Skip to main content
Log in

Evolution of the spectral lineshape at the magnetic transition in Sr\(_2\)IrO\(_4\) and Sr\(_3\)Ir\(_2\)O\(_7\)

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Sr\(_2\)IrO\(_4\) and Sr\(_3\)Ir\(_2\)O\(_7\) form two families of spin-orbit Mott insulators with quite different charge gaps and an antiferromagnetic (AF) ground state. This offers a unique opportunity to study the impact of long-range magnetic order in Mott insulators. It appears to play a different role in the two families, as there is almost no change of the resistivity at the magnetic transition \(T_N\) in Sr\(_2\)IrO\(_4\) and a large one in Sr\(_3\)Ir\(_2\)O\(_7\). We use angle-resolved photoemission to study the evolution of the spectral lineshape through the magnetic transition. We use Ru and La substitutions to tune \(T_N\) and discriminate changes due to temperature from those due to magnetic order. We evidence a shift and a transfer of spectral weight in the gap at \(T_N\) in Sr\(_3\)Ir\(_2\)O\(_7\), which is absent in Sr\(_2\)IrO\(_4\). We assign this behavior to a significantly larger coherent contribution to the spectral lineshape in Sr\(_3\)Ir\(_2\)O\(_7\), which evolves strongly at \(T_N\). On the contrary, the Sr\(_2\)IrO\(_4\) lineshape is dominated by the incoherent part, which is insensitive to \(T_N\). We compare these findings to theoretical expectations of the Slater vs Mott antiferromagnetism within dynamical mean field theory.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. L. Hao, Z. Wang, J. Yang, D. Meyers, J. Sanchez, G. Fabbris, Y. Choi, J.W. Kim, D. Haskel, P.J. Ryan, K. Barros, J.H. Chu, M.P.M. Dean, C.D. Batista, J. Liu, Anomalous magnetoresistance due to longitudinal spin fluctuations in a \(\text{ jeff } = 1/2\) mott semiconductor. Nat. Commun. 10(1), 5301 (2019). https://doi.org/10.1038/s41467-019-13271-6

    Article  ADS  Google Scholar 

  2. L. Fratino, P. Sémon, M. Charlebois, G. Sordi, A.M.S. Tremblay, Signatures of the mott transition in the antiferromagnetic state of the two-dimensional hubbard model. Phys. Rev. B 95, 235,109 (2017). https://doi.org/10.1103/PhysRevB.95.235109

    Article  Google Scholar 

  3. A. Camjayi, R. Chitra, M.J. Rozenberg, Electronic state of a doped mott-hubbard insulator at finite temperatures studied using the dynamical mean-field theory. Phys. Rev. B 73, 041,103 (2006). https://doi.org/10.1103/PhysRevB.73.041103

    Article  Google Scholar 

  4. B.J. Kim, H. Jin, S.J. Moon, J.Y. Kim, B.G. Park, C.S. Leem, J. Yu, T.W. Noh, C. Kim, S.J. Oh, J.H. Park, V. Durairaj, G. Cao, E. Rotenberg, Novel \({J}_{{\rm eff}}=1/2\) mott state induced by relativistic spin-orbit coupling in \({{\rm sr}}_{2}{{\rm iro}}_{4}\). Phys. Rev. Lett. 101, 076,402 (2008)

    Article  Google Scholar 

  5. C. Martins, B. Lenz, L. Perfetti, V. Brouet, F. Bertran, S. Biermann, Nonlocal Coulomb correlations in pure and electron-doped \({\rm Sr}_{2}{\rm IrO}_{4}\): Spectral functions, Fermi surface, and pseudo-gap-like spectral weight distributions from oriented cluster dynamical mean-field theory. Phys. Rev. Mater. 2, 032,001 (2018). https://doi.org/10.1103/PhysRevMaterials.2.032001

    Article  Google Scholar 

  6. S.J. Moon, H. Jin, K.W. Kim, W.S. Choi, Y.S. Lee, J. Yu, G. Cao, A. Sumi, H. Funakubo, C. Bernhard, T.W. Noh, Dimensionality-controlled insulator-metal transition and correlated metallic state in \(5d\) transition metal oxides \({\rm sr}_{n+1}{\rm ir}_{n}{\rm o}_{3n+1}\) (\(n=1\), 2, and \(\infty \)). Phys. Rev. Lett. 101, 226,402 (2008). https://doi.org/10.1103/PhysRevLett.101.226402

