biotech-
nology. Similarly, Zhang et al. [17] introduced a Dif-
ferential Evolution algorithm-based parameter estima-
tion approach for chaotic systems, surpassing the per-
formance of genetic algorithms and particle swarm opti-
mization in terms of estimation accuracy and conver-
gence speed.

Regarding the Lorenz system, numerous optimization
algorithms have been developed for parameter estima-
tion. Cheng et al. [18] proposed a trust region optimiza-
tion algorithm for parameter estimation in a nonlin-
ear model of an energy storage system, outperforming
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the Levenberg–Marquardt algorithm and genetic algo-
rithms in terms of estimation accuracy and convergence
speed. Similarly, Zheng et al. [19] presented a parti-
cle swarm optimization algorithm for parameter esti-
mation in the Lorenz system, achieving superior esti-
mation accuracy and convergence speed compared to
other methods such as genetic algorithms and simulated
annealing. Furthermore, Lazzús et al. [20] introduced a
hybrid optimization algorithm that combines the dif-
ferential evolution algorithm and the particle swarm
optimization algorithm for parameter estimation in the
Lorenz system, surpassing other optimization methods
in terms of estimation accuracy and convergence speed
[21,22].

In summary, trust region optimization demonstrates
promise as a technique for parameter estimation in non-
linear systems, and its successful application has been
observed across various domains [23].

3 Materials and methods

Consider a system of ordinary differential equations
for state variables, denoted as x(t), accompanied by
parameter estimation challenges [6]. The dynamics of
the system are described by the differential equation

ẋ(t) = F(x, t, θ), (1)

where x(t) ∈ R
n is the state variable, the initial condi-

tions are x(0) = x0, θ = (θ1, θ2, . . . , θp) ∈ R
p are the

unknown parameters, and F : Rn+p → R
n is a known

vector function. Furthermore, measurements ηij for the
state variables or system capacities are available and
can be expressed as

ηij = gij(x(tj), θ) + εij , (2)

where tj denotes the measurement time, j = 1, 2, . . . , k,
and εij is the measurement error.

3.1 Optimization problem

The goal of parameter estimation is to find the values of
the unknown parameters θ that minimize the discrep-
ancy between the predicted values and the observed
data. This objective is achieved by minimizing a suit-
able objective function that considers the measurement
errors ηij . One commonly used objective function is the
weighted l2 norm of the measurement errors, given by:

J(θ) =
∑

i,j

σ−2
ij ε2ij =

∑

ij

σ−2
ij [ηij − gij(x(tj), θ)]2, (3)

where σ2
ij represents the variance of the measurement

errors. The measurement errors are assumed to be inde-
pendent and follow a Gaussian distribution with zero
mean. To address this problem, Trust region optimiza-
tion algorithms are employed to identify the parameter

vector θ and trajectory x that minimize the objective
function.

3.2 Trust-region optimization

The trust region method solves the parameter esti-
mation problem by iteratively minimizing the objec-
tive function within a trust region around the current
estimate of the parameter values. At each iteration, a
quadratic model is used to approximate the objective
function within the trust region, and the optimal step
size is computed by solving a constrained optimization
problem. The trust region is then updated based on the
relative success of previous iterations, and the process
is repeated until convergence. The trust region method
ensures that the step size is within the trust region and
that the objective function is decreasing at each itera-
tion. The mathematical form of the trust region algo-
rithm for parameter estimation in ODE systems is given
in Algorithm 1. More mathematical details about the
trust region can be found in any standard numerical
optimization books [10,24].

Algorithm 1 Trust Region Algorithm for Parameter
Estimation in ODE Systems
1: Initialize θ0, trust region radius Δ0, and tolerance ε
2: Set k = 0
3: while Δk > ε do
4: Solve the ODE system with initial condition x(0) =

x0 and parameter values θk

5: Compute the objective function J(θk)
6: Fit a quadratic model mk(s) = J(θk)+ gT

k (s− θk)+
1
2
(s − θk)T Hks within the trust region |θk − s| ≤ Δk

7: Solve the constrained optimization problem
min|s−θk|≤Δk

mk(s)

8: Compute the ratio ρk = J(θk)−J(s)
mk(θk)−mk(s)

