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Abstract.
Price dynamics in stock market is modelled by a statistical physics systems: Ising model. A comparative
analysis of the historical dynamics of stock returns between the US, UK, and French markets is given.
Since the Ising model requires binary inputs, the effect of binarization is studied. Then, using the TAP
approximation method, external fields and coupling strengths are calculated. The fluctuation cycles of
coupling strengths have a remarkable corresponding relationship with the important period of the financial
market. The highlight of this paper is to verify the phase transition can also occur in the stock market and
it reveals the transformation of the market state. The numerical solution in this paper is consistent with
the exact solution obtained by Lars Onsager. Our findings can help to discover the economic cycles and
provide more possibilities for studying financial markets using physical models.

1 Introduction

The research on modeling financial price dynamics
is complex and attractive. In recent years, consider-
able attention from academia has been paid to this
area. Many scientists have applied physical theories and
methods to empirical research in economical phenom-
ena. One of the popular approaches is to consider a
financial market as a complex system. The complex sys-
tem is mostly used to describe the changing process of
a system, such as market price fluctuations. For exam-
ple, the stock market is a typical feedback system, in
which the interaction between stocks has been taking
place. The most famous example of a complex system
is the Ising model which was used to explain the phase
transition of ferromagnetic materials initially.

Nowadays, as a famous statistical physics system,
the Ising model can also be adopted to explain and
model the interaction mechanism of financial mar-
ket [2–6,8–10,12–14,16,18,22–24,26,28–30]. The Ising
model is popularly applied in the stock market [2–6,8–
10,12–18,20–24,26–30] and also be used in the study of
financial crash [12–14,26]. For example, Borysov ana-
lyzed the historical behavior of the parameters inferred
using exact and approximate learning algorithms within
Boltzmann learning framework. Properties of distri-
butions of external fields and couplings were studied
for different historical dates and moving window sizes
[2]. Bury provided empirical evidence that the finan-
cial network is accurately described by a statistical
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model which can be thought of as an Ising model on
a complex graph with scaled interaction strengths [4].
Zhang described interacting micromechanism for the
formation of the price and various properties of log-
arithmic returns for the financial model were inves-
tigated by some statistical analyses [29]. Some novel
mathematical methods are also utilized in explaining
and analyzing the stock market, such as the minimal
spanning tree [21,27,28] and cross-correlation matrix
[8,10,15,21,24,27,29,30]. Moreover, the Ising model
allows the identification of phase transitions as a sim-
plified model of reality, and phase transitions are also
observed in financial research [14,21,26,27].

In this paper, the stock market is treated as the Ising
model and parameters in the model are learned from the
real stock return time series. The Ising model contains
a large number of interacting spins and we consider the
pairwise interaction of the Ising model. These spins can
be expressed in two states (1 or −1), which represent
the state of stock at a certain time. The flowchart of our
paper is shown in Fig. 1. Since the Ising model requires
binary inputs, the first four moments of the distribu-
tion of average binarized versus raw and standardized
returns are compared. The stock data come from the
US, UK, and French markets. Then, using the TAP
approximation method, external fields and coupling
strengths are calculated. We are interested in describ-
ing financial markets in terms of physical quantities, so
statistical analysis about external fields and coupling
strengths is performed. At last, the phase transition in
the stock market is studied. When using stock data, the
phase transition can occur. Furthermore, phase transi-
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Fig. 1 The flowchart of our paper

tion points marked on the price curve can point out
the state transition of stock price. The numerical solu-
tion in this paper is consistent with the exact solution
obtained by Lars Onsager in 1944.

The main contributions of this paper are the fol-
lowing four points: First, using different mathemati-
cal tools, namely the correlation matrix, the covari-
ance matrix, and the eigenvalues, the first four moments
of the distribution of average binarized versus raw
and standardized returns are compared. The presented
results show that binarized returns behave similarly to
raw and standardized returns, and binarization pre-
serves the correlation structure of the market. Sec-
ond, novel financial price dynamics are established by
Ising model, where the Ising model is applied to define
the price interacting micromechanism between different
stocks and we only consider the pairwise interaction
of the Ising model. Some physical quantities, such as
the coupling strength and the external field are intro-
duced to provide a new perspective to observe the price
dynamics. Third, it is remarkable that we transform
stock data into two dimensions and obtain its criti-
cal temperature. To exhibit the phenomenon of phase
transition, the 2D Ising model is solved based on the
Metropolis algorithm. Three temperature expressions
for the stock market are constructed. It is the first time
to simulate the Ising model in 2D based on the stock
data using the Metropolis algorithm and we character-
ize the stock market temperature in a reasonable way.
The conclusion is that phase transitions can occur in
the stock market. Fourth, the phase transition points
are marked on the price curve, which reveals the trans-
formation of the market state. This makes the phase
transition phenomenon have practical significance in
the financial market and it is one of the innovations
of our paper. This is the first work to find the phase
transition point of stock prices.

The rest of this paper is organized as follows. In
Sect. 2, data, basic statistical analysis, approximation
method, and the Metropolis Hastings algorithm for
solving the 2D Ising Model are presented. Section 3
lays out experimental results. The effect of binarization
of stock returns is discussed. Some physical quantities,

such as the coupling strength and the external field are
calculated. Further, phase transitions in stock markets
are explored. Section 4 concludes the main findings.

