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Abstract. Contact reduction is an effective strategy to mitigate the spreading of epidemic. However, the
existing reaction–diffusion equations for infectious disease are unable to characterize this effect. Thus, we
here propose an extended susceptible-infected-recovered model by incorporating contact rate into the stan-
dard SIR model, and concentrate on investigating its impact on epidemic transmission. We analytically
derive the epidemic thresholds on homogeneous and heterogeneous networks, respectively. The effects of
contact rate on spreading speed, scale and outbreak threshold are explored on ER and SF networks. Sim-
ulations results show that epidemic dissemination is significantly mitigated when contact rate is reduced.
Importantly, epidemic spreads faster on heterogeneous networks while broader on homogeneous networks,
and the outbreak thresholds of the former are smaller.

1 Introduction

Spreading of infectious diseases, such as the plague and
coronavirus disease COVID-19 causes tremendous dam-
ages to human health and social societies. Therefore,
how to accurately model the epidemic diffusion pro-
cess, and to devise effective containment measures to
prevent and control disease propagation is of great prac-
tical significance. Toward this end, mathematical mod-
eling tools such as the mean-field theory and Markov
chain approach have been developed into powerful ana-
lytical approaches to exploit propagation dynamics. In
the field of epidemiology, epidemic models were origi-
nally based on uniformly mixed populations, in which
each individual has equal frequency to interact with
others. Nevertheless, in real-world social systems, inter-
actions between different individuals are not evenly dis-
tributed. Moreover, each individual generally interacts
with a limited number of others. Hence, many epi-
demic spreading systems can be properly described by
complex networks whose nodes denote individuals, and
edges connecting nodes represent interactions between
them. Over the past few decades, spurred by the devel-
opment of complex network theory and the availability
of real epidemic dissemination data, there has been a
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growing body of investigations exploring propagation
dynamics on the basis of complex networks [1–8].

In 1927, Kermack and McKendrick established the
threshold theory for the diffusion of epidemic [9], on
the basis of which they further built the SIR com-
partmental model, in which individuals in the popu-
lation are divided into three classes: susceptible (S ),
infected (I ) and recovered/removed (R), and each indi-
vidual must be in one of these three states. The classic
SIR (susceptible–infected–recovered/removed) model
and SIS (susceptible–infected–susceptible) model are
originally proposed by Reed and Frost in an unpub-
lished paper in 1920, which is also a pioneering use
of differential equations for the description of propa-
gation dynamics [10,11]. In the original network-based
SIR model, it is assumed that the degree of each node
is equal to the average degree 〈k〉. However, such an
assumption is incapable of characterize the real situa-
tion when the degree distribution of a network is broad.
Thus, to precisely character the transmission process of
epidemic on heterogeneous networks, Pastor-Satorras
and Vespignani proposed the heterogeneous mean-field
theory [7,12], in which nodes on the network are sub-
divided according to their degrees. Here, the essence is
that nodes with the same degrees are assumed to be
in similar environments and have identical contagion
dynamic characteristics.

Over the past few years, a variety of previous works
have studied epidemic spreading on complex networks
[13–16]. Especially, Moore et al. explored prediction of
the speed of epidemic dissemination, and found an over-
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all sudden transition from low density to almost full net-
work saturation [13]. Moreover, it has been shown that
community lockdowns in social networks hardly miti-
gate epidemic spreading [14]. Besides, Marko Gosak et
al. investigated the endogenous social distancing and
its underappreciated impact on the epidemic curve,
and revealed that spreading similar in peak and case
numbers could occur endogenously [15]. Hâncean et al.
studied the role of age in the spreading of COVID-
19 across a social network, which revealed that age is
an important variable for predicting and understand-
ing the spread of COVID-19 [16]. In addition, it is
worth noting that the networked coevolution spread-
ing in multilayered networks has generated considerable
research interest [17–19]. In particular, Wang et al. gave
a general overview of the recent progress in the study
of coevolution spreading dynamics [17]. Furthermore,
Matjaž Perc provided a broad overview of the diffu-
sion dynamics and information spreading in multilayer
networks [18]. In addition, Fan et al. proposed a new
epidemic model on a two-layered network to illustrate
the coupling spread between epidemic and information,
which takes the role of simplicial complexes into con-
sideration [19].