    Article  Google Scholar 

  7. I. Battisti, K.M. Bastiaans, V. Fedoseev, A. de la Torre, N. Iliopoulos, A. Tamai, E.C. Hunter, R.S. Perry, J. Zaanen, F. Baumberger, M.P. Allan, Universality of pseudogap and emergent order in lightly doped mott insulators. Nat. Phys. 13(1), 21–25 (2017). https://doi.org/10.1038/nphys3894

    Article  Google Scholar 

  8. H. Zhao, S. Manna, Z. Porter, X. Chen, A. Uzdejczyk, J. Moodera, Z. Wang, S.D. Wilson, I. Zeljkovic, Atomic-scale fragmentation and collapse of antiferromagnetic order in a doped mott insulator. Nat. Phys. 15(12), 1267–1272 (2019). https://doi.org/10.1038/s41567-019-0671-9

    Article  Google Scholar 

  9. Z. Sun, J.M. Guevara, S. Sykora, E.M. Pärschke, K. Manna, A. Maljuk, S. Wurmehl, J. van den Brink, B. Büchner, C. Hess, Evidence for a percolative mott insulator-metal transition in doped \({\rm sr}_{2}{\rm iro}_{4}\). Phys. Rev. Res. 3, 023,075 (2021). https://doi.org/10.1103/PhysRevResearch.3.023075

    Article  Google Scholar 

  10. V. Brouet, J. Mansart, L. Perfetti, C. Piovera, I. Vobornik, P. Le Fèvre, F. Bertran, S.C. Riggs, M.C. Shapiro, P. Giraldo-Gallo, I.R. Fisher, Transfer of spectral weight across the gap of Sr2IrO4 induced by La doping. Phys. Rev. B 92(8), 081,117 (2015)

    Article  Google Scholar 

  11. Y. Okada, D. Walkup, H. Lin, C. Dhital, T.R. Chang, S. Khadka, W. Zhou, H.T. Jeng, M. Paranjape, A. Bansil, Z. Wang, S.D. Wilson, V. Madhavan, Imaging the evolution of metallic states in a correlated iridate. Nat. Mater. 12(8), 707–713 (2013). https://doi.org/10.1038/nmat3653

    Article  ADS  Google Scholar 

  12. H. Zhao, Z. Porter, X. Chen, S.D. Wilson, Z. Wang, I. Zeljkovic, Imaging antiferromagnetic domain fluctuations and the effect of atomic scale disorder in a doped spin-orbit mott insulator. Science Advances 7(46), eabi6468 (2021). https://doi.org/10.1126/sciadv.abi6468. https://www.science.org/doi/abs/10.1126/sciadv.abi6468. https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/sciadv.abi6468

  13. V. Brouet, L. Serrier-Garcia, A. Louat, L. Fruchter, F. Bertran, P. Le Fèvre, J. Rault, A. Forget, D. Colson, Coherent and incoherent bands in la and rh doped \({\rm sr}_{3}{\rm ir}_{2}{\rm o}_{7}\). Phys. Rev. B 98, 235,101 (2018). https://doi.org/10.1103/PhysRevB.98.235101

    Article  Google Scholar 

  14. A. de la Torre, E. Hunter, A. Subedi, S. McKeown Walker, A. Tamai, T. Kim, M. Hoesch, R. Perry, A. Georges, F. Baumberger, Phys. Rev. Lett. 113, 256402 (2014)

    Article  ADS  Google Scholar 

  15. See supplementary information

  16. J. Kim, D. Casa, M.H. Upton, T. Gog, Y.J. Kim, J.F. Mitchell, M. van Veenendaal, M. Daghofer, J. van den Brink, G. Khaliullin, B.J. Kim, Magnetic excitation spectra of sr2iro4 probed by resonant inelastic X-ray scattering: establishing links to cuprate superconductors. Phys. Rev. Lett. 108, 177,003 (2012). https://doi.org/10.1103/PhysRevLett.108.177003

