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Abstract. The last three years have been an extraordinary time with the COVID-19 pandemic killing
millions, affecting and distressing billions of people worldwide. Authorities took various measures such as
turning school and work to remote and prohibiting social relations via curfews. In order to mitigate the
negative impact of the epidemics, researchers tried to estimate the future of the pandemic for different
scenarios, using forecasting techniques and epidemics simulations on networks. Intending to better represent
the real-life in an urban town in high resolution, we propose a novel multi-layer network model, where each
layer corresponds to a different interaction that occurs daily, such as “household”, “work” or “school”.
Our simulations indicate that locking down “friendship” layer has the highest impact on slowing down
epidemics. Hence, our contributions are twofold, first we propose a parametric network generator model;
second, we run SIR simulations on it and show the impact of layers.

1 Introduction

The study of spread on networks provides insight about
how any diffusible such as disease, idea or gossip propa-
gates on a network. Understanding the process of diffu-
sion, and the underlying network structure allows tak-
ing actions to change the pace of diffusion, such as
declaring community lockdown to slow down an epi-
demic.

Most real-life networks are very complex and large
to create an identical twin to study. This complexity
leads researchers working on networks to use either syn-
thetic networks whose attributes are similar to real-life
networks, or domain-specific and limited real-life net-
works. Despite their similarity to real-world networks,
synthetic networks’ ability to represent every real-world
interaction is limited. Moreover, domain-specific real-
world networks are either limited in size or are also too
specific to represent every aspect and interaction in life.

Recent COVID-19 pandemic has urged the research
on spread on networks [1–8] and shown the need to
model daily life interactions in a high resolution for
accurate predictions and right interventions.

In order to support and enhance such studies, we pro-
pose a parametric multi-layer network scheme to model
the everyday interactions between residents of a hypo-
thetical urban town, modeling individuals and interac-
tions using undirected edge-weighted networks.
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In our network, each individual in town is represented
by a vertex, and any physical interaction between two
vertices that may spread a disease is represented by an
edge with a weight corresponding to transmission prob-
ability. Since not all interactions have the same duration
or intimacy, different type of interactions pose different
transmission probabilities; hence, they are represented
by different edge weights. For this reason, we adopt
multi-layer network approach, where each layer � has
its own β� edge weights.

In each layer of the network, we represent a funda-
mental relationship in daily life. Following the bottom-
up approach, the network is built from the most inti-
mate and enduring relation to lesser ones. In total, the
network consists of 7 layers, namely household, blue
collar workplace, white collar workplace, school, friend-
ship, service industry, and finally, random encounters.

Moreover, vertices are placed onto locations on the
network and interact with their relative neighborhoods.
This approach of “locality” allows connecting vertices
in a realistic way, rather than randomly, so that they
make connections with other vertices by going to work,
school, shopping according to where they are, just like
the real world.

The network is defined by two sets of parameters. The
first set of parameters defines the static, broad structure
of the network, such as network size, the ratio of work-
force, the ratio of vertices that go to school. The sec-
ond set of parameters defines the distributions, values,
such as household size, number of students in a class-
room, number of friends a vertex has, are sampled from.
In this way, we obtain a diverse and non-homogeneous
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network, rather than a lattice-like network e.g., where
every vertex would live in a house of 4 vertices and have
10 friends. Both sets of parameters are obtained from
the real-world whenever possible and assumed plausible
values otherwise.

We believe this parametric multi-layer network scheme
reflects what happens in an urban town in high reso-
lution and can be used to simulate and inspect differ-
ent scenarios. The modularity of layers allows answer-
ing questions like “How helpful is it to turn schools
to remote?”, “What would happen if both schools and
white collar jobs turned to remote?”, and “What is
the most impactful layer to slow down an epidemic?”
by means of inspecting network attributes and run-
ning epidemic simulations. We confirm the representa-
tive power of our model in two ways. First, our SIR
simulation results are aligned with the most recent
research and the real-word data [2,9]. Second, our net-
works’ attributes are comparable to real-world net-
works, shown in Sect. 4.3 Moreover, even though the
focus of this work is on epidemics due to the recent
COVID-19 outbreak, multi-layer network scheme can
be used to study other fields on network science such
as idea and gossip propagation, social behaviors, and
game playing as well.

2 Related Work

Network science has been a widely studied area, espe-
cially in the last decades with the increased amount of
data. Despite the increasing availability of data, real-
world networks are often limited in size, specific to cer-
tain domains and static since they are often snapshots
taken in a particular moment. Some examples to widely
studied real-world networks are Zachary’s karate Club
(N = 34) [10], Zambian tailor shop (N = 39) [11],
professional relationships among managers (N = 21)
[12], relationships among Lazega Law Firm partners
(N = 71) [13], American football network (N = 115)
[14], primary school contact network (N = 236) [15],
where N denotes the number of vertices, or network
size. Evidently, real-world networks are frequently two
to three digits in size.