2 Data and methodology

2.1 Data and basic statistical analysis

We study the historical dynamics of three major stock
indexes in the world: S&P500 (the United States),
FTSE100 (the United Kingdom), and CAC40 (France).
All stock markets apply the time series of daily closing
prices, Pi(t), i = 1, . . . , N . Here Pi(t) represents the
price of stock i on trading day t, and N is equal to 500,
100, and 40 respectively for three different countries.
The data span the period from Jan 1, 2006 to July
1, 2021, during which the global capital markets wit-
nessed a sharp rise and steep fall, providing sufficient
samples for research. The stock prices are converted to
logarithmic returns.

srawi (t) = ln [Pi(t)/Pi(t − 1)] . (1)

Next, we define some operations, and the average stock
return is defined.

s̄(t) = 1/N
N∑

i=1

si(t). (2)

Here si(t) can be srawi (t) which is defined above. It can
also be sstdi (t) or sbini (t), which is defined later. To
extract long-term trends from the time series, a simple
moving window (SMA) approach is employed. It func-
tions as a low-pass filter, averaging out high-frequency
components. Within the SMA approach, the time series
data is divided into multiple windows of size T . For each
set of chunks, one can denote averaging over time (his-
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Fig. 2 Differences between 〈si〉 and s̄(t). The former aver-
ages the prices of one stock over multiple days and it is used
to calculate the covariance matrix. While the latter averages
the prices of multiple stocks within a day, whose role is to
describe the situations in the stock market (see Fig. 5)

torical values).

〈si〉 =
1
T

T−1∑

t=0

si (t) . (3)

Let s = {s1, s2, . . . , sN}, here si is the return series
of each stock. Different statistical characteristics such
as covariance matrix, C(N × N) is used with the ele-
ments, cij is the element in covariance matrix C, i, j =
1, . . . , N .

C = (cij)N×N = Cov(si, sj). (4)

The covariance matrix must be positive definite, so
T ≥ N . In this case, correlation matrix Q(N ×N), is a
normalized covariance matrix with the elements, qij is
the element in covariance matrix Q, i, j = 1, . . . , N .

Q = (qij)N×N =
cij

σiσj
, (5)

where σ denotes standard deviation or volatility in
finance. Furthermore, to measure the asymmetry and
tailedness of the probability distribution, higher-order
moments such as skewness and kurtosis are denoted as
follows.

Skew (si) =

〈(
si − 〈si〉

σi

)3
〉

, (6)

Kurt (si) =

〈
(si − 〈si〉)4

〉

σ4
i

− 3. (7)

As mentioned in Abstract, the Ising model requires
binary inputs. Thus, the binarized version of the returns
is defined as follows.

sbini (t) = sign (srawi (t)) . (8)

Another common approach to deal with data is stan-
dardization.

sstdi (t) =
srawi (t) − 〈srawi 〉

σi
(9)

2.2 Definition of the problem

In this paper, the stock market is treated as the Ising
model and parameters in the model are learned from the
real stock return time series. The Ising model contains
a large number of interacting spins that can simulate
the investors and the flow of information among them.
These spins can be expressed in two states (+1 or −1),
and there are two common ways to represent entities in
the financial market as spins. The first case appeared
in Ref. [2–4,30] is that we consider a set of N market
indices or N stocks with binary states si(t) (si(t) = 1
for all i = 1, . . . , N). Here si(t) is the state of stock
i at time t. Therefore, the system configuration will
be described by a vector s = (s1, . . . , sN ). The binary
variables si(t) will be equal to +1 if the closeing price
today is larger than (or equal to) yesterday’s price and
equal to −1 if not. In ref. [5,8,10,12,13,16,17,23,24,
29], the spin can simulate the investor or the trader.
The stock market consists of N traders and each of
them can share one of two investment attitudes, buyer
or seller. The investment attitude si(t) is defined as
follows: if trader i buy the stock at a timestep t, then
si(t) = +1. If trader i, in contrast, is the seller of the
stock at a timestep t, then si(t) = −1.

Our work take the first way. After these spins are
expressed in two states (1 or −1), denoting spin up or
down, they are arranged according to a certain rule to
form a lattice. The adjacent spins influence each other,
and the interactions are determined by the coupling
strength. Note that we only consider the pairwise inter-
action of the Ising model. The 3-spin interaction and
the 4-spin interaction shown in ref. [1,7] are not used. In
the pairwise case, the objective is to have a model capa-
ble of reproducing statistical observables based on time
series for a particular historical period. The expression
for the objective is as follows.

〈si〉data = 〈si〉model , 〈sisj〉data = 〈sisj〉model ,

(10)

where i = 1, . . . , N and angular brackets denote statis-
tical averaging over time.

As mentioned before, spins in the Ising model si(t)
is the state of stock i at time t. It is defined as follows.
The state sequence si(t) is then used to infer the Ising
model interaction strengths and external fields.

si(t) = sbini (t) =
{

1, srawi (t) ≥ 0
0, srawi (t) < 0 . (11)

After the state of the stock is defined, an analogy
between the financial system and Ising model is pro-
posed. The binarized states of each stock in three stock
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markets will be mapped to a two-state Ising spin model
which leads to a pairwise interaction model.