    Article  Google Scholar 

  17. C. Dhital, T. Hogan, Z. Yamani, C. de la Cruz, X. Chen, S. Khadka, Z. Ren, S.D. Wilson, Neutron scattering study of correlated phase behavior in sr\({}_{2}\)iro\({}_{4}\). Phys. Rev. B 87, 144,405 (2013). https://doi.org/10.1103/PhysRevB.87.144405

    Article  Google Scholar 

  18. J. Kim, A.H. Said, D. Casa, M.H. Upton, T. Gog, M. Daghofer, G. Jackeli, J. van den Brink, G. Khaliullin, B.J. Kim, Large spin-wave energy gap in the bilayer iridate sr3ir2o7: Evidence for enhanced dipolar interactions near the mott metal-insulator transition. Phys. Rev. Lett. 109, 157,402 (2012). https://doi.org/10.1103/PhysRevLett.109.157402

    Article  Google Scholar 

  19. O.B. Korneta, T. Qi, S. Chikara, S. Parkin, L.E. De Long, P. Schlottmann, G. Cao, Electron-doped \({\text{ sr }}_{2}{\text{ iro }}_{4}\)-\(\delta \)\((0\le \delta \le 0.04)\): evolution of a disordered \({J}_{\text{ eff }}=\frac{1}{2}\) mott insulator into an exotic metallic state. Phys. Rev. B 82, 115117 (2010)

  20. G. Cao, Y. Xin, C.S. Alexander, J.E. Crow, P. Schlottmann, M.K. Crawford, R.L. Harlow, W. Marshall, Anomalous magnetic and transport behavior in the magnetic insulator \({\rm sr}_{3}{\rm ir}_{2}{\rm o}_{7}\). Phys. Rev. B 66, 214,412 (2002). https://doi.org/10.1103/PhysRevB.66.214412

    Article  Google Scholar 

  21. X. Chen, T. Hogan, D. Walkup, W. Zhou, M. Pokharel, M. Yao, W. Tian, T.Z. Ward, Y. Zhao, D. Parshall, C. Opeil, J.W. Lynn, V. Madhavan, S.D. Wilson, Influence of electron doping on the ground state of \(({\rm sr}_{1-x}{\rm la}_{x})_{2}{\rm iro}_{4}\). Phys. Rev. B 92, 075,125 (2015). https://doi.org/10.1103/PhysRevB.92.075125

    Article  Google Scholar 

  22. S. Moon, H. Jin, W. Choi, J. Lee, S. Seo, J. Yu, G. Cao, T. Noh, Y. Lee, Temperature dependence of the electronic structure of the \({J}_{\text{ eff }}=\frac{1}{2}\) mott insulator \({\text{ sr }}_{2}{\text{ iro }}_{4}\) studied by optical spectroscopy. Phys. Rev. B 80, 195,110 (2009)

    Article  Google Scholar 

  23. G. Ahn, S. Song, T. Hogan, S.D. Wilson, S. Moon, Sci. Rep. 6, 32,632 (2016)

    Article  Google Scholar 

  24. B. Xu, P. Marsik, E. Sheveleva, F. Lyzwa, A. Louat, V. Brouet, D. Munzar, C. Bernhard, Optical signature of a crossover from mott- to slater-type gap in \({\rm sr}_{2}{\rm ir}_{1-x}{\rm rh}_{x}{\rm o}_{4}\). Phys. Rev. Lett. 124, 027,402 (2020). https://doi.org/10.1103/PhysRevLett.124.027402

    Article  Google Scholar 

  25. C.H. Sohn, M.C. Lee, H.J. Park, K.J. Noh, H.K. Yoo, S.J. Moon, K.W. Kim, T.F. Qi, G. Cao, D.Y. Cho, T.W. Noh, Orbital-dependent polaron formation in the relativistic mott insulator \({\rm sr}_{2}{\rm iro}_{4}\). Phys. Rev. B 90, 041,105 (2014). https://doi.org/10.1103/PhysRevB.90.041105

