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Abstract. While the size of functional elements in memristors becomes of the orders of nano-meters or
even smaller, the quantum effects in their dynamics can significantly influence their transport properties,
consistent with recent experimental observations of conductance quantisation in memristors. This requires
the development of experimentally accessible signatures of quantum behaviour in memristive systems,
such as a superposition of quantum states with different memristances. Here we discuss one such protocol.
Our simulations show that periodic projective measurements induce additional spectral components in
the response of quantum memristor to a harmonic input signal. Moreover, the response demonstrates a
resonant behaviour when the frequency of the projective measurements commensurates with the frequency
of the input. We demonstrate that observation of such harmonic mixing can be used as experimental
evidence of quantum effects in memristors.

1 Introduction

Memristors were first proposed back in 1971 [1] as
a logically necessary complement to the fundamen-
tal lumped circuit elements (resistors, capacitors, and
inductors). These elements parameterise the relations
between the dynamical variables of the circuit: current
I, charge q, voltage V and magnetic flux through a
closed contour (or, equivalently, the integral over time
of the voltage on a circuit element) ϕ. Memristors were
the “missing link”; its appearance restores the symme-
try in the set of fundamental circuit elements including
resistor, capacitor and inductor by coupling charge and
magnetic flux. The term (a portmanteau of “memory”
and “resistor”) reflects that a memristor can be con-
sidered a resistor, the resistance of which depends on
the cumulative q or ϕ [2]. Later, a more general termi-
nology was introduced, such as ”memristive devices”,
where the resistance is assumed to be a function of
some internal variable, which changes depending on the
voltage and current across the memristive element. [3]
In the following we use the term ”memristor” for both
Chua memristors and more general ”memristive sys-
tems”.

It is well known that reactive circuit elements have
their fully quantum analogues (see, e.g., [4]) and can be
realised via qubit-based structures, which demonstrate
quantum superpositions of states with different induc-
tances (capacitances). For lossy circuit elements, such
behaviour may seem impossible due to the inevitable
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dissipation, detrimental to quantum coherence. Nev-
ertheless, such a conclusion would be hasty. Here we
state that full quantum analogues also exist for active
circuit elements, i.e., resistors and memristors. In par-
ticular, these elements (quantum resistors and memris-
tors) can be put in a quantum superposition of states
with different resistances or memristances. This seem-
ingly paradoxical possibility is provided by the fact that
in a number of mesoscopic structures (such as point
contacts) the momentum and energy relaxation is con-
trolled by separate mechanisms with different tempo-
ral and spatial characteristics. The standard example
of this is given by the Landauer–Büttiker expression of
electric conductance between two bulk reservoirs con-
nected through a quantum scatterer in terms of the
latter’s scattering matrix [5], in the simplest case given
by G = e2

h |T |2 (T being the transmission amplitude).
While the conductance is determined by the elastic,

quantum coherent scattering of electrons, the relaxation
towards the equilibrium distribution takes place deep
in the bulk of the reservoirs spatially separated from
the scatterer. This produces two different time scales,
for momentum and energy relaxation of the electrons.
Only the latter necessarily destroys quantum coherence.
Therefore, a quantum scatterer in a superposition of
states with different scattering matrices can be legiti-
mately considered a quantum resistor. Similar consid-
erations will hold for an abstract quantum memristor.

The upper limit on the lifetime of such a super-
position, τ = 1/Γ, can be obtained from the result
by Averin and Sukhorukov [6], who showed that elec-
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Fig. 1 Schematics of our simulated system. A superposi-
tion of states of a quantum scatterer, S, imposes a super-
position of memristances

trons passing between two thermal baths through a
qubit-controlled point contact realise a continuous weak
readout of qubit’s quantum state with the rate Γ =
eV
h ln|T0T ∗

1 + R0R∗
1| where V is the voltage across the

contact, and T0,1, R0,1 are the transmission and reflec-
tion coefficients when the qubit is in the state 0 or
1, respectively. This result can be considered a quan-
tum elaboration of the Landauer–Büttiker formalism
[5], since the reversible scattering process, which deter-
mines the resistance, and irreversible processes of elec-
tron equilibration are separated both spatially and tem-
porally. In this paper we consider the case when the
weak readout rate Γ is low, and the collapse of the
quantum state of the system can be enforced by strong
projective measurements of the state of the system
(which is equivalent to measuring the voltage across
it) repeated at intervals significantly shorter than τ .