Models like Erdős–Rényi [16], Watts–Strogatz [17],
Barabási–Albert [18], and random geometric graphs in
hyperbolic spaces [19] are able to dynamically and scal-
ably generate networks whose attributes, such as small
diameter, short average path length, strong clustering,
and community structures are similar to real-world net-
works [20–22]. Hence, these models are commonly used
on network science research.

Several works studied various types of interactions
on networks, such as rumor and gossip propagation
[23,24], ideological opinion spread [25], and finally phys-
ical, infectious relations that can spread disease [26,27].
According to common approach in these works, indi-
viduals or agents are represented as vertices of the net-
work and interactions or connections between vertices
are represented as edges. Therefore, direct propagation

of an idea or a disease between two vertices is possible
only if they are connected via an edge.

Many researchers [5–8,28–31] working on epidemics
on networks considered models like SI, SIS, and SIR
where S, I, and R stand for Susceptible, Infected and
Recovered/Removed respectively. In these models, an
agent can be in one of the mentioned states at a time.
Initially, all agents in the population are in suscepti-
ble state. Then some selected agents are infected with
disease. Susceptible agents that contact infected ones
also become infected with transmission probability β.
Over time, infected agents either recover or die and get
removed from the system, with recovery probability γ.
From the perspective of research, both recovered and
removed represent the same state. Hence, they are used
interchangeably and denoted by R.

It is convenient to use weighted networks [29,30,32]
to represent the transmission probability between two
vertices as weighted edge. This way, it becomes pos-
sible to model heterogeneous interactions with various
transmission probabilities.

Additional to epidemic spread on networks, vaccina-
tion on networks is also studied [33,34], where vacci-
nation is represented by the removal of vaccinated ver-
tices from the network [35], hence rendering vaccinated
agents immune, unable to get infected and spread the
disease onto other agents.

Multi-layer networks allow representing different types
of interactions in different sub-networks or layers. Ref-
erences [36,37], worked on epidemics on multi-layer net-
works, where there are multiple graphs or layers that
share all vertices but not all edges. Each layer repre-
sents a different type of interaction and agents inter-
act through multiple layers. In both of these papers,
researchers use variations of SIS and SIR models on
top of two-layer synthetic networks, where layers in the
prior work are created by Molloy Reed algorithm [38].
Similarly, Buono and her colleagues [39] worked on epi-
demics on multi-layer complex networks, representing
various interactions through different layers, which are
also created by Molloy Reed algorithm. In this work,
vertices are partially overlapped; therefore, not every
vertex exists on every layer of the network. Follow-
ing these, Wang and his colleagues [31,40] worked on
awareness of epidemics in two-layer networks, gener-
ated by Erdős–Rényi and Barabási–Albert models. In
these two-layer network schemes, one layer propagates
awareness about the disease and the other layer propa-
gates the disease. Following the idea of separating the
epidemic spread and auxiliary means spread via differ-
ent layers, several recent works [5–8] studied the inter-
action of the two. Types of auxiliary means in these
works include disease information, vaccination behav-
ior, anti-vaccination propaganda, positive and negative
preventive information, and resources such as medical
resources. These works used Erdős–Rényi model to con-
struct the physical interaction network layer where the
disease spread occurs.

The impact of awareness on epidemics is studied in
single layer networks [41] as well, where both aware-
ness and disease spread over the same network. This

123



Eur. Phys. J. B (2023) 96 :16 Page 3 of 13 16

work considered Erdős–Rényi [16], Watts–Strogatz [17]
and Barabási–Albert [18] models when creating net-
works. Moreover, a recent work [42] studied evolution-
ary prisoner’s dilemma on two-layer networks where the
researchers used both synthetic and real-world multi-
layer networks. Six real-world networks with network
size ranging between N = 21 to N = 71 are studied. In
order to obtain larger networks, synthetic networks are
created using Erdős–Rényi, Barabási–Albert and Goh–
Kahng–Kim [43] models.

Being aware of the difficulty of modeling millions of
agents in individual level on a network, a model is pro-
posed to cluster vertices into groups and use these clus-
ters as the high-level representation of the network to
study epidemics on large scale via approximation [44].
The method is applied to three real-world networks
whose sizes vary between N = 64 and N = 236.

Last but not least, a recent survey [45], touched upon
the relevancy of social networks, internet search data,
and geographic location data to the epidemics, network
science and multi-layer networks.