    Article  Google Scholar 

  26. S. Song, S. Kim, G.H. Ahn, J.H. Seo, J.L. Schmehr, M. Aling, S.D. Wilson, Y.K. Kim, S.J. Moon, Magnetically driven band shift and metal-insulator transition in spin-orbit-coupled \({{\rm S}} {{\rm r}}_{3}({{\rm Ir}}_{1-x}{{\rm Ru}}_{x})_{2}{{\rm o}}_{7}\). Phys. Rev. B 98, 035,110 (2018). https://doi.org/10.1103/PhysRevB.98.035110

    Article  Google Scholar 

  27. Z. Wang, D. Walkup, Y. Maximenko, W. Zhou, T. Hogan, Z. Wang, S.D. Wilson, V. Madhavan, Doping induced Mott collapse and possible density wave instabilities in (sr1xlax)3ir2o7. NPJ Quantum Mater. 4(1), 43 (2019). https://doi.org/10.1038/s41535-019-0183-y

    Article  ADS  Google Scholar 

  28. P.D.C. King, T. Takayama, A. Tamai, E. Rozbicki, S.M. Walker, M. Shi, L. Patthey, R.G. Moore, D. Lu, K.M. Shen, H. Takagi, F. Baumberger, Spectroscopic indications of polaronic behavior of the strong spin-orbit insulator sr3ir2o7. Phys. Rev. B 87, 241,106 (2013). https://doi.org/10.1103/PhysRevB.87.241106

    Article  Google Scholar 

  29. G. Affeldt, T. Hogan, C.L. Smallwood, T. Das, J.D. Denlinger, S.D. Wilson, A. Vishwanath, A. Lanzara, Spectral weight suppression near a metal-insulator transition in a double-layer electron-doped iridate. Phys. Rev. B 95, 235,151 (2017). https://doi.org/10.1103/PhysRevB.95.235151

    Article  Google Scholar 

  30. M. Ge, T. Qi, O. Korneta, D. De Long, P. Schlottmann, W. Crummett, G. Cao, Lattice-driven magnetoresistivity and metal-insulator transition in single-layered iridates. Phys. Rev. B 84, 100,402 (2011)

    Article  Google Scholar 

  31. T. Hogan, Z. Yamani, D. Walkup, X. Chen, R. Dally, T.Z. Ward, M.P.M. Dean, J. Hill, Z. Islam, V. Madhavan, S.D. Wilson, First-order melting of a weak spin-orbit Mott insulator into a correlated metal. Phys. Rev. Lett. 114, 257,203 (2015). https://doi.org/10.1103/PhysRevLett.114.257203

    Article  Google Scholar 

  32. C. Dhital, T. Hogan, W. Zhou, X. Chen, Z. Ren, M. Pokharel, Y. Okada, M. Heine, W. Tian, Z. Yamani, C. Opeil, J.S. Helton, J.W. Lynn, Z. Wang, V. Madhavan, S.D. Wilson, Carrier localization and electronic phase separation in a doped spin-orbit-driven Mott phase in sr3(ir1-xrux)2o7. Nat. Commun. 5(1), 3377 (2014). https://doi.org/10.1038/ncomms4377

    Article  ADS  Google Scholar 

  33. S.J. Yuan, S. Aswartham, J. Terzic, H. Zheng, H.D. Zhao, P. Schlottmann, G. Cao, From \({J}_{{\rm eff}}=1/2\) insulator to \(p\)-wave superconductor in single-crystal \({\text{ Sr }}_{2}{\text{ Ir }}_{1-x}{\text{ Ru }}_{x}{\text{ o }}_{4} (0\le x\le 1)\). Phys. Rev. B 92, 245,103 (2015). https://doi.org/10.1103/PhysRevB.92.245103

    Article  Google Scholar 

  34. S. Calder, J.W. Kim, G.X. Cao, C. Cantoni, A.F. May, H.B. Cao, A.A. Aczel, M. Matsuda, Y. Choi, D. Haskel, B.C. Sales, D. Mandrus, M.D. Lumsden, A.D. Christianson, Evolution of competing magnetic order in the \({J}_{{\rm eff}}=1/2\) insulating state of \({{\rm sr}}_{2}{{\rm ir}}_{1-x}{{\rm ru}}_{x}{{\rm o}}_{4}\). Phys. Rev. B 92, 165,128 (2015). https://doi.org/10.1103/PhysRevB.92.165128