We analyse the nonlinear effects arising from repeated
measurements of the memristor. The proposed system
is essentially a Schrödinger’s cat, with the memristive
electrical circuit controlled by quantum switch. Spe-
cific physical implementations of this qubit-controlled
memristive device, which will be referred below as a
quantum memristor, will be considered elsewhere. For
now, we note that it can be formally represented by two
classical memristors in parallel and a quantum switch
sending electron pulse through either of them (Fig. 1).
We look at the effects of regular measurement on spec-
tral properties of the output of a proposed device.
We use the simplest mathematical model of quantum
memristor to better understand its expected behaviour
under the influence of noise. We consider a noise process
described via a gaussian function with a large standard
deviation, to ensure that our methodology is robust
enough to detect the signatures of transport in real-
istically unideal cases, suitable for practical implemen-
tation.

2 Classical memristors

First, consider the general case of a classical current-
driven memristance M at a time t. The memristance
depends on the state variables x, where M and x are
described by the following: [2]

V = M(x, I, t)I (1)
dx
dt = f(x, I, t) (2)

Here, in an agreement with what was stated above,
the voltage V is treated as the response of the mem-
ristor to the controlling current I(t). The function
M(x, I, t), without the loss of generality, can be rep-
resented as M(x, I, t) = M0 +M1(x, I, t). Then implies
that for a piece-wise smooth M1, one should expect a
linear response to a weak enough sinusoidal input signal
I(t) = I0 sin(ωst):

VC = I0M1(x, t) sin(ωst) + I0M0 sin(ωst) (3)

The methods detailed in this report can be utilised
for other peaks in the spectra, but their amplitudes may
not be as significant, leading them to be more sensitive
to noise. This method would also be appropriate for an
equivalent resistive system.

3 Quantum model

We are not concerned here with a specific realisation of
a quantum memristor (Fig. 1), though one can specu-
late that it can be achieved by introducing a quantum
scatterer into a Van der Waals heterostructure [7] or
a singularly charged pair of quantum dots, where elec-
trons in each state get transported to different memris-
tive filaments. The superposition of memristive states
that arises in such a system is due to a superposition in
position, akin to Young’s double slit experiment. Mea-
suring the state of the qubit (as clarified in the follow-
ing section) gives an eigenvalue j=0,1, corresponding
to the qubit states |0〉, |1〉, corresponding to transport
through memristor ’0’ or ’1’. Even though most of our
simulation are done for quantum switch described by
pure states, our approach can be easily extended to the
case when the switch is described by the density matrix
ρ parametrised by the component of the Bloch vector
(X,Y,Z) (see, e.g., in [8]).

Between measurements, the quantum switch evolves
according either to the Schrödinger equation for its
wave function, or, in the presence of dephasing and
relaxation, to the master equation for its density
matrix. Either will determine the probability of switch-
ing (Psw) at each measurement. We describe state
switching through pulse functions Πj(t). If the kth mea-
surement projects onto the state j, then during the pro-
ceeding time interval (between times [tmk,tmk+1]), we
had Πj = 1 and Π1−j = 0. This acts as an on/off switch
for each state, illustrated in Fig. 2. VCj is the voltage
response we would expect from the classical memristor
in state j, with no switching. This equation is how we
generate VQ from our projective measurements:

VQ(t) =
1∑

j=0

Πj(t)VCj(t) (4)

Pulse widths in Πj are characterised by the statistics
of measurement events and Psw. Psw acts as a mediator
between the classical and quantum cases. The Psw = 0
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Fig. 2 Square wave switching functions Πj for periodic
measurements. a Is an example Π0, with a 100% switching
probability, Psw = 1. The arrows demonstrate the period
of the square wave, 2π/ωm. b is an example with a lower
Psw = 0.4

case corresponds to a classical system of electron trans-
port through only one of the memristive filaments (no
superpositions of electron position). Psw depends on the
state at the measurement times.