2.1 COVID-19

COVID-19’s emergence and lockdowns interrupted social
life widely and brought about more research onto epi-
demics and networks. Despite their impact on slow-
ing down epidemics, lockdowns and quarantines caused
mental and psychological issues on the societies [46].
Naturally, several works studied the effectiveness of pre-
cautions and lockdowns. A relatively early work con-
ducted during the first phase of COVID-19 pandemics
[9] inspected the outcome of precautions taken against
COVID-19 using statistical methods on evidential real-
world data collected worldwide during 2020 and found
that cancelation of small gatherings is the most impact-
ful precaution to slow down COVID-19. Following, the
impact of collective behavior to end epidemics is stud-
ied [1], and it is suggested that blanket cancelation of
events that are larger than a critical size can suddenly
stop epidemics. Gosak and his colleagues [2] studied
whether lockdowns are effective at slowing down epi-
demics, running SIR model on both synthetic random
geometric graphs in hyperbolic spaces networks and
real-life network of size N = 58, 000, obtained by merg-
ing phone location data and two online social platforms.
The finding of this research is that lockdowns alone have
a low impact on slowing down epidemics. Even though
it is not a costly precaution like lockdown, the impact of
social distancing on epidemics is also studied by Gosak
and his colleagues again [3], where the problem in ques-
tion is formulated as a game theory on networks. In this
work, SEIR simulation on synthetic random geometric
graphs in hyperbolic spaces network is run, and the
results suggest that contact and social distancing is not
static as authorities and other researchers assume it to
be, and endogenous social distancing should be taken
into account.

Two papers from 2021 [47,48] worked on the trans-
mission of COVID-19 and reported that the transmis-

sion rates for COVID-19 were 0.13 and 0.17, respec-
tively. Having these quantities is especially important
in the perspective of research of epidemics on networks
with regard to COVID-19, since it allows leveraging
weighted networks with corresponding edge weights to
represent transmission probabilities.

The impact of vaccination and prioritization of vac-
cines in case of short supply is also studied [4], where
researchers inspected the efficiency of different vaccina-
tion strategies to contain COVID-19, by running SEIRS
simulation on synthetic random geometric graphs in
hyperbolic spaces network.

A recent multi-layer network paper [49] inspected the
impact of vaccination in France with focus on schools.
Despite being similar to our work, the authors’ version
has significant differences in network methodology as
well as the aim of the research, whereas our paper is a
more generic network generator.

Throughout the literature of network science, it is
observed that researchers very frequently work on either
limited in size and aspect, domain-specific real-world
networks, or synthetic random networks. Our model
aims to provide a scalable parametric network gener-
ator framework, discussed in Sect. 3, that represents
several aspects of physical and social interactions within
an urban town to endorse network science research.

The model proposed in this paper leverages multi-
layer weighted networks to build its layers. Its multi-
layer approach is similar to Buono’s [39] in terms of
partially overlapping vertices. Moreover, edge weights
represent the transmission probability [32], denoted by
β. We use a range of β values to simulate various scenar-
ios, including reported COVID-19 transmission rates
[47,48]. Each layer has its own edge weights β� to repre-
sent the various interactions with varying correspond-
ing transmission probabilities. Compared to the two-
layer approaches in the literature [6–8,31,39,40], that
use the auxiliary layer for the spread of information
and the other layer for the disease spreading; our model
consists of and spreads the disease on seven layers, with
each layer representing a fundamental interaction from
daily life, actuating different transmission rates. To our
knowledge, there is no similar work in the literature in
terms of (i) high resolution and representation power
offered by the number of layers, (ii) ability to repre-
sent diverse interactions in daily life through different
layers and transmission probabilities (iii) assignment of
vertices to locations on ring lattice and locality of inter-
actions via displacement.

3 Network generator

Assume a person is infected. He or she can infect the
household at home, colleagues at work, friends during
gatherings, cashiers and other people in the market,
and his or her neighborhoods in the area. These interac-
tions differ in dynamics such as number of connections,
the risk of transmission and the way they are created.
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Multi-layer network structure is leveraged to model dif-
ferent types of interactions separately and modularly.

3.1 Concepts

We begin by explaining the concepts on which we build
our multi-layer network. Note that the terms agent and
vertex are used interchangeably.

3.1.1 Interaction types and layers

Close contact between a susceptible and infected cre-
ates a potential for disease to spread from infected to
susceptible. This potential is implemented by the trans-
mission probability. However, not all real-life contacts
are equally intimate, or of equal duration, so they must
be assigned transmission probabilities accordingly.

We construct a network that is composed of seven
layers. Each layer represents a type of interaction that
can be associated with different levels of disease trans-
mission. Note that the vertices of the network are set
at the beginning. Therefore, layers only add new edges
between the vertices. We define layers according to dis-
ease transmission probabilities and lockdown possibili-
ties.

The first four layers are related to “containers” such
as house or school.

• (L1) Household layer corresponds to interactions
between households within a house. House has the
highest transmission probability among the contain-
ers since interactions are more intimate and pro-
longed. Note that each agent should have exactly
one house.

• (L2) Blue collar work layer corresponds to work-
place interactions between workers who still had
to go to work even during the pandemic lockdown
because their jobs require them to be on site. Some
examples to this type of work include work per-
formed by workers of sectors such as logistics, man-
ufacturing, and couriers and cashiers of markets and
suppliers, as well as doctors and nurses.

• (L3) White collar work layer, similar to blue collar
layer, corresponds to interactions at work, except
these interactions being occurring between people
who can work remotely via their computers such as
office employees, software developers, text transla-
tors. There is no difference between blue collar and
white collar workers normally, but these two layers
allow modeling lockdown and remote working.