The Ising model with N binary spin variables si = ±1
(i = 1, . . . , N) is constructed. The pairwise couplings
Jij determine the interactions between two adjacent
spins. Also a spin i has an external magnetic field hi

interacting with it. In the equilibrium case, the energy
of a configuration si is given by the Hamiltonian func-
tion,

HJ,h(s) = −
∑

〈i,j〉
Jijsisj − μ

∑

i

hisi. (12)

The notation 〈i, j〉 indicates that sites i and j are near-
est neighbors and

∑
〈i,j〉 represents the sum of nearest

neighbors. The magnetic moment is given by μ.

2.3 TAP approximation

Next, two methods reconstructing the interaction strength
and external fields of Ising model are introduced. The
first-order approximation within the mean-field theory
(nMF) gives,

JnMF = A−1 − C−1 (13)

hnMF
i = tanh−1 〈si〉 −

N∑

j=1

JnMF
ij 〈si〉 , (14)

where Aij =
(
1 − 〈si〉2

)
δij and δij is the Kronecker

delta. To improve accuracy of the approximation, the
diagonal element Jii which is usually discarded and par-
ticipates in the calculation of corresponding hi. It is
known as the diagonal-weight trick [25]. We abbreviate
the external fields with the diagonal element as h_diag.

Furthermore, to obtain the second-order correction
to the nMF approximation, the Thouless-Anderson-
Palmer (TAP) equations need to be solved. In 1977,
Thouless, Anderson, and Palmer (TAP) added a term
to the Gibbs free energy [18]. Thus, the covariance
matrix is revised,

(
C−1

)
ij

= −JTAP
ij − 2

(
JTAP

ij

)2 〈si〉 〈sj〉 . (15)

Then, the coupling strength and external field is calcu-
lated as follows,

JTAP
ij =

−2
(
C−1

)
ij

1 +
√

1 − 8 (C−1)ij sisj

, (16)

hTAP
i = hnMF

i − 〈si〉
N∑

j=1

(
JTAP

ij

)2 (
1 − 〈sj〉2

)
.

(17)

In this paper, we use the TAP approximation to calcu-
late the coupling strengths and external fields.

Fig. 3 2-dimentional lattice. The red arrows show the spin
direction. On each lattice point, there is an atom whose spin,
si, can be pointed either upward (si = +1) or downward (si
= −1). Parallel spins (↑↑) have less energy than spins with
opposite orientation (↑↓). Links between nearest neighbours
are seen as lines connecting sites and periodic boundaries are
shown for this small lattice. Note, for illustration purposes
the links across the boundary are not shown here but do
exist

2.4 Market temperature

To measure the investment enthusiasm in the stock
market, three formulas of market temperature, namely
Tsum, Tstd, and Tmax are proposed as follows. Pi(t)
represents the price of stock i on trading day t, i =
1, . . . , N , and N is the total number of stocks.

Tsum(t) =
N∑

i=1

(Pi(t) − Pi(t − 1)), (18)

Tstd(t) =

√∑N
i=1 (Pi(t) − Pi(t − 1) − Tsum(t)/N)2

N
,

(19)
Tmax(t) = max{Pi(t) − Pi(t − 1)}. (20)

As a result, the daily temperature of the market T is
defined in three ways based on the sum, standard devi-
ation, and maximum value of daily returns. It should be
noted that Eq. 18 and Eq. 20 allow sub-zero tempera-
tures. In fact, the normalized operation on temperature
data is carried out in Algorithm.1, ensuring that the
temperature data entered into the Metropolis Hastings
algorithm are all positive.

2.5 Solutions to the 2D Ising model

The one dimensional (1D) Ising model does not exhibit
the phenomenon of phase transition while higher dimen-
sions do. We now consider the two-dimensional Ising
model and an example are shown in Fig. 3. The self-
consistent equation is defined to obtain the solution of

123



Eur. Phys. J. B (2023) 96 :35 Page 5 of 21 35

Fig. 4 An illustration of solving Eq. 22. ‘a < 1’ corre-
sponds to T > Tc. ‘a > 1’ corresponds to T < Tc

the two-dimensional Ising model [11].

s̄ = tanh
(

μh

kT
+

zJ

kT
s̄

)
, (21)

where s̄ is the average of the lattice spins, tanh is the
hyperbolic tangent function, k is the Boltzmann con-
stant, T is the temperature, μ is the magnetic moment,
h is the external field, J is the coupling strength, z is
the number of neighbors of particle i. Consider the case
of no external magnetic field, i.e. h = 0 and let Tc = zJ

k .
Equation 21 reduces to,

s̄ = tanh
(

Tc

T
· s̄

)
. (22)

To solve Eq. 22, first plot an image of functions y = x
and y = tanh(ax), a ∈ R for observation. For zJ

kT < 1,
T > Tc, Eq. 22 has a unique solution s̄ = 0. The system
is in a disordered or the paramagnetic state. In this case,
there are no long-range correlations between the spins.
For zJ

kT > 1, T < Tc, Eq. 22 has three solutions s̄ =
0, s̄ = ±s̄0, where s̄ = ±s̄0 �= 0. The system magnetizes,
and the state is called the ferromagnetic or the ordered
state. This amounts to a globally ordered state due to
the presence of local interactions between the spin. The
system undergoes a second-order phase transition at Tc.
It can be concluded that Tc is the critical temperature
of ferromagnetic-to-paramagnetic phase transition.