We utilise a pseudospin Hamiltonian for the purposes
of this report (Eq. (5)) where the tunnelling amplitude,
Δ, and the bias, ε, had been chosen to give a high
switching probability:

H0 = −1
2
(Δσx + εσz) (5)

For a pure quantum switch, we have the evolution of
the wave function |ψ〉 = a0|0〉 + a1|1〉 described by the
Schrödinger equation

d

dt
|ψ〉 =

1
i�

H0|ψ〉 (6)

resulting in the set of equations:

i�
da0

dt
= − ε

2
a0 − Δ

2
a1 (7)

i�
da1

dt
= −Δ

2
a0 +

Δ
2

a1 (8)

The evolution of the Bloch vector is defined by the mas-
ter equation:

dX

dt
= ΔY − ΓϕX (9)

dY

dt
= −ΔX + εZ − ΓϕY (10)

dZ

dt
= −εY − ΓT (Z − ZT ) (11)

with Γϕ and ΓT being dephasing and relaxation rates,
while ZT = tanh(Δ/2kBT ) with the Boltzmann con-
stant kB and temperature T . The probability for the
system to switch to |0〉 state is P0 = a0a

∗
0 for unitary

and P0 = (1 + Z)/2 for non-unitary evolution, while
the probability of switching to state |1〉 is respectively
P1 = a1a

∗
1 or P1 = (1 − Z)/2. For Figs. 4 and 5b we

consider a pure quantum switch. In Fig. 5 we include a
case with decoherence, a non-pure switch.

We also consider examples where there is some uncer-
tainty in the measurement frequency to model realis-
tically imperfect measurement protocols. This uncer-
tainty is normally distributed around the average mea-
surement frequency ωm, by a variance of σ2

ω.
The spectrum of the output signal VQ(t) defined by

Eq. (4), ṼQ(ω), can be calculated as the convolution of
Π̃j(ω) and ṼCj(ω):

ṼQ(ω) =
1∑

j=0

Π̃j(ω) ∗ ṼCj(ω). (12)

To determine Π̃j(ω), we use our ideal model for Πj(t),
a periodic square wave of frequency ωm/2π (halved
since 4 measurements are needed for a full wave form,
see Fig. 2a). For this figure, we assume a 100% switching
probability, a suitable approximation, since we selected
a Hamiltonian to give a high switching probability (at
our measurement frequency).

The most significant peaks in Π̃j(ω) are at odd multi-
ples of ωm/2π. To find Π̃j(ω), we first found the Fourier
coefficients for Πj(t), before using this to calculate the
one-sided Fourier transform. We let ψj be the time-
average of Πj (for a high switching rate, this will be
≈0.5).

Using our general form for each memristive site
(Eq. (3)), we see two terms in the Fourier transform
ṼCj . We are only interested in the primary peak in
this work, so we let the Fourier transform of the first
term (I0M1 sin(ωst)) be Ṽ ′

j , we are not interested in the
specifics of these peaks in the spectra. We also assume
that the time-average of VCj is negligible.

Π̃j(ω) ≈ ψjδ(ω) + i

√
πωm

2

N∑

n=0

δ(ω − (2n+1)ωm

2 )
ω

(13)

ṼCj(ω) = Ṽ ′
j + iM0jI0δ(ω − ωs) (14)

By solving Eq. (12) at the primary peak, we get

ṼQ(ωs) ≈
1∑

j=0

M0jI0

(
iψj

− ...