• (L4) School layer corresponds to interactions between
inhabitants of a school, such as students, teachers,
and other employees that work in it.

At each layer, there are a number of containers, such
as homes in house layer, classrooms in school layer and
businesses in blue and white collar layers. Note that
every agent is associated with one home. A retired per-
son is only associated with its home. An agent may also
be associated with a second container, such as a class-

room if he or she is a student or teacher, or to a business
if he or she is a professional. For assignment of agents
to containers, see Sect. 3.1.4.

Agents in a container are clique connected, i.e., all
agents in the container are pairwise connected. The
number of agents in a container is called capacity.
Therefore, it is possible that a student, that is infected
by another student in the class, infects the households
in her home. And they go to work and infect their
coworkers.

The remaining three layers are “star” connected. In
star connection, a vertex i at the center is connected to
a group of vertices that are possibly not connected to
each other. The number of connections i makes is called
capacity. Interactions between workers in the service
sector, and their customers, any two friends, and any
random encounter are represented by star connections.
Even though we model friendship as a star connection,
it is known that due to triadic closure, friends of a per-
son tend to be friends as well [50]. We leave that to the
stochasticity of network generation.

• (L5) Friendship layer corresponds to interactions
between friends, such as a meeting between two
friends.

• (L6) Service industry layer corresponds to inter-
actions between the employees of service industry,
such as couriers and cashiers, and their customers.

• (L7) Random encounters layer corresponds to ran-
dom interactions between residents of a town that
take place while shopping, in a restaurant or cafe,
traveling or simply walking by on the street.

3.1.2 Locations

In real world, individuals’ locations on earth can be
represented by X coordinate, Y coordinate and time
information (ignoring the Z axis). Having an interest in
individuals’ location in a more broad sense as in where
they live in rather than their exact location on each
point in time, temporal dimension can be omitted. This
leaves us with X and Y coordinates.

Inspired by earlier models, [17], this can be further
simplified using an auxiliary 1D ring lattice network,
where each vertex is of degree k = 2. Then an individual
is represented by a vertex on the ring lattice with a
unique location denoted by its index. See the ring lattice
in layer 0 in Fig. 1.

3.1.3 Locality and Displacement

People tend to work close to their home, attend a
nearby school, shop and have friends in the neighbor-
hood. This leads us to the locality, which can be defined
as interactions taking place close to where people live.

In order to implement locality, we use a normal dis-
tribution with 0 mean and a 1D ring lattice. Vertices
are represented by indices in {0, 1, . . . , N − 1} as in the
1D ring lattice in layer 0 in Fig. 1. We define the dis-
tance between vertices i and j as the geodesic distance
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layer-X: container X

i fi(d)
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x−1 BX

x
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h+1
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layer-0: ring

N − 2N − 1 0 1

i d
fi(d)

Fig. 1 Multi-layer network scheme with vertices, location and layers of containers. Layer-0 is a 1D ring lattice (N, k) with
k = 2, that represents the locations of vertices and is used to implement displacement and measure distance. At the house
layer, displacement d = 0. Therefore, agent i is assigned to house h that covers its location, i.e., BH

h ≤ i < BH
h+1. At other

container layers-X, displacement d can be non-zero. Hence, while BX
x−1 ≤ i < BX

x , i is assigned to the container x since
BX

x ≤ fi(d) < BX
x+1

on 1D ring. Consider agent i in the 1D ring. Starting at
i, if we move d steps, which is called displacement, the
new location would be j = fi(d), where fi(d) = i + d
in (mod N). Note also that for small values of d, the
distance between i and j is small. That is, i and j are
local to each other.

We use this displacement to map an agent to a new
location and associate he or she to (i) the container that
contains that location for the clique interactions; (ii) the
agent at that location for the star case as follows:

3.1.4 Assignment to containers

Consider layer-X, such as blue collar. For agent i on X,
assign i to container k if BX

k ≤ fi(d) < BX
k+1, where

BX
k and BX

k+1 are the boundaries of the kth container
as in layer 0 and layer-X in Fig. 1. If there are NX

containers with capacities {cX
k }NX

k=1 then the bounds can
be calculated by

BX
0 = 0,

BX
k = BX

k−1 +
cX
k

∑NX

�=1 cX
�

N for k = 1, . . . , NX

as shown in layer-X in Fig. 1.
Setting the displacement d = 0 for house layer puts

each agent into its home in Fig. 1.
For other layers, displacement d is sampled from a

Gaussian distribution N (μXd, σXd), where μXd is set
to 0 to satisfy locality. Since d is drawn from a Gaussian

distribution, d can be a positive or negative real num-
ber. In order to handle real values of d, we need to refine
our mapping with rounding as fi(d) = round(i + d) in
(mod N).

Note that every agent must have a home. Therefore,
the total capacity of houses is N . Clearly not every
agent must be in a container in other layers. For exam-
ple, an agent may be in school layer but not in blue
collar layer. Hence, the total capacity of layers blue,
white collar, and school layers is strictly less than the
total population. That is, we have

∑NX

k=1 cX
k ≤ N .