9: if ρk < 0.25 then
10: Reduce the trust region radius Δk+1 = 0.25Δk

11: else if ρk > 0.75 and |s − θk| = Δk then
12: Increase the trust region radius Δk + 1 =

min(2Δk, Δmax)
13: else
14: Keep the trust region radius Δk+1 = Δk

15: end if
16: Update the parameter estimate θk+1 = s
17: Increment k
18: end while
19: return θk

In this algorithm, gk and Hk are the gradients and
Hessian matrix of the objective function evaluated at
θk, and Δmax is the maximum trust region radius. The
ratio ρk measures the relative decrease in the objective
function between the current and proposed parameter
values.
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4 Results

In the field of time series analysis, a common objec-
tive is to identify an equation that effectively describes
the dynamic behavior of a given set of observed vari-
ables, denoted as x. This equation should capture both
deterministic and stochastic aspects of the system. One
approach to achieving this goal is through the use of
stochastic differential equations (SDEs) [25].

An SDE of the form

dx

dt
= f(x) + g(x)ζ(t) (4)

can be used to describe the dynamics of x, where f and
g are functions of x, and ζ(t) represents noise. Equa-
tion (4) specifies how the rate of change of x depends
on the current value of x. The deterministic component
of the equation is captured by f , which determines the
average rate of change of x over time. The stochastic
component of the equation is captured by g2, which
determines the fluctuation around the average value of
x.

When g is constant, the strength of the noise is the
same for all values of x, and is referred to as additive or
state-independent noise. In contrast, when g depends
on x, the strength of the noise varies with the instan-
taneous value of x, and is referred to as multiplicative
or state-dependent noise [26].

We use uncorrelated noise ζ(t) with the following
properties

〈ζ(t)〉 = 0
〈ζ(t)ζ(t′)〉 = δ(t − t′) (5)

where 〈·〉 denotes the time average which is introduced
in the equation of motion as follows:

In all cases, the systems were subject to additive noise
of different intensities. The effect of white as well as
coloured noise [27,28] is separately investigated as fol-
lows.

White Gaussian noise with constant power spectral
density across all frequencies, when added to the true
data simulates random measurement error or other
sources of uncertainty. This affects the observed data
and can impact the parameter estimation process.
Clearly, the parameter estimation can deteriorate with
noise intensity. Colored noise, on the other hand, has
a specific frequency distribution with different power
levels at different frequencies, and this introduces addi-
tional complexity and variability in the observed data,
potentially making the parameter estimation more chal-
lenging.

We use both white noise and pink (1/f) noise in this
work. The accuracy of parameter estimation is judged
by the root mean squared error (RMSE)

RMSE =

√√√√ 1
N

N∑

i=1

(yi − ŷi)2 (6)

N being the total number of samples, yi the true value
and ŷi the predicted value of sample i.

In order to evaluate the robustness and accuracy of
the optimization algorithms, we performed simulations
on various systems of different levels of complexity. In
each case, we generated noisy data by simulating the
system using known parameters and adding Gaussian
noise to the output. The optimization algorithms were
then applied to estimate the system’s parameters from
the noisy data. This process was repeated 10 times for
both Gaussian noise and colored (pink) noise, and the
average values of the estimated parameters, as well as
the RMSE, were computed. The obtained results are
consistent with the SINDY methods described by Brun-
ton et al. [29].

In the following examples, we demonstrate the appli-
cation of the methods described in Sect. 3.2 to iden-
tify the governing equations from noisy data. We begin
with simple systems to illustrate the effectiveness of
the approach, including a comparison between a two-
dimensional linear and nonlinear damped oscillator. We
also investigate a three-dimensional stable linear sys-
tem. Subsequently, we examine the van der Pol oscil-
lator in the second example, and finally, we explore
the chaotic dynamics of the Lorenz system in the third
example.

4.1 Example: simple illustrative systems

4.1.1 Example 1a: two-dimensional damped oscillator
(linear vs. nonlinear)

In this example, we investigate a two-dimensional
damped harmonic oscillator with linear dynamics
described by Eq. (7):

dx

dt
= ax + by

dy

dt
= cx + dy (7)

where x, and y represent the variables that describe the
state of the system, and a, b, c, d are the parameters of
the system with true parameter values with a = −0.1,
b = 2, c = −2, and d = −0.1.