In the standard network-based SIR model [20], it is
generally assumed that two nodes have close contact if
there is a link between them, which is unable to charac-
terize the impact of contact rate on epidemic spreading.
Importantly, one of the most significant findings of epi-
demiology is that it is easiest for epidemic to spread
when infectious individuals are in close contact with
healthy ones for a long time. Moreover, there exists con-
siderable evidence showing that although dissemination
rates are highest in household and congregate settings,
the risk of epidemic transmission through close, non-
household social contact is also high [21–24]. Besides,
previous studies have revealed that the risk of dissemi-
nation increases with the closeness and duration of con-
tact with an individual infected COVID-19, and it is
highest with prolonged contact in indoor settings [25–
27]. In addition, it is worth stressing that Harris demon-
strated that New York subway is an important medium
for epidemic to transmit, at least it’s where many peo-
ple are infected [28], which is due mainly to the close
contact of individuals in the subway. Noteworthy, recent
studies found that singing in close proximity [21], con-
suming communal food, sharing embraces, and face-to-
face conversations [22], as well as going to restaurants
and other drinking or eating establishments have been
associated with a higher likelihood of infection [29,30].
As specific examples of epidemic spreading which can
be largely explained by close contact exposures, these
findings directly motivated our modelling.

In this work, we propose an extended SIR model
by integrating contact rate into the classic SIR model,
and focus on exploring the spreading speed, scale
and outbreak threshold of epidemic on homogeneous
and heterogeneous networks. Simulations results show
that contact reduction dramatically mitigate epidemic
spreading. Remarkably, infectious disease spreads wider
on homogeneous networks but faster on heterogeneous

networks, and the outbreak thresholds of the latter are
smaller.

This article is organized as follows. In Sect. 2, the pro-
posed SIR model is theoretically analyzed in detail, and
the outbreak thresholds of epidemic are respectively
derived on homogeneous and heterogeneous networks.
The numerical results and discussions are presented in
Sect. 3. The findings are summarized in Sect. 4.

2 Model

In our model, S(t), ρ(t) and R(t) are used to represent
the density of individuals in susceptible state, infectious
state and recovered state at time step t . In the clas-
sic SIR model [10,11], it is assumed that the cycle of
epidemic spreading is much smaller than the lifespan
of an individual, thus the death of individuals is not
taken into consideration. Additionally, the number of
nodes and links are assumed to be constant through-
out the whole epidemic spreading process, that is, the
propagation network is a static one. More explicitly, a
susceptible individual is infected by any infective neigh-
bors with a certain probability λ, and an infectious one
recovers with rate μ and becomes recovery state of life-
long immunity.

2.1 Theoretical analysis on homogeneous networks

Firstly, we analyze the critical epidemic threshold on
homogeneous networks, specifically, on an ER random
network [31], the degree distribution of which exhibits
Poisson distribution. We assume that each node has
the same degree 〈k〉, which is the average number of
immediate neighbors of each node. Then the differential
equations of SIR model on homogeneous networks can
be represented as follows [12,20,32]:

dS(t)
dt

= −S(t)δλ 〈k〉 ρ(t), (1)

dρ(t)
dt

= −μρ(t) + S(t)δλ 〈k〉 ρ(t), (2)

dR(t)
dt

= −μρ(t), (3)

S(t) + ρ(t) + R(t) = 1, (4)

where parameter δ ∈ [0, 1] denotes the rate of a sus-
ceptible node physically contact an infective neighbor.
In the real-world, contact rate is dramatically influ-
enced by the suspension speed of work, self-isolation
and the government’s epidemic prevention policy et al.
The model will be reduced to the original SIR model
when δ = 1; otherwise, the impact of physical contact
rate is incorporated into SIR model. It is worth stress-
ing that an S-state node gets infected only if he has
close contact with an infective neighbor, whereas, the
recovery of an infectious one is a self-recovery process,
and has no relation to contact with neighbors in other
states.
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In SIR model, the evolution process of node states
is S → I → R, or the nodes always keep in S-state. It
is defined that S∞ = limt→∞ S(t), ρ∞ = limt→∞ ρ(t),
and R∞ = limt→∞ R(t). Thus, when t → ∞, ρ∞ → 0,
that is the infectious nodes will eventually become
extinction. In other words, there are only susceptible
and recovered nodes in population when the propaga-
tion process reaches the stationary state, thus S∞ +
R∞ = 1. Additionally, to facilitate subsequent theoret-
ical analysis, it is assumed that the time is continuous,
then R(t) = μ