3.1.5 Assignment to star connections

Consider layer-X such as friendship layer. For agent i
on X, the number of connections ki is sampled from
a Gaussian distribution N (μX , σX). For each connec-
tion, agent i is connected to some j = fi(d), where
displacement d is, as usual, sampled from a Gaussian
distribution N (μXd, σXd). Sampling d is carried out for
every connection separately.

See Table 2, Table 3 and Sec. A for discussion of
parameters NX , cX

k , μXd, σXd, μX , and σX .

3.1.6 Role assignment

Vertices are assigned to blue, white, and student groups
randomly according to their ratio in population, that
is ΓX . For example, in a network where 20 % of the
population goes to school, each vertex has 0.20 chance
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(a) (i) For real-life β values of Covid-19, significant portion of the population is
infected despite lockdowns. (ii) Friendship is the most impactful layer to spread a
disease.

(b) Once the disease is able to spread to above 0.20 coverage, additional layers cause
a decrease in time, as more edges result in better disease spreading.

Fig. 2 Coverage and time as a function of various lockdown scenarios for a range of β values. Y -axes show coverage and
time, respectively. Coverage is defined as the portion of the population infected at some point in the simulation. Time is
defined as the time elapsed until the end of the simulation. X-axis shows different scenarios. Base consists of Household layer
(L1), Blue collar work layer (L2), and Service industry layer (L6), since these three layers persisted throughout lockdown and
curfews. Layers W, S, and F stand for white collar (L3), school (L4), and friendship (L5) layers, respectively. Combinations
of these, such as Base+WF indicate denoted layers are active simultaneously. All indicates the pre-COVID-19 world with no
restrictions at all

to be labeled as a student. This process is carried out
for all containers and vertices.

In case the school layer is active, T teachers are
assigned to each class from the nearest work container
that contains at least T number of available employees
who are not assigned to another class.

3.2 Granularity of the model

The consequence of such a model is that every vertex
is unique. This depends on and is supplied by:

• Where the vertex resides and with whom he or she
lives with

• Whether he or she works/goes to school and con-
nections he or she makes in work/school

• The number and the identity of his or her friends
• Random connections he or she makes in his or her

neighborhood.

Moreover, all of these connections occur locally, that is,
mainly in the vertex’ neighborhood. Hence, individuals

are very different in terms of where they live, whom
they know in different networks (work, school, neither),
and to whom they can transmit disease.

3.3 SIR

Network connectivity depends on the choice of layers.
We remove the layers that we want to lock down. Note
that the house and blue collar layers are not sufficient
to obtain a connected network. Therefore, disease stays
in the connected component, which contains the initial
infected vertex. That is, it cannot reach the entire net-
work. Additional layers begin to connect the network.

Having a network that is ready to be inspected, we
conduct agent-based SIR simulations, starting from a
single infected vertex. At each timestep an infected ver-
tex i infects another vertex j with probability β, given
they are connected by an edge with a weight of β.
At the same time, infected vertices become recovered
with recovery rate γ. This is repeated until there is no
infected vertex in the network, and the simulation ends.
Then we record the coverage and the time. Coverage is
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defined as the ratio of agents that receive the infection,
and Time is how long it takes until the simulation ends.

Coverage depends on the initial agent. To account for
the worst-case scenario, we consider the agent with the
highest strength [51], that is, the sum of edge weights of
a vertex, from the innermost core [52–54] of the largest
component of the network. In this way, we look for the
worst case in the given scenario and stabilize the poten-
tial high variance in simulation results that otherwise
could be caused by random choice of initial infected ver-
tex. We use fast_SIR simulation from Epidemics on
Networks EoN package [55,56], and set recovery rate
γ = 1 for all experiments.

In order not to be specific to a network, which is
created by many stochastic processes such as random
number generation and sampling from different dis-
tributions, we create a new network in each run we
take. Therefore, in each run, we create a network with
selected parameters, find the best spreader vertex in
the largest component and start the SIR simulation by
infecting this vertex.

4 Experiments and Observations

Median of coverage and time of 300 realizations in this
setting are shown in Fig. 2a. We examine different sce-
narios starting with Base, which consists of layers L1,
L2, and L6. We consider this as a baseline scenario since
these three layers were the most fundamental layers,
persisting even in times of lockdown and curfews for
the survival of society.

Then we continue by adding one layer at a time, like
(Base+W), where we send white collar agents to work.
The combination of multiple letters followed by Base
indicates that layers corresponding to these letters were
active simultaneously in that scenario. For example,
(Base+WS) means white collars go to work, schools are
open with students and teachers going to classes phys-
ically, but curfews still existing with no socialization
with friends or neighbors, and no traveling.