    Article  Google Scholar 

  35. V. Brouet, P. Foulquier, A. Louat, F.m.c. Bertran, P. Le Fèvre, J.E. Rault, D. Colson, Origin of the different electronic structure of rh- and ru-doped \({{\rm sr}}_{2}{{\rm Ir}} {{\rm o}}_{4}\). Phys. Rev. B 104, L121104 (2021). https://doi.org/10.1103/PhysRevB.104.L121104

  36. A. Moutenet, A. Georges, M. Ferrero, Pseudogap and electronic structure of electron-doped \({{\rm sr}}_{2}{{\rm iro}}_{4}\). Phys. Rev. B 97, 155,109 (2018). https://doi.org/10.1103/PhysRevB.97.155109

    Article  Google Scholar 

  37. H. Zhang, K. Haule, D. Vanderbilt, Effective \(j = 1/2\) insulating state in Ruddlesden-Popper iridates: an \({{\rm LDA}} + {{\rm DMFT}} \) study. Phys. Rev. Lett. 111, 246,402 (2013). https://doi.org/10.1103/PhysRevLett.111.246402

    Article  Google Scholar 

  38. J. Jeong, B. Lenz, A. Gukasov, X. Fabrèges, A. Sazonov, V. Hutanu, A. Louat, D. Bounoua, C. Martins, S. Biermann, V. Brouet, Y. Sidis, P. Bourges, Magnetization density distribution of \({{\rm sr}}_{2}{{\rm iro}}_{4}\): deviation from a local \({j}_{{\rm eff}}=1/2\) picture. Phys. Rev. Lett. 125, 097,202 (2020). https://doi.org/10.1103/PhysRevLett.125.097202

    Article  Google Scholar 

  39. A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13–125 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  40. E. Gull, A.J. Millis, A.I. Lichtenstein, A.N. Rubtsov, M. Troyer, P. Werner, Continuous-time monte Carlo methods for quantum impurity models. Rev. Mod. Phys. 83, 349–404 (2011). https://doi.org/10.1103/RevModPhys.83.349

    Article  ADS  Google Scholar 

  41. R. Levy, J. LeBlanc, E. Gull, Implementation of the maximum entropy method for analytic continuation. Comput. Phys. Commun. 215, 149–155 (2017). https://doi.org/10.1016/j.cpc.2017.01.018

    Article  ADS  MATH  Google Scholar 

  42. T. Hogan, L. Bjaalie, L. Zhao, C. Belvin, X. Wang, C.G. Van de Walle, D. Hsieh, S.D. Wilson, Structural investigation of the bilayer iridate \({\rm sr}_{3}{\rm ir}_{2}{\rm o}_{7}\). Phys. Rev. B 93, 134,110 (2016). https://doi.org/10.1103/PhysRevB.93.134110

    Article  Google Scholar 

  43. A. Louat, F. Bert, L. Serrier-Garcia, F. Bertran, P. Le Fèvre, J. Rault, V. Brouet, Formation of an incoherent metallic state in rh-doped sr2iro4. Phys. Rev. B 97, 161,109 (2018). https://doi.org/10.1103/PhysRevB.97.161109

    Article  Google Scholar 

  44. C. Kim, F. Ronning, A. Damascelli, D.L. Feng, Z.X. Shen, B.O. Wells, Y.J. Kim, R.J. Birgeneau, M.A. Kastner, L.L. Miller, H. Eisaki, S. Uchida, Anomalous temperature dependence in the photoemission spectral function of cuprates. Phys. Rev. B 65, 174,516 (2002). https://doi.org/10.1103/PhysRevB.65.174516

    Article  Google Scholar 

  45. D.S. Dessau, T. Saitoh, C.H. Park, Z.X. Shen, P. Villella, N. Hamada, Y. Moritomo, Y. Tokura, \(\mathit{k}\)-dependent electronic structure, a large “ghost’’ fermi surface, and a pseudogap in a layered magnetoresistive oxide. Phys. Rev. Lett. 81, 192–195 (1998). https://doi.org/10.1103/PhysRevLett.81.192