∑t
t′=0 ρt′ ≈ μ

∫ t

0
ρ(t′)dt′ can be obtained

by integrating Eq. (3). From the above equations, the
fraction of susceptible nodes can be obtained as:

S(t) = e−δλ〈k〉 ∫ t
t′=0 ρ(t′)dt′

= e−δλ〈k〉R(t)/μ. (5)

Thus

R∞ = 1 − S∞ = 1 − e−δλ〈k〉R∞/μ, (6)

where R∞ = 0 denotes the transmission range when
epidemic spreading process reaches the steady-state.
Obviously, R∞ = 0 is a common solution to Eq. (6)
if the following conditions are satisfied, constructing a
function as follows

f(R∞) = 1 − e−δλ〈k〉R∞/μ − R∞. (7)

Since f(1) < 0, then a none-zero solution exists
for Eq. (7) if and only if df(R∞)

dR∞
|R∞=0> 0, namely,

δλ 〈k〉 /μ − 1 > 0 ⇒ λ > μ/δ 〈k〉. In other words,

λc =
μ

δ 〈k〉 . (8)

That is, when the infective probability λ is greater than
μ

δ〈k〉 , the epidemic will break out on homogeneous net-
works.

2.2 Theoretical analysis on heterogeneous networks

In most real-world situations, many networks display
heterogeneous properties, such as the Internet and
the world-wide-web. To better illustrate the epidemic
diffusion process on heterogeneous networks, Pastor-
Satorras and Vespignani proposed the mean-field equa-
tions for heterogeneous networks [7,12], in which nodes
with identical degrees are assumed to be in similar envi-
ronments and follow the same kinetic laws. That is, the
nodes in heterogeneous networks are further sorted into
different categories depending on their degrees. After
subdividing the network nodes by their degrees, the
effects of different degrees on epidemic dissemination
are taken into account. Thus, a new parameter Θ(t)
is introduced into the SIR model to characterize the
corresponding impact. Here, the density of susceptible,
infected and recovered nodes with degree k at time step
t are represented by Sk (t), ρk (t) and Rk (t), respectively

[33]. Therefore the mean-field equations for heteroge-
neous networks are [20]

dSk(t)
dt

= −Sk(t)δλkΘ(t), (9)

dρk(t)
dt

= −μρk(t) + Sk(t)δλkΘ(t), (10)

dRk(t)
dt

= μρk(t), (11)

Sk(t) + ρk(t) + Rk(t) = 1, (12)

where Θ(t) denotes the rate that an edge of a given
node with degree k is connected to an infectious node,
which is defined as

Θ(t) =
∑

k ′
P(k ′|k)ρk ′(t), (13)

where the conditional probability P (k′|k) represents the
possibility that a node with degree k has a direct neigh-
bor with degree k′, and ρk′(t) denotes the chance that
the neighbor with degree k′ is an infected one.

From Eqs. (9)–(13), the density of susceptible nodes
on heterogeneous networks can be obtained as

Sk(t) = e−δλk
∫ t
0 Θ(t′)dt′

= e−δλkΦ(t), (14)

where the auxiliary function Φ(t) is defined as

Φ(t) =
∫ t

0

Θ(t′)dt′

=
∑

k kP (k)
∫ t

0
ρk(t′)dt′

μ 〈k〉
=

∑
k kP (k)Rk(t)

μ 〈k〉 . (15)

The physical meaning of Φ(t) is the probability that the
node at the other end of any given edge in the network
is in R state at time step t .