In the case where the Ising model is two-dimensional,
it can be deduced that Tc = 4J

k based on the mean-
field approximation. Lars Onsager obtained the exact
solution for the two dimensional Ising model in zero

field in 1944 [19], that is,

Tc =
2.269J

k
. (23)

2.6 The Metropolis–Hastings algorithm

If the total number of sites on the lattice is N , since
every spin site has ±1 spin, there are 2N different
states that are possible. This motivates us to simu-
late the Ising model using Monte Carlo methods. The
Metropolis–Hastings algorithm is the most commonly
used Monte Carlo algorithm to calculate Ising model
estimations.

The one-dimensional (1D) Ising model does not
exhibit the phenomenon of phase transition while
higher dimensions do. Using the Metropolis algorithm,
the Ising model in 2D can be simulated. The main steps
of Metropolis algorithm are,

(1) Prepare an initial configuration of N spins.
(2) Flip the spin of a randomly chosen lattice site, and

calculate the change in energy ΔE.
(3) If ΔE < 0, accept the move. Otherwise, accept the

move with probability e−ΔE/kT .
(4) Repeat 2–3, until ensuring a final equilibrium state.

So far, the energy, magnetization, specific heat, and
susceptibility of the system have been estimated.

3 Results and discussion

The experiments and results are divided into three steps
and are organized as follows. In Sect. 3.1, the effect
of binarization of raw sequences is explored since the
inputs of the Ising model are binarized states. Sec-
tion 3.2 calculates the coupling strength and the exter-
nal field, and their properties are studied. Section 3.3
shows phase transitions can also occur in the stock mar-
ket.

Before all the experiments, four important periods in
financial markets are selected to observe changes and
they are highlighted with the light green background:

(1) the global financial crisis from Sept 1, 2007 to
Dec 31, 2008, the U.S. housing bubble and the
bankruptcy of Lehman Brothers occurred at that
time.

(2) European sovereign debt crisis (from Dec 1, 2009 to
Apr 1, 2012). During this period, the euro area, and
the IMF continued to provide economic assistance
to Greece and other countries.

(3) Geopolitical turmoil in 2018. On June 26, 2018, the
Queen approved the Brexit, allowing the United
Kingdom to leave the European Union. On August
23, 2018, the 16 billion tax list between China and
the United States came into effect.

(4) Covid-19 (from Jan 1, 2020 to Jul 1, 2021).
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Fig. 5 a Historical dynamics of the first four temporal moments of the distribution of mean market return. Top-bottom:
temporal mean, standard deviation, skewness and kurtosis calculated using SMA window of 20 days (approximately one
trading year) for the raw (s̄raw, blue), standardized (s̄std, green) and binarized (s̄bin, red) returns of S&P500 stocks. b
Correlations between binarized returns and other two returns have been around 1. Binarized returns behave similar to raw
and standardized returns over time

Fig. 6 a Historical dynamics of the first four temporal moments of the distribution of mean market return of FTSE100
stocks. b Correlations between binarized returns and other two returns have been around 1. Binarized returns are similar
to raw and standardized returns apart from years in 2009

3.1 Effect of binarization

From Eq. 11, the inputs of the Ising model are bina-
rized states, so whether the information about the mar-
ket trends in the binarized time series is preserved is
worth exploring. The mapping defined by Eq. 8 will cer-
tainly affect information contained in the time series.
With this aim, the historical evolution of the first four
moments of the distribution of average binarized versus
raw and standardized returns are compared.

As shown in Figs. 5a, 6a, and 7a, four temporal
moments concerning three countries are demonstrated
and the evolution of stock indexes in different coun-
tries is vividly displayed. In the highlight regions, for
example, during the Covid-19 period, the second-order

moment (the standard deviation) fluctuates extremely.
In Figs. 5b, 6b, and 7b, correlations between binarized
returns and other two returns are also calculated. Over-
all correlations have been maintained near 1, indicat-
ing that binarized returns behave similar to raw and
standardized returns. The results presented in the three
figures indicate that the binarized returns behave sim-
ilarly to the raw and standardized returns, preserving
dynamics of the first two moments and less so about
the third moment, while information about kurtosis is
lost for all periods. Furthermore, signatures of economic
cycles and frequency of market crashes are preserved in
the binarized time series.

The binarized returns need to be compared to the raw
and standardized returns further. Therefore, the covari-
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Fig. 7 a Historical dynamics of the first four temporal moments of the distribution of mean market return of CAC 40
stocks. b Correlations between binarized returns and other two returns have been around 1. Binarized returns behave similar
to raw and standardized returns

Fig. 8 a Historical dynamics of the first four moments of the distribution of off-diagonal elements of covariance (Craw,
blue) and correlation (Qraw, red) matrices of raw returns, and covariance matrix of binarized returns (Cbin, green) of
S&P500 stocks calculated using SMA window of 20 days. Top-bottom: mean, standard deviation, skewness, and kurtosis of
the off-diagonal elements of the matrices. The similarity between Qraw and Cbin is very high. Binarization makes scovariance
matrix similar to the correlation matrix of raw returns. b The correlation between Qraw and Cbin is around 1 except in
2008

ance matrix and correlation matrix of the raw returns
and the covariance matrix of binarized returns are cal-
culated. The first four moments of the elements in these
matrices are shown in Fig. 8. Only US data is used here
as a representative. It can be inferred that the covari-
ance matrix of the binarized returns becomes similar to
the correlation matrix of the raw returns. Indeed, their
off-diagonal elements follow similar distributions with
a very high correlation between their means. However,
the covariance matrix of the raw returns is less cor-
related by comparison. For higher-order moments, the
correlation is not so strong.