√
πωm

2ω2
s

N∑

n=0

δ(ωs − (2n + 1)ωm

4π
)
)

(15)

From this, we expect resonant peaks in ṼQ(ωs) when
ωs = (2n+1)ωm

4π . This frequency mixing is characteristic
of the application of projective measurements, we do
not expect to observe this in the classical case.
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Fig. 3 Schematic diagram demonstrating the measure-
ment process. The qubit is collapsed at a time tm, and the
voltage is measured within the interval tm < t < tm + τ

4 Measurement

In our model, the memristance of the system is con-
trolled by the quantum bit, as is schematically shown
in Fig. 3, and the observed memristance is determined
by the qubit’s quantum state at the exact moment of
measurement, tm, before which it undergoes a free uni-
tary evolution. This description is literally true if the
projective measurement of the qubit state is performed
first, and the voltage across the structure is measured
once it is established, within τ after that. This is a pos-
sible approach, since the fast qubit readout is a well-
established experimental procedure [9].

A straightforward measurement of the voltage across
the system will also effectively read out the state of
the qubit, but the moment of the measurement will
be determined within the interval τ ′ < τ necessary
for establishing the memristance of the system in the
presence of a voltmeter. In either case, the requirement
tm � τ must be satisfied, which is the same require-
ment for the applicability of our model.

5 Simulations

We use powers of two for many variables, since having
2k data points is most efficient for calculations using
the fast Fourier transform. We find appropriate con-
vergence with a step size of dt = 2−16/ωm, where ωm

is the measurement frequency. (Or, in the cases with
noise, ωm is the average of the gaussians which deter-
mine the measurement frequencies.)

We simulate frequency sweeps to look for evidence
of the signal mixing described in Eq. 15. To look for
periodicity, we collect data up to the 10th harmonic of
ωm, 0< ωs < 10ωm. 29 consecutive measurement events
are analysed for each ωs.

We initiate quantum state of the switch as a0 =
1, a1 = 0 (that is |ψ〉 = |0〉) for pure system and Z = 1
for the mixed system. Next, using the 4th order Runge–
Kutta method, we numerically integrate Eqs. (8) for the

simulations of the pure state and (11) for the mixed
state, until the first measurements at tm = 2π/ωm. We
then estimate the probability of the system collapsing
to the ground state P0 or the excited state P1, using
this to simulate the collapse of the wave function by
comparing these values to a generated random number
between 0 and 1. The ground state has parameters a0 =
1, a1 = 0 for the pure case and Z = 1,X = 0, Y = 0
for the mixed case; the excited state has a0 = 0, a1 = 1
for the pure case and Z = 0,X = 1, Y = 1 for the
mixed case. This then identifies the initial condition
for the switch at the beginning of the next time inter-
val 2π/ωm < t < 4π/ωm. Continuing this process, we
define all switching events of the system. The memris-
tors comprising each coherent state of the Schrödinger’s
cat evolve according to the following (classical) equa-
tions:

I = I0 sin(ωst) (16)

q =
I0
ωs

(1 − cos(ωst)) (17)

VCj = I
(
M1j(x, t) + M0j

)
(18)

6 Results

First, we look for the emergence of signal mixing in
ṼQ(ω) as Psw increases. This demonstrates that Psw is
a mediator between the quantum and classical cases.
In Fig. 4, we see characteristic signal mixing of ωm and
ωs for mid and high values of Psw. [10] The Psw =

Fig. 4 Emergence of spikes in the spectra as the probabil-
ity of switching (Psw) increases for ωs=100Hz, characteris-
tic of the signal mixing we aim to observe. When Psw = 0,
there is no (relevant) real part to the spectrum. For low
switching probabilities, the real part mimics the imaginary
part, with a reduced amplitude. We see the emergence of
the characteristic peaks/troughs at mid-range probabilities.
At high Psw we see all resonances, the ’odd’ set (i.e., odd
n in ω/ωs = n/4) having a higher amplitude than the even
set
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Fig. 5 Real component of the primary peak as ωs is var-
ied. We see the signatures of the measurement process as
predicted, peaks in the spectra at the key frequencies of
ωs = 2n+1