By differentiating Eq. (15), and substituting ρk(t) by
1 − Rk(t) − Sk(t), it can be gained that

dΦ(t)
dt

=
∑

k kP (k)ρk(t)
μ〈k〉

=
∑

k kP (k)(1 − Rk(t) − Sk(t))
μ〈k〉

= 1 − Φ(t) −
∑

k kP(k)e−δλkΦ(t)

μ〈k〉 . (16)

When the network dynamics reaches the stable state,
namely, by setting t → ∞ in Eq. (16), dΦ∞

dt = 0, then
a self-consistent equation for Φ(t) can be obtained as

0 = 1 − Φ∞ −
∑

k kP(k)e−δλkΦ∞

μ 〈k〉 . (17)
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Fig. 1 Fraction of infected individuals ρ(t) at each time
step on ER random networks under different values of con-
tact rate δ. a 〈k〉 = 10. b 〈k〉 = 20. Other parameters setup
is λ = 0.1 and μ = 0.1. Transmission speed is greatly accel-
erated with rising δ. Both ρ(t) and the corresponding critical
value are increased when 〈k〉 is risen

Let f(Φ∞) = 1−
∑

k kP (k)e−δλkΦ∞
μ〈k〉 −Φ∞, since f(1) < 0,

then a positive solution exists for Eq. (17) if and only if
f(Φ∞)
dΦ∞

|Φ∞=0> 0. That is
∑

k kP (k)δλ〈k〉
μ〈k〉 = δλ

〈k2〉
μ〈k〉 > 1 ⇒

λ > μ〈k〉
δ〈k2〉 . Thus, the threshold for epidemic spreading

on heterogeneous networks can be acquired as

λc =
μ 〈k〉
δ 〈k2〉 . (18)

3 Numerical simulations

In the standard SIR epidemic, individuals in the pop-
ulation can be only in S and R states when propaga-
tion process reaches the stationary state. Consequently,
the density of recovered individuals at the stable state
and the outbreak threshold of epidemic are two pri-
mary quantities to be investigated. Besides, random
networks and scale-free networks are classic homoge-
neous and heterogeneous networks, respectively. Thus,
in this section we validate the effects of contact rate on
epidemic spreading by carrying out Monte Carlo sim-
ulations (MCS) on ER random networks [31] and SF
networks [34,35], and each network holds 5×103 nodes.
In addition, to alleviate the influence of randomness, we
run 100 simulations for each data spot.

3.1 Results on homogeneous networks

In SIR model, the evolution of fraction of infected
individuals represents the transmission speed of epi-
demic. Hence, it is worthwhile to uncover the associa-
tion between ρ(t) and δ at each time step, as presented
in Fig. 1. Notably, for fixed average degree 〈k〉, greater

Fig. 2 Fraction of recovered individuals R(t) at steady
state on ER random networks as a function of δ for dis-
tinct values of infectious rate λ. a 〈k〉 = 10, μ = 0.1; b
〈k〉 = 20, μ = 0.1; c 〈k〉 = 10, μ = 0.3; d 〈k〉 = 20, μ = 0.3.
Spreading range is increased with rising δ. The increase of
recovery rate μ inhibits epidemic dissemination

δ leads to earlier increase of ρ(t) and higher propor-
tion of infected nodes, which implicates that the rise
of contact rate promotes epidemic transmission. More-
over, both ρ(t) and the corresponding critical value are
further increased when 〈k〉 is risen. This is mainly due
to the fact that larger average degree implies an individ-
ual having more chance to contact others, which leads
to faster dissemination of epidemic.

In order to investigate the impact of contact rate on
spreading scale of epidemic, in Fig. 2, we explore the
relationship between R(t) and δ under distinct infec-
tious rate λ and recovery rate μ. Irrespective of aver-
age degree 〈k〉 and recovery rate μ, the percentage of
recovered individuals R(t) reflects a sharp rise with the
increase of parameter δ, indicating that contact rate
plays an essential role in the dissemination range of epi-
demic. Furthermore, compared to the spreading scale
when 〈k〉 = 10, smaller δ causes wider propagation
range when 〈k〉 = 20. Besides, larger contact rate is
needed for the same transmission range when recovery
rate μ is risen from 0.1 to 0.3, which indicates that the
increase of recovery rate inhibits the spread of epidemic.