Studying the eigenvalue distribution of correlation
matrices for the original and transformed time series is

another way to explore effects of the binarization proce-
dure since it is well-known that for a random correlation
matrix, the distribution of eigenvalues is quite different.
So along with the results in Fig. 8, there is a strong cor-
relation between the correlation matrix of raw returns
and the covariance matrix of binarized returns, the his-
torical dynamic of the four largest eigenvalues is com-
pared in Fig. 9. All four values are well preserved and
the largest one, corresponding to the “market mode”,
is in remarkable agreement even if binarization is per-
formed.

To summarize the content of this section, the first
four moments of the distribution of average binarized
versus raw and standardized returns are compared
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Fig. 9 a Historical dynamics of the four largest eigenvalues of the correlation matrix of raw returns (green) and covariance
matrix of binarized returns (red) of S&P500 stocks calculated using SMA window of 20 days. The eigenvalues of Qraw and
Cbin also maintain a high degree of coincidence. Binarization preserves the market mode, which corresponds to the largest
eigenvalue. b The correlation between the eigenvalues of Qraw and Cbin is also around 1 except in 2017

Fig. 10 The first four moments of the couplings are about S&P500. Four moments of the couplings fluctuate extremely
in the highlight regions. The fluctuation cycles of coupling strengths have a remarkable corresponding relationship with the
important period of financial market

based on three mathematical tools, namely the correla-
tion matrix, the covariance matrix, and the eigenvalues.
By comparison, binarized time series capture statistical
properties and historical behavior of the original time
series well, laying a foundation for establishing the Ising
model.

3.2 Analysis of inferred parameters

Following the SMA approach with T = 20 trading
days (approximately one trading month), the histori-

cal evolution of the coupling strength, external field,
and external field with the diagonal element, that is
J , h, and h_diag are calculated for three markets. The
methodology is the TAP approximate learning meth-
ods described in the previous section. Four temporal
moments are shown in Figs. 10, 11, and 12. In the spe-
cial financial period, such as the global financial crisis
in 2008, the mean and variance of the three physical
quantities show relatively large fluctuations. Therefore,
the fluctuation periods of the three physical quantities
J , h, and h_diag correspond to important periods in
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Fig. 11 The first four moments of the external fields about S&P500. The standard deviation of the external field changes
significantly in special periods

Fig. 12 The first four moments of the external fields with the diagonal element about S&P500. The mean value and
standard deviation vary apparently in highlight regions

financial markets remarkably, helping to discover the
economic cycles and market crashes.

Next, two-step analysis for the three physical quan-
tities themselves are performed, which are observing
their distribution histograms and implementing the
Anderson–Darling test on the distribution, and calcu-
lating the Hurst exponent.

3.2.1 Distribution of inferred parameters and A–D test

As shown in Fig. 13, the coupling strength J for three
markets are all peaked, in which almost all J for the
French market are positive. Distributions of the exter-
nal field h for three markets are stacked near 0. In
addition, h for the UK market has a relatively wider
and flatten distribution, and it seems to be close to the
normal distribution. The bulks of the diagonal element
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Fig. 13 The distributions of physical quantities for three different markets. The red columns represent the distribution
of physical quantities, while the black curve fits a standard normal distribution. In these distributions, the distribution of
external fields of FTSE100 is the closest to the Gaussian (see Figure (e)). All these distributions do not possess heavy tails
which is common in financial time series

Table 1 Results of A–D test

S&P500 FTSE100 CAC40

A-D statistic p-value A-D statistic p-value A-D statistic p-value

J 199.98∗∗∗ < 2.2e − 16 239.87∗∗∗ < 2.2e − 16 329.31∗∗∗ < 2.2e − 16
h 150.95∗∗∗ < 2.2e − 16 4.7771∗∗∗ 7.938e − 12 194.84∗∗∗ < 2.2e − 16
h_diag 485.88∗∗∗ < 2.2e − 16 443.99∗∗∗ < 2.2e − 16 188.78∗∗∗ < 2.2e − 16

The numbers in the table are test statistics. *,**,***, represent significant under the significance level of 10%, 5%, 1%
respectively. Three physical quantities for three markets reach the significance level of 1%
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Fig. 14 Hurst exponent of physical quantities for three different markets

h_diag for three markets are also distributed concen-
tratedly.

For further understanding of the difference between
Gaussian distribution, the Anderson–Darling (A–D)
test is applied to the three quantities. The A–D test
is a modification of the Kolmogorov–Smirnov test to
verify if the data is from the normal distribution. The
Anderson-Darling test is defined as H0 : The data fol-
low a Gaussian distribution. H1 : The data do not follow
the Gaussian distribution. The results of the A–D test
are demonstrated in Table 2.

From A–D test results, there is a clear view that
all p-values are so close to 0. If the p-value is smaller
than 0.05, the null hypothesis can be rejected. There-
fore, three physical quantities including the coupling
strength, external field, and external field with the diag-
onal element do not follow the Gaussian distribution.
In the financial market, many returns do not satisfy
the normal distribution but show the characteristics of
sharp peaks and fat tails. The physical quantity we get
is the same as the return rate, and it does not satisfy
the normal distribution.