4.1 Coverage

We start with reporting coverage, the ratio of infected
vertices over all vertices, in Fig 2a. As expected, for
low values of β, Base network by itself is not enough
to obtain disease spread. Fig 2a indicates that we need
all layers (All) in order to reach a nonzero coverage for
β = 0.025. We need to increase β value to 0.125 in order
to get nonzero coverage for Base layers only. If we con-
sider adding one single layer to the Base, friendship is
the first layer to produce nonzero spread at β = 0.05. At
a higher value of β = 0.075, the Base and school pair
(Base+S) follows. Then comes Base and white collar
(Base+W) layers. In fact, the Base and friendship com-
bination (Base+F) provides the highest coverage com-
pared to all other pairs of single layer on top of Base,
for β > 0.025. Considering Base and two other layer

combinations, Base, friendship, and school (Base+SF)
combination has the highest coverage.

Considering the reported COVID-19 transmission
rates β = 0.13 [47] and β = 0.17 [48], important obser-
vations of Fig. 2a are:

• Disease is able to reach a significant portion (�
40%) of the population despite complete lockdown
Base when β > 0.1.

• True outbreak with coverage larger than 0.8 occurs
in scenarios that include friendship layer when β >
0.1.

• Friendship layer (Base+F) is the single most impact-
ful layer, and even combined white collar and school
layers (Base+WS) are not as effective at spreading
disease.

• Remote work (Base+SF) is not very effective in
slowing down disease compared to remote school
(Base+WF) or restricting socialization with friends
(Base+WS).

• Majority of the population is infected for all sce-
narios except Base, with reported COVID-19 trans-
mission rates β = 0.13 and β = 0.17. The spread
reaches almost the entire population when friend-
ship layer is active.

• For high values of β > 0.125, we observe a satura-
tion above 0.8 coverage for Base with any two or
more layers.

4.2 Time

Then we inspect the time in Fig. 2b to understand how
long it takes to obtain the corresponding coverage val-
ues. We observe two distinct patterns.

• For β values larger than 0.10, addition of each layer
results in a reduction in time. This is because each
additional edge results in a network that is more
connected than before. As a result, as observed in
Table 1, diameter and average shortest path length
of the network decrease. Consequently, the disease
spreads to the rest of the network faster, and the
simulation ends more quickly.

• For β values less than 0.125, time first increases,
then decreases. What is different here is the initial
increase. It happens because the disease is able to
spread to significantly more vertices for the first
time with the introduction of the corresponding
layer(s). Looking at the corresponding coverage val-
ues in Fig 2a, we observe that the disease was unable
to infect more than 0.20 of the population prior to
that. Hence, the reason the time increases with addi-
tional layer(s) is because the disease spreads to a
larger portion of the population, and this takes time.
Once it reaches above 0.20 coverage, additional lay-
ers allow faster spread and lower time values.

These two patterns are observed with a shift in lines
for different β values. This is expected behavior since
higher beta values result in faster disease spreading.
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Table 1 Network Attributes

Network Attribute [L1] [L1-L2] [L1-L3] [L1-L4] [L1-L5] [L1-L6] [L1-L7]

Size of largest component 0 % 47 % 83 % 96 % 100 % 100 % 100 %
Diameter 1.00 38.44 24.78 18.71 9.43 7.45 6.77
Average shortest path length 1.00 16.65 11.32 8.31 4.81 4.14 3.61
Average clustering coefficient 0.66 0.65 0.65 0.70 0.18 0.12 0.05

4.3 Network Attributes

In this section, network attributes are inspected as lay-
ers are added up and are reported in Table 1. The
leftmost column indicates the inspected attribute and
other columns indicate the layers that are present, such
as [L1-L3], which means the first three layers are active
and the other four layers are not. Reported numbers are
the average values for 300 networks that are generated
with the same exact parameters, which are discussed in
detail in Sec. A. In case the network is not connected,
the attribute is measured for the largest component of
the network.

In the case of [L1], the network consists of discon-
nected components, hence size of the largest component
as % is approximately 0, and the diameter and average
shortest path length for the largest component are 1. It
is observed that [L1-L3] is sufficient to connect 83 % of
the vertices. Further layers improve the connectedness
of the network, increasing the size of the largest com-
ponent and decreasing diameter and average shortest
path length.

The network exhibits strong clustering structure for
four phases of layers, starting at [L1] and ending at [L1-
L4]. The addition of L5 causes a significant drop. This
behavior is expected since L5 is the first layer that is
not container type, and it connects a vertex to several
vertices that are part of several containers.

We believe that it is more plausible to take [L1-L5]
into account when comparing the proposed model’s net-
work attributes to real-life network attributes rather
than [L1-L7] or [L1-L6] since L6 and L7 represent expo-
nentially weaker relations as explained in Sect. 1, that
are ignored in real-life networks. Herewith, inspect-
ing the properties of [L1-L5], it is observed that our
model successfully generates networks that exhibit sim-
ilar properties to real-life networks, namely small diam-
eter, and average shortest path length and high cluster-
ing coefficient [20–22].