Figure 1 illustrates the accuracy of the trust-region
optimization in reproducing the dynamics and phase
portrait of the linear damped harmonic oscillator under
different levels of Gaussian noise (0.0001, 0.001, 0.01,
0.1). The initial conditions for the system are set as
(x1, x2) = (2.0, 0.0).

The estimated parameters for the linear system at
each noise level are presented in Table 1. The optimized
parameters closely match the true parameter values,
indicating the effectiveness of the trust region algorithm
in parameter estimation. The accuracy of the estimated
trajectories is further quantified by calculating the root
mean squared error values, as shown in Table 1.
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Fig. 1 In Linear damped harmonic oscillator, the trust-region optimization accurately reproduces the dynamics on left
panel and the phase portrait on right panel at different levels of gaussian noise (0.0001, 0.001, 0.01, 0.1) with initial
conditions (x1, x2) = (2.0, 0.0)

Table 1 Estimated parameters and accuracy at different noise levels for linear system 7

Noise level â b̂ ĉ d̂ RMSE

0.0001 −0.1000 2.0000 −2.0000 −0.1000 0.0001
0.001 −0.0999 2.0000 −2.0000 −0.1001 0.0010
0.01 −0.0998 1.9985 −2.0017 −0.1004 0.0100
0.1 −0.0955 1.9981 −2.0001 −0.1035 0.1007

123



Eur. Phys. J. B (2023) 96 :107 Page 5 of 13 107

Fig. 2 The identified system accurately captures the dynamics of the two-dimensional damped harmonic oscillator with
cubic dynamics. The solid colored lines represent the true dynamics of the system, while the dashed lines indicate the
learned dynamics. The phase portrait demonstrates the precise reproduction of the system’s behavior

We also explore the behavior of the damped harmonic
oscillator with cubic dynamics, as given by Eq. (8):

dx

dt
= ax3 + by3

dx

dt
= cx3 + dy3 (8)

Using the same noise levels, we estimate the param-
eters for the system with cubic dynamics (Table 3).
The estimated parameter values and the correspond-

ing true trajectories are depicted in Fig. 2. The results
are summarized in Table 3, which shows the estimated
parameters and the RMSE values.

Finally, we compare the effect of Gaussian and col-
ored (pink) noise on parameter estimation and solution
accuracy. Tables 2 and 4 presents the average estimated
parameter values, and RMSE for linear and nonlinear
systems respectively. The estimates obtained with col-
ored noise slightly differ from those obtained with Gaus-
sian noise, indicating a potential bias introduced by the
colored noise. The RMSE values quantify the accuracy
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Table 2 Comparison of additive Gaussian and colored
noise on parameter estimation and accuracy

Gaussian noise Colored (pink) noise

â − 0.1013 − 0.0997

b̂ 2.0009 1.9866
ĉ − 1.9990 − 2.0196

d̂ − 0.0985 − 0.1070
RMSE 0.0279 0.0220

of the solution, with colored noise achieving comparable
accuracy to Gaussian noise.

In summary, the trust-region optimization technique
accurately reproduces the dynamics and phase por-
trait of the two-dimensional damped harmonic oscil-
lator with linear and cubic dynamics, even in the pres-
ence of different levels of Gaussian noise. The estimated
parameter values closely match the true values, and
the optimized trajectories capture the system’s behav-
ior with high accuracy. The comparison between Gaus-
sian and colored noise highlights their similar impact
on parameter estimation and solution accuracy.

4.1.2 Example: three-dimensional linear system

In this example, we consider a three-dimensional linear
system and its approximation. The dynamics of the sys-
tem are described by the following equations (Eq. 9):

dx

dt
= p1x + p2y

dy

dt
= p3x + p4y

dz

dt
= p5z (9)

where x, y, and z represent the variables that describe
the state of the system, and p1, p2, p3, p4, p5 are the
parameters of the system. The true parameter values
used in our simulations are p1 = −0.1, p2 = −2, p3 = 2,
p4 = −0.1, and p5 = −0.3. Gaussian noise with differ-
ent levels (0.0001, 0.001, 0.01, and 0.1) is added to the
system trajectories to account for variability.