3.2.2 The Hurst exponent

The Hurst exponent is referred to as the index of depen-
dence. It quantifies the relative tendency and char-
acterizes the long-term memory of a time series. If
0 < H < 0.5, it is well known that these data in time
series have negative long-term memory properties, that
is, they have anti-persistence. A single high value will
probably be followed by a low value and the value after
that will tend to be high, with this tendency to switch
between high and low values lasting a long time into
the future. If H = 0.5, the data are completely inde-
pendent, and their correlation coefficient is 0, where the
time series can be considered as a Brownian motion. If
0.5 < H < 1, the data in the time series will have per-
sistent long-term memory property. A high value in the
series will probably be followed by another high value
and the values a long time into the future will also tend
to be high.

To get the dynamic Hurst exponent, the rolling-
window based approach is applied to investigate the
evolution of long-term memory property of the physical
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Fig. 15 An example of sliding window. The data in matrix
format contains information on trading days and stocks. The
element such as ‘S1D1’, represents the price status (1 or −1)
of the first stock on the first day. Here the length of the
sliding window is 2. On day 3, the data of the past two days
are used to calculate the coupling strength J

quantities and the rolling-window is set as 20 days and
moves forward in one-day intervals. Figure 14 demon-
strates the plots of dynamic Hurst exponent values of
the S&P500, FTSE100, and CAC40 over time, showing
the cyclical phenomenon behavior, namely, the Hurst
exponent will decrease continuously after a continuous
increase, and conversely, it will increase continuously
after continuous decrease. It is also observed that all
H-curves are above 0.5 horizons, indicating that the
data in the time series will have persistent long-term
memory properties.

3.3 Phase transition in stock market

Phase transitions are common in nature. The 1D Ising
model does not exhibit the phenomenon of phase transi-
tion while higher dimensions do. The 2D Ising model in
this paper is solved based on the Metropolis algorithm.
We are interested in two points: 1. Whether phase tran-
sitions can occur in the stock market. 2. Whether the
critical point can be obtained if phase transitions exist.
To perform the Metropolis algorithm, the FTSE100
index in the UK is selected as the dataset. The data
span the period from Jan 1, 2019 to Jan 1, 2021. Exclud-
ing the missing data, there are 89 stocks and 507 trad-
ing days in total. Steps of implementing the Metropolis
algorithm are as follows. Algorithm 1 shows the process
of obtaining the coupling strength and initial matrix
according to the sliding of the window over time. An
example of sliding window is shown in Fig. 15.

Algorithm 1 The Metropolis algorithm
Input: Sij , the state matrix, i = 1, . . . , N, j = 1, . . . ,M ,

representing the price information of i stock in j day,
w, the length of the sliding window,
steps, number of Monte Carlo sweeps.

Output: The energy, magnetization, specific heat, and sus-
ceptibility.

1: for each t ∈ [w,M ] do
2: The temperature in the stock market of day t is trans-

formed into two-dimensional as the state matrix of 2D
Ising model. The elements of the state matrix are all
1 or −1.

3: The market temperature is calculated and expressed
by three formulas Tsum, Tstd, and Tmax (see Eq.18,
Eq.19, and Eq.20). And we normalize the T by
2(T − Tmin/Tmax − Tmin) + 1. So the temperature
data ranges from 1 to 3.

4: The coupling strength J is calculated based on two-
dimensional data within a sliding window (time from
t−w to t). To observe Spontaneous Symmetry Break-
ing, the external field h is set to zero. Furthermore,
here J is transformed. Let J ′ = J + 1, and J is
replaced by J ′.

5: for each i ∈ [1, steps] do
6: Substitute the state matrix, temperature T, cou-

pling strength J and external field h into the
Metropolis Hastings algorithm to perform Monte
Carlo move ensuring a final equilibrium state. So
far, the energy, magnetization, specific heat, and
susceptibility of the system have been estimated.

7: end for
8: end for

The calculation of market temperature is one of the
highlights of this paper. In terms of the temperature
required by the Metropolis algorithm, we apply three
different formulas, which are defined in three ways
based on the sum, standard deviation, and maximum
value. The market temperatures and the index price of
the FTSE100 are shown in Fig. 16. In March 2020, due
to the impact of covid-19, stock index prices fell signifi-
cantly, and temperature fluctuations during this period
were also very large. Further, there are two-time points
of sharp rise. In May 26, 2020, TUIT soared 52.02%,
thanks to the collective rise of the Travel & Leisure
sector in Euro Stoxx. In Nov 9, 2020, Rolls-Royce rose
43.76% with a modest rise of 4.67% in FTSE100 on
the back of the news that a potential Covid-19 vaccine,
being developed Pfizer and BioNTech, revealed a suc-
cess rate of over 90% in its late-stage trials. Therefore,
three formulas Eqs. 18, 19, and 20 can reflect the situa-
tion and sentiment of the market.