4.4 Role of other parameters

In Table 3, it is observed that most of the parameters
are empirical, that is, they come from real-life statistics.
The rest are plausibly assumed values. In order to see
the impact of assumed parameters, we conduct addi-
tional experiments where we examine the roles of (i) μ
of layers 6 and 7, (ii) σ of layers 2 to 7, and (iii) σ0.
We have conducted our experiments by (i) increasing
and (ii) decreasing the values in Table 3, by 50%. Then

we run the same SIR simulation to see their impact on
coverage and time. It is observed that

• Increasing μ and σ for layers 6 and 7 allows the
disease to spread better, and vice versa.

• Increasing σ for layers 2 to 5 allows the disease to
spread better as well. However, its impact is more
significant compared to the modification of μ and σ
for layers 6 and 7. This is due to two reasons. First,
an increase in connectivity of four layers makes more
impact than two layers. Second, β values of the first
five layers are significantly larger than the last two
layers.

• Similarly, increasing σ0 allows the disease to spread
better, and vice versa. This is because connections
to further corners of the network results in a smaller
average shortest path and better connectivity.

Overall, it is intuitive that more edges to distant ver-
tices allow better transmission. However, we find that
the effect of these parameters are relatively insignifi-
cant as they do not impact the results for real-life β
values. Moreover, the characteristic of the figures was
not affected by these parameters, that is, the relative
impact of each layer. For this reason, we do not report
additional figures for these experiments. Conclusively,
change in these parameters do not change the main
findings in this work.

5 Discussion

Evidential results from real-world data show that the
top two most effective non-pharmaceutical interven-
tions (NPI) against COVID-19 are small gathering can-
celation and closure of educational institutions [9]. This
is consistent with the results of our model, where the
most important layer is socialization with friendship
layer, followed by the school layer. The high impact
of friendship layer arises from two reasons. First, it is
an intimate relation with high a transmission rate. Sec-
ond, and more importantly, it connects clusters of house
and work containers that are otherwise disconnected or
weakly connected. Both concepts are explained in detail
in Sect. 3.

Following that, Gosak’s recent work [2] onto the effec-
tiveness of community lockdowns indicates that lock-
downs are effective only if communities in the network
are disjointed. This is aligned with Fig 2a where dis-
ease is able to spread to about half of the network for
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reported COVID-19 β values, 0.13 and 0.17, even in the
case of Base.

5.1 Limitations

Predecessor–successor edges. Our model does not
take time into account in terms of predecessor–successor
edges. Suppose a susceptible vertex i contacts another
susceptible vertex j. Then i contacts the infected ver-
tex k, and gets infected. In this scenario, i is infected
after contacting k. Therefore, he or she cannot infect j
because i was not infected back then. Our framework
does not model this type of time dimension when cre-
ating edges.

Gaussian distribution. We use a set of parame-
ters, some of which define distributions that are used
throughout network creation process. If a distribution
is known, we use it, as in the case of household size dis-
tribution, which is right-skewed Gaussian distribution
[57]. If it is not known, we assume it is Gaussian.

Locality. In our model, most of the interactions pre-
fer locality, that is, an interaction between two distant
vertices is unlikely compared to an interaction within
the neighborhood. Therefore, we assume that all dis-
placement measures come from Gaussian distribution
with μd = 0 and σd = 1000 for all layers. We have no
information about how strong locality is for different
layers in real life.

Exponentials of β. We assume different types of
interactions have different β transmission probabilities
and simplify this by using exponentials of β in differ-
ent layers. In this way, β decays rapidly from intimate
relations to short-duration ones. This is plausible when
comparing a contact of 8 h with one of 30 s, but it is
still an assumption.

5.2 Future Work

Diffusible spread on networks. Even though the
experimental focus in this work has been onto COVID-
19 due to the recent pandemic, proposed model can
be used to inspect the spread on networks of virtu-
ally any diffusible such as disease, gossip, idea. Para-
metric weighted network structure especially facilitates
research on disease spread, e.g., future variants of
COVID-19 with corresponding transmission rates.

Vertex assortativity. We assign vertices to houses
and create friendship connections randomly, but it may
be more realistic to consider assortativity [58] when
building these relations as it may be more likely that
similar vertices will live together and befriend each
other as a result of socioeconomic and demographic fac-
tors.

Multiple initial infected agents. Our model
starts with all agents in susceptible state except one
infected. We try to select the infected one among the
agents with the largest spread capacity. The study of
initial multiple infected vertices is left for future work.

Multiple towns. This model is designed to inspect
single town scenarios in high resolution. To represent

a larger-scale real world, multiple towns can be gener-
ated with an additional layer where vertices of a town
will make connections with vertices in another town
to represent travel. Such a model can help understand
the transmission of disease between towns and countries
[59].

Advanced variants of SIR. In this work, we used
the simple SIR model. More sophisticated variants, such
as SIRS, SEIR and MSIR, can be run on our model for
more detailed and realistic analysis of disease spreading.