We apply the trust region method to estimate the
parameters of the three-dimensional linear system from
the noisy data. Table 5 presents the estimated param-
eter values at different noise levels. The optimized
parameters closely approximate the true parameter val-

Table 4 Comparison of additive Gaussian and colored
noise on parameter estimation and accuracy

Gaussian noise Colored (pink) noise

â − 0.1008 − 0.1011

b̂ 1.9970 1.9934
ĉ − 2.0011 −2.0027

d̂ 0.0991 − 0.0987
RMSE 0.0277 0.0158

ues, indicating the effectiveness of the trust region opti-
mization approach.

The accuracy of the estimated trajectories is eval-
uated using the root mean squared error as shown in
Table 5. The lower RMSE values indicate better accu-
racy in capturing the dynamics of the system.

Furthermore, we compare the effect of noise charac-
teristics on the parameter estimation and solution accu-
racy using Gaussian and colored (pink) noise. Table 6
presents the estimated parameter values, and RMSE for
both noise types. The estimated parameters show slight
variations between the two noise types. The RMSE val-
ues are slightly lower for colored (pink) noise compared
to Gaussian noise, indicating improved solution accu-
racy.

Trust region optimization approach effectively repro-
duces the dynamics of the three-dimensional linear sys-
tem as shown in Fig. 3, even in the presence of different
levels of Gaussian noise. The estimated parameter val-
ues closely match the true values, and the optimized
trajectories accurately capture the system’s behavior.
The comparison between Gaussian and colored (pink)
noise highlights the influence of noise characteristics on
parameter estimation and solution accuracy, with col-
ored noise yielding slightly improved accuracy. These
findings demonstrate the robustness and versatility of
our approach in handling various noise scenarios.

4.2 Test problem: van der Pol oscillator

The van der Pol oscillator is a non-linear second-order
differential equation that describes the behavior of a
damped oscillator. Widely used as a test problem in
the field of dynamical systems, the equation are

d2x

dt2
− μ(1 − x2)

dx

dt
+ x = 0 (10)

Table 3 Estimated parameters and accuracy at different noise level for cubic dynamics 8

Noise level â b̂ ĉ d̂ RMSE

0.0001 −0.1000 2.0000 −2.0000 −0.1000 0.0001
0.001 −0.1001 1.9996 −2.0001 −0.0999 0.0010
0.01 −0.1012 2.0042 −1.9990 −0.0990 0.0101
0.1 −0.1130 1.9815 −2.0099 −0.0870 0.1006
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Table 5 Estimated parameters and accuracy at different noise levels for three-dimensional linear system (9)

Noise level p̂1 p̂2 p̂3 p̂4 p̂5 RMSE

0.0001 −0.1000 −2.0000 2.0000 −0.1000 −0.3000 0.0001
0.001 −0.1000 −2.0004 1.9996 −0.1000 −0.3000 0.0010
0.01 −0.1436 −1.9732 1.9907 −0.1606 −0.3150 0.1030
0.1 −0.1475 −1.9760 1.9961 −0.1652 −0.3070 0.1486

where x represents the displacement of the oscillator, t
is time, and μ is a parameter that controls the nonlin-
earity [30]. This can be rewritten as a pair of coupled
first-order equations,

dx1

dt
= x2

dx2

dt
= μ(1 − x2

1)x2 − x1. (11)

The parameter value is set to μ = 1.5 in our simu-
lation and the ordinary differential equations (ODEs)
are solved in Python using the Scipy.integrate pack-
age, employing the odeint function. We initialize the
system with [x10 x20 ]

T = [1.0 0.0]T and choose a time-
step size of δt = 0.01. Gaussian noise is then added
to the simulated data, with standard deviations of
[0.0001, 0.001, 0.01, 0.1] corresponding to different noise
levels.

To estimate the parameters of the van der Pol oscil-
lator from the noisy data, we apply a trust region opti-
mization algorithm. The initial parameter value is set
to μ = 1.35, and the trust region radius is set to 0.1
with a tolerance of 10−6. The estimated parameter val-
ues are close to the true values, as shown in Table 7.
Figure 4 illustrates the accuracy of the estimated tra-
jectories and phase portraits compared to the true tra-
jectories and noisy data.