Note that in Fig. 11, the J of S&P500 is extremely
close to zero, indicating that the coupling strength of
the financial time series is relatively small. And in
Sect. 2.5, there is a proportional relationship between
the critical temperature and the coupling strength.
In addition, due to the existence of absolute zero in
thermodynamics, all calculations should be carried out
above zero, so the coupling strength should be greater
than zero as much as possible. In Algorithm1, J ′ =
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Fig. 16 Top to Bottom: the index price of FTSE100, the temperature calculated by three formulas, and the coupling
strength J . In May 26, 2020, TUIT soared 52.02%. In Nov 9, 2020, Rolls-Royce rose 43.76%. In these two moments, the
temperature data fluctuated greatly

Table 2 Summary of three experiments

Experiment 1 Experiment 2 Experiment 3

Expressing temperatures Tsum (Eq. 18) Tstd (Eq. 19) Tmax (Eq. 20)
Histograms of temperature Figure 17a Figure 17b Figure 17c
Scatter graph Figure 18a Figure 18b Figure 18c
Results Figure 19 Figure 20 Figure 21

Fig. 17 Histograms of the temperature data based on three different formulas

J + 1, and J is replaced by J ′. It’s a simple calcula-
tion, but it is significant. Since J ′ is used as the cou-

pling strength value as an alternative, interference from
absolute zero can be avoided.
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Fig. 18 Scatter graphs describing the relationship between temperature and coupling strength. The red horizontal line
indicates J = 1

Fig. 19 Experiment 1. Temperatures are obtained by the sum of the intraday increase of each stock. When T = 2.3, the
phase transition is obvious

Three experiments are carried out according to the
three temperature expressions. Histograms of the tem-
perature data based on different formulas are shown
in Fig. 17 and Scatter graphs between temperature T
and coupling strength J are presented in Fig. 18. In the
range from 1 to 3, the temperature data calculated by

using Tsum is more uniform, similar to a normal distri-
bution. While the data calculated using Tstd and Tmax

is very concentrated around 1. For each J , there is a cor-
responding T , pairs of (J, T ) are considered. So Fig. 18
indicates the feedback between T and J , and their val-
ues are measured simultaneously.
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Fig. 20 Experiment 2. Because the data distribution is sparse near the critical temperature point, the phase transition is
not very obvious

The algorithm performs calculations at different tem-
peratures. Figure 19 shows the results in Experiment 1.
There are four subgraphs, showing energy, magnetiza-
tion, specific heat, susceptibility changes according to
different temperatures in the order from left to right,
top to bottom. By repeating the algorithm and contin-
uous heating, the system reaches thermal equilibrium
at temperature Tc. In this way, by calculating the aver-
age magnetization and specific heat of the system, the
curie temperature point of the system can be received.

(1) The energy increases monotonically with temper-
ature. As the temperature increases, the energy
increases (see Fig. 19a).

(2) Let the external field h = 0, when T → 0, in order
to keep the energy lowest, all lattice points tend
to the same direction, the whole system is either
downward or upward. The system is in the ferro-
magnetic phase and the magnetization is not zero.
When T → +∞, the thermal motion of the sys-
tem dominates, the direction of the lattice points
is random. The system as a whole is non-magnetic.
The magnetization is 0. The system is in the para-

magnetic phase and the system exhibits symmetry.
Now consider that when the temperature T gradu-
ally decreases from +∞, then the system must have
a certain temperature Tc. Above this temperature,
the system is non-magnetic, and below this temper-
ature, the system’s magnetism gradually strength-
ens. At temperature Tc, the system transforms from
a symmetric magnet to an asymmetric one, and this
is the Symmetry-Breaking. Since this breaking is
not caused by an external magnetic field, it is also
called Spontaneous Symmetry Breaking. Figure 19b
shows this Spontaneous Symmetry Breaking exists
near the temperature of 2.3.

(3) The specific heat is the first derivative of the tem-
perature and changes significantly near the critical
temperature Tc. When the temperature T < Tc,
the specific heat increases with the increase of the
temperature, and when T > Tc, the specific heat
decreases with the increase of the temperature.
According to observations, Tc ≈ 2.3 (see Fig. 19c).

(4) Tc is the critical point of phase transition. Before
the phase transition, the magnetic susceptibility
is almost 0, but after the phase transition, the
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Fig. 21 Experiment 3. When T = 2.3, the phase transition is not obvious

Fig. 22 The panels show situations of the lattice when the
Monte Carlo sweeps steps reach 1024. Two different colors
indicate the up and down states of the spins. These results
are based on different temperature conditions, ranging from
1.6 to 3.0

magnetic susceptibility increases rapidly until sat-
uration, which is the spontaneous magnetization
caused by the Spontaneous Symmetry Breaking (see
Fig. 19d).

Compared with Experiment 1 (see Fig. 19), the
results of the phase transition in Experiment 2 (see
Fig. 20) and Experiment 3 (see Fig. 21) are similar. The
difference between the three experiments lies in the dis-
tribution of temperature points. Because the data dis-
tribution is sparse near the critical temperature point,
the phase transition is not very obvious in Experiment 2
and Experiment 3. The conclusion of these experiments
is consistent, that is, phase transitions can occur in the
stock market. According to the numerical simulation of
this system, the critical temperature is around 2.3 for
a thermodynamic system when the mean value of cou-
pling strength J ′ is around 1. Therefore, the Eq. 24 is
established.

Tc =
2.3J ′

k
. (24)

Therefore, the numerical solution Eq. 24 based on the
Metropolis–Hastings algorithm for the two-dimensional
Ising model in zero field is almost consistent with the
exact solution Eq. 23 obtained by Lars Onsager in 1944.
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Fig. 23 Subgraphs A through F report the results of the energy versus time under different temperatures. In each subgraph,
the energy converges to −1

3.4 Further discussion on phase transition

In the previous section, we identify that the phase tran-
sition can occur in the stock market and Spontaneous
Symmetry Breaking exists near the temperature of 2.3,
indicating that the critical point Tc ≈ 2.3. In this
section, we discuss the thermodynamic equilibrium of
stocks, and at which time the phase transition occurs.