In Fig. 3, we examine the influence of contact rate
on epidemic thresholds. For fixed recovery rate μ, the
outbreak threshold of epidemic infection rate λc grad-
ually decreases as the rise of δ, suggesting that greater
contact rate leads to easier dissemination of epidemic.
In addition, under the same values of δ, higher trans-
mission threshold can be observed for greater value of
μ, indicating that faster recovery mitigates epidemic
spreading.

3.2 Results on heterogeneous networks

Finally, we investigate the impact of contact rate on
diffusion speed, scale and outbreak threshold of epi-
demic on heterogeneous networks under the same setup
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Fig. 3 Threshold of epidemic infection rate λc on ER ran-
dom networks as a function of δ for different values of recov-
ery rate μ. a 〈k〉 = 10; b 〈k〉 = 20. Other parameter setup is
λ = 0.1. It is easier for epidemic to transmit under greater
δ. Higher transmission threshold can be observed for greater
μ

of model parameters. Notably, compared to the simu-
lation results on ER networks, smaller contact rate δ
is able to cause epidemic transmission on SF networks,
which is demonstrated by the earlier increase of ρ(t) (as
shown in Fig. 4). The main reason of this result is in
heterogeneous networks, nodes with large degrees hav-

Fig. 4 Fraction of infected individuals ρ(t) at each time
step on SF networks under different values of contact rate
δ. a 〈k〉 = 10. b 〈k〉 = 20. Other parameters setup is λ = 0.1
and μ = 0.1. Compared with ER networks, smaller δ causes
epidemic propagation on SF networks

Fig. 5 Fraction of recovered individuals R(t) at stationary
state on SF networks as a function of δ for different values of
infectious rate λ. a 〈k〉 = 10, μ = 0.1; b 〈k〉 = 20, μ = 0.1;
c 〈k〉 = 10, μ = 0.3; d 〈k〉 = 20, μ = 0.3. Compared to
SF networks, smaller δ results in wider transmission on ER
networks

Fig. 6 Threshold of epidemic infection rate λc on SF net-
works as a function of δ for different values of recovery rate
μ. a 〈k〉 = 10; b 〈k〉 = 20. Other parameter setup is λ = 0.1.
Compared to ER networks, the epidemic threshold is smaller
on SF networks

ing more possibilities to disseminate epidemic to oth-
ers. Moreover, wider transmission range on SF networks
needs greater contact rate (as illustrated in Fig. 5). In
addition, the epidemic threshold is smaller on hetero-
geneous networks (as shown in Fig. 6). These findings
indicate that the heterogeneity of network accelerates
epidemic spreading.
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4 Conclusions

When an infectious disease spreads in the population,
healthy individuals generally reduce contacts to stay
healthy, and infected ones reduce contacts consciously
to avoid infecting others. Most noteworthy, a consid-
erable amount of works revealed that physical con-
tact plays a significant role in the diffusion of epidemic
[21,22,28–30]. Nevertheless, the existing epidemic mod-
els are incapable of characterizing this impact. To that
effect, we present an extensive SIR model by introduc-
ing contact rate into the standard one. The critical epi-
demic thresholds are analytically derived on homoge-
neous and heterogeneous networks as a function of con-
tact rate, infective rate and recovery rate. Furthermore,
the effects of contact rate on spreading speed, scale, and
outbreak threshold of epidemic are respectively studied
on ER and SF networks. Simulation results show that
contact reduction is an efficient approach to mitigate
epidemic propagation. Notably, under the same setup
of model parameters, epidemic spreads faster on hetero-
geneous networks but wider on homogeneous networks,
and the outbreak thresholds of the former are smaller.
Current findings are beneficial for us to understand the
dissemination characteristic of real epidemic in popula-
tions.

In this work, it is assumed that the contact rates
between different individuals are identical at each time
step. However, in the real-world, the probabilities of
physical contact between distinct individuals are gen-
erally different, that is, the exposure rate is heteroge-
neous. Moreover, prior studies have shown that the risk
of spreading increases with the closeness and duration
of contact with an infected individual [25–27]. Hence, in
the future work, a more sophisticated SIR model tak-
ing into account the heterogeneity of contact rate, the
closeness and duration of physical contact will be the
focus of future investigations.
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