The accuracy of the parameter estimation is further
assessed using the root mean squared error (RMSE), as
shown in Table 7. Higher noise levels result in increased
RMSE values, indicating reduced accuracy in the esti-
mated trajectories.

Furthermore, we compare the effect of noise charac-
teristics on the parameter estimation and solution accu-
racy by considering Gaussian and colored (pink) noise.
The results are presented in Table 8. The estimated
value of μ is slightly higher when using colored noise
(1.4991) compared to Gaussian noise (1.4984), indicat-
ing a small bias introduced by colored noise. The solu-
tion accuracy, measured by RMSE, is improved when
using colored noise compared to Gaussian noise, with
lower error values observed for colored noise.

In conclusion, our parameter estimation approach
successfully captures the dynamics of the van der Pol
oscillator, even in the presence of noise. The choice of
noise characteristics has an impact on the accuracy of
the estimation, with colored (pink) noise resulting in
slightly improved solution accuracy compared to Gaus-
sian noise. These findings highlight the importance of
considering noise characteristics in parameter estima-

Table 6 Comparison of additive Gaussian and colored
noise on parameter estimation and accuracy

Gaussian noise Colored (pink) noise

p̂1 −0.1167 −0.1106
p̂2 −1.9897 −1.9928
p̂3 1.9958 1.9968
p̂4 −0.1254 −0.1206
p̂5 −0.3055 −0.3005
RMSE 0.0631 0.0596

tion tasks and demonstrate the effectiveness of our trust
region optimization approach in handling different noise
scenarios.

4.3 Test problem: Lorenz system

The Lorenz system is a set of three non-linear ordinary
differential equations that were first studied by Edward
Lorenz in the 1960s [31]. It has since become a well-
known example in the field of chaos theory. The system
describes the evolution of three variables x, y, and z
over time, and is given by the equations:

dx

dt
= σ(y − x)

dy

dt
= x(ρ − z) − y

dz

dt
= xy − βz (12)

where σ, ρ, and β are parameters that determine the
behavior of the system. The Lorenz system exhibits
chaotic behavior, meaning that even small changes in
the initial conditions can lead to significantly different
trajectories.

To evaluate the performance of our parameter esti-
mation approach, we conducted simulations using the
Lorenz system as the underlying model. We collected
data by integrating the system equations over a time
interval of t = 0 to t = 25, with a time-step size of
Δt = 0.01. The true parameters of the Lorenz system
were set to σ = 10.0, ρ = 28.0, and β = 8/3. Gaussian
noise was added to the true trajectory at different levels
(0.0001, 0.001, 0.01, and 0.1) to generate noisy data.

We employed a trust region optimization approach
to estimate the parameters of the Lorenz system from
the noisy data. The trust region method accurately
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Fig. 3 The trust-region optimization technique successfully reproduces the dynamics of the 3-D Linear system in the left
panel, as well as the corresponding phase portrait in the right panel, even when subjected to different levels of Gaussian
noise. The initial conditions for the system are set as (y1, y2, y3) = (0.0, 2.0, 1.0)
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Fig. 4 In van der Pol oscillator, the trust-region optimization accurately reproduces the trajectories on the left side,
and phase portraits on the right side. The initial condition is set as [x10 x20 ]

T = [1.0 0.0]T . we compared the resulting
trajectories with the true trajectories and the noisy data

Table 7 Estimated parameters and accuracy at different noise levels

Noise level True parameter Estimated parameter RMSE

0.0001 1.5 1.5000 0.0001
0.001 1.5 1.5000 0.0010
0.01 1.5 1.4959 0.0166
0.1 1.5 1.5000 0.0997
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Table 8 Comparison of additive Gaussian and colored
noise on parameter estimation and accuracy

Gaussian Noise Colored (pink) noise

μ̂ 1.4984 1.4991
RMSE 0.0026 0.0012

captured the underlying dynamics of the system, as
illustrated in Fig. 5. Additionally, the phase portraits of

the identified systems, shown in Fig. 6, closely matched
the true dynamics of the Lorenz system.