4π
ωm. These are in addition to the peak at the

square wave frequency, ωs = ωm/2π. 5a shows the clear dif-
ferences between the classical and quantum cases. We sim-
ulated cases with pure and mixed quantum switches, i.e.,
the mixed switch exhibits some thermalisation. This lead to
a reduction in the significance of the key peaks, but their
position is still evident, especially compared to the simu-
lated pure case. 5b demonstrates this method can be used
in noisy systems, we still see peaks at many of the character-
istic frequencies when there is a 10% standard deviation in
the measurement frequency. We use Δ = 3450 and ε = 5 for
our Hamiltonian parameters. These values ensured a high
probability of switching across the trials conducted

98% data set is of a very high switching probability,
the switching function being close to that in Fig. 2a.
We do not illustrate the Psw = 0 example since there is
no real component to the spectra we are interested in.

Figure 5a demonstrates how the real amplitude of
the primary peak varies with ωs in three cases, the
classical (i.e., no state switching), the mixed (i.e., non-
unitary evolution guided by the master equation, with
low Γ) and the pure (with unitary quantum evolution).
As expected from Eq. 15, we see peaks in the unitary
case at odd multiples of ωm/4π, this is in clear contrast
to the classical case, with no such signal mixing. The
mixed (or non-unitary) case is intermediate between the
pure and classical cases.

For the mixed state, we set ZT = 0.1, and use a
low value for Γ, Γ = 1/100ωm. This, essentially, gave
a slight preferential collapse towards the |1〉 state at
each measurement time, compared to the pure case.
The effect is enough to reduce the significance of the rel-
evant peaks in the sweep (i.e., the peak-trough height)
but we still see a fair amount of evidence for the signal
mixing in Fig. 5a. Not all peaks are as clear compared
to the pure case, but there is periodicity evident.

The average probability of switching Psw across the
pure trial was 98.7±0.9%, for the mixed it was slightly
lower at 90.4±0.9%. Psw was high enough in both cases
for our model Πj function to be a suitable approxima-
tion. As such, we can confidently conclude that the pres-
ence of resonance at the predicted points is indicative
of the application of regular projective measurements.

Finally, we looked at cases with varying statistics
of measurement events, to test the robustness of this
methodology. We simulate trials where the standard
deviations in ωm is 5% and 10%. In other words,
the measurement frequencies are normally distributed
around ωm by 0.05ωm and 0.1ωm. Psw varies across the
5% trials as Psw = 0.889 ± 0.014, and across the 10%
trials as Psw = 0.810 ± 0.017.

Figure 5b demonstrates the differences in peak
heights and widths as expected. The higher σω, the
larger the deviation from the idealised case, especially
at high frequencies. In the 5% trial, the first 7 peaks
in the data set have similar positions to the σω = 0
trial. In the 10% trial, we see analogues for the first
four peaks. In both cases, we clearly see the effects of
signal mixing near the predicted frequencies.

7 Conclusions

We have simulated the voltage response of a simple
model quantum memristor and demonstrated the fea-
tures serving as signatures of its quantum behaviour.
We look for characteristic signal mixing of our two fre-
quencies of consideration, the measurement and source
frequencies, to demonstrate the effects of the quantum
measurement process on the system.

We have demonstrated how the probability of switch-
ing of the qubit-controlled memristive Schrödinger’s cat
affects the ’amount’ of quantumness we see in the volt-
age spectra. The higher the probability of switching,
the more obvious the frequency mixing in an individual
spectrum.

We also conducted frequency sweeps, varying the
source frequency and looking for resonance in the pri-
mary spectral peak (Fig. 5a). This alternate method to
find evidence of the frequency mixing would be partic-
ularly useful in noisy systems, where the signal in an
individual spectrum may be shrouded. And indeed we
see indications for quantum behaviour in the spectral
patterns for noisy and mixed systems. We find strong
evidence of frequency mixing even in the case where the
measurement frequency varies by 10%. This method is
stable enough that the characteristic resonance patterns
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are still evident across all trials we have conducted. This
is particularly important since noise is a crucial part in
the operation of some memristive systems, as well as
mesoscopic superconducting systems. The full impor-
tance of noise in such systems is out of our scope, but
for relevant reading, see, for example, Refs. [11–14].
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