    Article  ADS  Google Scholar 

  46. L. Perfetti, H. Berger, A. Reginelli, L. Degiorgi, H. Höchst, J. Voit, G. Margaritondo, M. Grioni, Spectroscopic indications of polaronic carriers in the quasi-one-dimensional conductor \(({{\rm tase}}_{4})_{2}i\). Phys. Rev. Lett. 87, 216,404 (2001). https://doi.org/10.1103/PhysRevLett.87.216404

    Article  Google Scholar 

  47. K.M. Shen, F. Ronning, D.H. Lu, W.S. Lee, N.J.C. Ingle, W. Meevasana, F. Baumberger, A. Damascelli, N.P. Armitage, L.L. Miller, Y. Kohsaka, M. Azuma, M. Takano, H. Takagi, Z.X. Shen, Missing quasiparticles and the chemical potential puzzle in the doping evolution of the cuprate superconductors. Phys. Rev. Lett. 93, 267,002 (2004)

    Article  Google Scholar 

  48. H. Gretarsson, J. Sauceda, N.H. Sung, M. Höppner, M. Minola, B.J. Kim, B. Keimer, M. Le Tacon, Raman scattering study of vibrational and magnetic excitations in \({\bf sr}_{2-x}{\bf la}_{x}{\bf iro}_{4}\). Phys. Rev. B 96, 115,138 (2017). https://doi.org/10.1103/PhysRevB.96.115138

  49. J. He, T. Hogan, T.R. Mion, H. Hafiz, Y. He, J.D. Denlinger, S.K. Mo, C. Dhital, X. Chen, Q. Lin, Y. Zhang, M. Hashimoto, H. Pan, D.H. Lu, M. Arita, K. Shimada, R.S. Markiewicz, Z. Wang, K. Kempa, M.J. Naughton, A. Bansil, S.D. Wilson, R.H. He, Spectroscopic evidence for negative electronic compressibility in a quasi-three-dimensional spin-orbit correlated metal. Nat. Mater. 14, 577 EP (2015). https://doi.org/10.1038/nmat4273

  50. N.N. Kovaleva, A.V. Boris, C. Bernhard, A. Kulakov, A. Pimenov, A.M. Balbashov, G. Khaliullin, B. Keimer, Spin-controlled mott-hubbard bands in \({{\rm lamno}}_{3}\) probed by optical ellipsometry. Phys. Rev. Lett. 93, 147,204 (2004). https://doi.org/10.1103/PhysRevLett.93.147204

  51. E. Gorelov, M. Karolak, T.O. Wehling, F. Lechermann, A.I. Lichtenstein, E. Pavarini, Nature of the mott transition in \({{\rm ca}}_{2}{{\rm ruo}}_{4}\). Phys. Rev. Lett. 104, 226,401 (2010). https://doi.org/10.1103/PhysRevLett.104.226401

    Article  Google Scholar 

  52. Z. Wang, Y. Okada, J. O’Neal, W. Zhou, D. Walkup, C. Dhital, T. Hogan, P. Clancy, Y.J. Kim, Y.F. Hu, L.H. Santos, S.D. Wilson, N. Trivedi, V. Madhavan, Disorder induced power-law gaps in an insulator-metal mott transition. Proc. Natl. Acad. Sci. 115(44), 11198–11202 (2018). https://doi.org/10.1073/pnas.1808056115. https://www.pnas.org/content/115/44/11198. https://arxiv.org/abs/www.pnas.org/content/115/44/11198.full.pdfhttps://www.pnas.org/content/115/44/11198.full.pdf

Download references

Author information

Authors and Affiliations

Authors

Contributions

PF, FB, PLF, and VB performed ARPES experiments. MC, MR, AC, and JB performed the calculations. PF, VB, DC, AF, and PT synthesized and characterized the samples. PF, VB, and MC wrote the manuscript, with feedbacks from all authors.

Corresponding author

Correspondence to Véronique Brouet.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 4668 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foulquier, P., Civelli, M., Rozenberg, M. et al. Evolution of the spectral lineshape at the magnetic transition in Sr\(_2\)IrO\(_4\) and Sr\(_3\)Ir\(_2\)O\(_7\). Eur. Phys. J. B 96, 42 (2023). https://doi.org/10.1140/epjb/s10051-023-00512-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00512-3

Navigation