The estimated parameter values at different noise lev-
els are presented in Table 9. Despite the presence of
noise, the estimated parameters were close to the true
values. The accuracy of the estimation was further eval-
uated using the root mean squared error (RMSE) met-
rics, as shown in Table 9. Higher noise levels led to
increased RMSE values, indicating reduced accuracy in
the estimated solution. However, even with relatively

Fig. 5 We observe the dynamic paths of the Lorenz system, specifically focusing on the case where measurements of both
position (x ) and velocity (ẋ) are affected by noise. The true trajectories of the system is depicted in blue (solid lines), while
the estimated trajectories, obtained through trust-region optimization, is illustrated by dashed red arrows
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Fig. 6 We compare the true phase portrait of the Lorenz systems, spanning from time t = 0 to t = 25, with the initial
condition [x0 y0 z0]

T = [−8 7 27]T , to the phase portrait of the identified systems at different levels of gaussian noise. This
allows us to assess how accurately the identified systems capture the dynamics of the original system

Table 9 Estimated parameters and accuracy at different noise levels for Lorenz system

Noise level σ̂ ρ̂ β̂ RMSE

0.0001 10.0181 27.7601 2.7819 7.9105
0.001 9.5496 27.5124 2.5416 9.7118
0.01 8.6295 26.8805 2.6716 8.7706
0.1 9.6150 27.4920 2.6208 9.5434
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Table 10 Comparison of additive Gaussian and colored
noise on parameter estimation and accuracy

Gaussian noise Colored (pink) noise

σ̂ 9.4471 9.4577
ρ̂ 27.6333 27.5080

β̂ 2.6980 2.7666
RMSE 9.2051 9.3370

high noise levels, the estimated trajectories still cap-
tured the underlying dynamics of the Lorenz system.

To assess the impact of noise characteristics on
parameter estimation and solution accuracy, we com-
pared the results obtained using Gaussian noise and
colored (pink) noise. The estimated parameter val-
ues and error metrics are presented in Table 10. We
observed slight variations in the estimated parameter
values between the two noise types, suggesting that
noise characteristics influenced the estimation process.
The accuracy of the estimated solution was slightly
lower for Gaussian noise compared to colored (pink)
noise, as indicated by higher RMSE values.

In conclusion, our parameter estimation approach
successfully captured the dynamics of the Lorenz sys-
tem, even in the presence of noise. The choice of noise
characteristics had an impact on the accuracy of the
estimation, with Gaussian noise resulting in slightly
lower solution accuracy compared to colored (pink)
noise. These findings emphasize the importance of con-
sidering noise characteristics in parameter estimation
tasks and highlight the effectiveness of our trust region
optimization approach in handling different noise sce-
narios.

5 Conclusion

In this study, we have presented a trust region opti-
mization algorithm for effective parameter estimation
in the Van der Pol oscillator, Damped oscillator, and
Lorenz system. Our algorithm demonstrates robust per-
formance in estimating parameters for a wide range of
models, including highly nonlinear and non-convex sys-
tems. By applying the algorithm to the van der Pol,
Damped oscillator, and Lorenz systems, we have suc-
cessfully illustrated its capability to accurately estimate
model parameters even in the presence of noise.

Furthermore, we extended our analysis by incorpo-
rating colored noise (pink noise) in addition to Gaus-
sian noise. We observed that the choice of noise type
had an impact on the accuracy of the estimation. With
the presence of colored noise, the estimated trajecto-
ries deviated slightly more from the true trajectories
compared to Gaussian noise. However, even with rela-
tively high noise levels, the estimated trajectories still
captured the underlying dynamics of the systems. This
highlights the algorithm’s robustness and effectiveness
in dealing with different noise characteristics.

It is important to note that the trust region algo-
rithm is sensitive to the choice of initial parameter val-
ues and the size of the trust region. Careful selection of
these parameters is crucial to ensure convergence to the
correct parameter values. Additionally, accounting for
noise in the estimation process is essential to achieve
accurate results. Our algorithm effectively incorporates
noise and provides reliable parameter estimates even in
the presence of noise.

In summary, our proposed trust region optimiza-
tion algorithm serves as a powerful tool for parameter
estimation in nonlinear systems. Its potential impact
extends to enhancing the understanding and control of
complex real-world systems. The ability to handle dif-
ferent noise characteristics, as demonstrated through
the inclusion of colored noise, further strengthens the
algorithm’s applicability in real-world scenarios.
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