3.4.1 Thermodynamic equilibrium

The Ising model describes a magnet in a state of ther-
modynamic equilibrium, i.e., we are dealing here with
equilibrium phase transition. To confirm that the sys-
tem reaches an equilibrium level in the three experi-
ments in Sect. 3.3, we perform two steps as follow.
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Fig. 24 Subgraphs A through F report the results of the magnetization versus time under different temperatures. In each
subgraph, the magnetization converges to 1

First, we select different temperature conditions to
simulate the two-dimensional Ising model and the equi-
librium states are shown in Fig. 22. The Monte Carlo
sweeps steps is set to ‘1024’ and the temperature ranges
from 1.6 to 3.0. When the temperature is lower than 2.2,
all spins are aligned in the same direction. When the
temperature exceeds 2.2, the equilibrium state grad-
ually changes. The situations where not all spins are
equally oriented are shown. In conclusion, an increase
in temperature will affect the state of thermodynamic
equilibrium. The phase transition point is near 2.2, and
there is no hysteresis, which is consistent with the three
experimental results in Sect. 3.3.

Second, to check whether the system reaches thermo-
dynamic equilibrium, two physical quantities the mag-
netization and energy are examined. We start with an

initial configuration, flip the spin of a randomly chosen
lattice site, and then display the average magnetization
and average energy of each lattice site at the specified
temperature, as the system coarsens to its equilibrium
state. The number of Monte Carlo sweeps steps is set
to ‘1024’. As steps increase, the energy decreases grad-
ually and finally converges to -1 (see Fig. 23). When the
temperature is low (see Fig. 23a), the energy will con-
verge quickly; on the contrary, when the temperature is
high (see Fig. 23f), the energy will not converge easily.
In Fig. 24, the situations are similar. The magnetiza-
tion increases gradually at all temperatures, eventually
converging to 1. In conclusion, both the energy and the
magnetization reach the plateaus and we can assume
that the system reaches the state of statistical equilib-
rium.

123



Eur. Phys. J. B (2023) 96 :35 Page 19 of 21 35

Fig. 25 The phase transition points are marked on the price curve of the FTSE100. Top to Bottom: Results obtained
by three formulas Tsum, Tstd, and Tmax. After the phase transition point, the stock price rise

Note that what we give here is the analytical solution
of the convergence of magnetization and energy with
time, not an exact solution. This check is meaningful
sinces it shows how the magnetization and energy of
the system relaxes.

3.4.2 Phase transition points

According to the exact solution shown in Eq. 23, a phase
transition will occur at temperatures around 2.269.
When using the formula Tsum, we choose the date
whose temperature is the closest to 2.269 as the phase
transition point and mark this specific date on the price
curve using red dots (see Fig. 25). For the formula tstd
and tmax, we mark these dates in the same way.

The results shown in Fig. 25 are very consistent. The
phase transition points marked by the three tempera-
ture expressions are all between March and May 2020,
during which the market sentiment goes up, and the
stock price ushers in a continuous rise in the following
period of time. It can be concluded that the phase tran-
sition of the stock market reveals the process of stock
prices changing from low to high and market sentiment
transforming from cold to warm.

4 Conclusion

Since the Ising spin states require binary variables with
±1, the return time series of three major stock markets
are transformed using the sign function. The first four
moments of the distribution of average binarized ver-
sus raw and standardized returns are compared. Results

show the binary operation preserve the statistical prop-
erties and historical behavior of the original time series
well. The couplings and external fields are calculated
using TAP approximate algorithms. If the diagonal-
weight trick is used, the external fields with the diag-
onal elements are also obtained. Distinctions and spe-
cific characteristics between different markets can be
demonstrated through the distributions of couplings,
external fields, and external fields with the diagonal ele-
ment. The fluctuation periods of couplings and exter-
nal fields correspond to important periods in financial
markets remarkably, helping to discover the economic
cycles and market crashes. Properties of physical quan-
tities are researched. From the A–D test, these physical
quantities do not follow the Gaussian distribution. The
analogy between the Ising model and the stock market
has revealed the non-Gaussian properties of the stock
market interactions. Through Hurst exponents, physi-
cal quantities’ series have persistent long-term memory
properties.

The highlight of our paper is that phase transition
in the stock market is studied. The Ising model is
an attempt to model phase transition behavior in fer-
romagnets and the model allows the identification of
phase transitions as a simplified model of reality. The
2D square-lattice Ising model is one of the simplest sta-
tistical models to show a phase transition. So Metropo-
lis algorithm is implemented for the 2D Ising model. We
verify phase transitions can also occur in the stock mar-
ket and the critical temperature is around 2.3 for our
thermodynamic system. The numerical solution solved
in stock markets is consistent with the exact solution
obtained by Lars Onsager in 1944. Furthermore, the
phase transition points are marked on the price curve,
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which reveals the transformation of the market state
and the process of stock prices changing from low to
high. This makes the phase transition phenomenon have
practical significance in the financial market. In the
future, more research about phase transitions can be
explored.
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