6 Conclusion

Witnessing the absence of a high-resolution network
generator in literature, we offer a parametric multi-
layer undirected weighted network scheme to model a
hypothetical urban town where individuals and their
interactions are represented as vertices and weighted
edges, respectively. Multi-layer networks are utilized to
represent various interactions with different transmis-
sion rates, each layer corresponding to a different fun-
damental relation in everyday life. The layered archi-
tecture makes it possible to lock down different combi-
nations of layers to model scenarios like remote work,
remote school, and curfews. First, we run SIR simula-
tions on generated networks for different lockdown sce-
narios and show that the friendship layer is the most
impactful layer to slow down epidemics. Second, we
inspect and compare our model’s generated networks’
attributes to real-life networks. It is observed that our
model’s attributes and simulation results are aligned
with real-life data and the most recent research. This
indicates the strength and realism of our network gen-
erator model and stimulates network science research.
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Appendix A Setting parameters

Network generation requires a number of parameters. Start-
ing by creating a network with NH = 10, 000 houses, which
corresponds to a network of approximately N = 26, 400
vertices, we use statistics from the US whenever available
and assume plausible values for those that are not. Arbi-
trary choice of NH = 10, 000 is due to the feasibility of
computation, hence larger networks can be created with an
additional cost of computation and memory. Collected and
assumed parameters are shown in Tables 2 and 3.

A.1 Layer 1. Household

According to ref [57], the average number of households in
Turkey is 2.53 with a skewed normal distribution, which is
defined by f(α = 3.96, ξ = 1.22, ω = 1.75) [72] with parame-
ters shape, location, and scale, respectively. According to ref
[60], the average household size for the US in 2020 is 2.53.
Since we do not know the true distribution of household
size for the US but expect it to have very similar charac-
teristics to the distribution for Turkey, which has the same
mean, household size is determined by sampling from this
distribution.

Since household connections are the most intimate with
the highest transmission probability, we assume an infected
vertex will surely infect others in its home. Therefore, we
set β1 = β0 = 1.

A.2 Layers 2-3. Work

In this work, differentiation between blue and white collar
layers exists solely to be able to modularly model employees
who work from home during a lockdown. Hence, the only
difference between blue and white collar layers is their ratio
in population, ΓW and ΓB , and other parameters are the
same for both groups.

According to references [64–66], the number of people
interact within a workplace is 9.8, 8 and 5, respectively.
We use the mean of these three values, 7.6, as our μW and
μB parameters, and assume σW and σB to be 3.

Prior to COVID-19, 48 % of the population was in the
workforce in the US [61,62]. This ratio is our baseline when
creating jobs and employees. As of January 2021, 56 % of the
workforce worked remotely [63]. Using these two data, we
obtain the ratios ΓW = 0.48 · 0.56 = 27 % and ΓB = 0.48 −
0.27 = 21 % for white collars and blue collars, respectively.
Hence, we create workplaces and vertices of white and blue
according to these parameters.

Work relations are not as intimate as households, but
employees still spend several hours a day together, thus we
set β2 = β3 = β1.

A.3 Layer 4. School

Even though a school consists of several classrooms where
students may also interact and play with students outside
the classroom, this is a rather weaker and less likely relation
compared to in-class relations, so it is neglected for simplic-
ity and only the interactions in-classroom are modeled in
this work.

Ref [67] indicates that ΓS = 24.7 % of the population
was enrolled in schools nationwide in 2017. Ref [68] provides
the average class size for states in the US. Taking the mean
across this sheet for both axes, we obtain μS = 19.6. Having
no information about this distribution, we assume σS = 3.
Although the number of teachers in a classroom depends
on the education level and other factors, we simplify this to
T = 3.

School relations are very similar to work relations in terms
of duration and being in containers, so we set β4 = β1, as
well.

A.4 Layer 5. Friendship

The average number of friends a person varies according
to different sources [69,70], being 8.6 and 16, respectively.
We choose the average of the two and set μF = 12.3, and
assume σF = 5, which allows both small and large number
of friends for different vertices.

Assuming that the friendship relation is at least as inti-
mate as work or school layer, we set β5 = β1.

A.5 Layer 6. Service industry

In addition to the first and second layers, one last layer per-
sisted throughout lockdown, virtually everyone still need-
ing essential services, such as foods, logistics, health care.
Consequently, potentially everyone made connections with
workers in these businesses, such as cashiers and couriers. In
fact, workers of these essential services were in contact with
many people a day. The ratio of service industry workers in
population is denoted by ΓC .

The US Bureau of Labor Statistics provides detailed fig-
ures on the US in terms of headcount and demographics
for each sector in detail [71]. According to our definition,
which is trivially a subset of blue collar workers, the service
industry consists of ‘Wholesale and retail trade‘, ‘Taxi and
limousine service‘, ‘Couriers and messengers‘, ‘Real estate
and rental and leasing‘, ‘Veterinary services‘, ‘Services to
buildings and dwellings‘, ‘Health care and social assistance‘,
‘Accommodation and food services‘, ‘Other services, except
private households‘ elements in the “cpsaat2020” table. The
total number of people employed in these services divided
by the total workforce corresponds to 20 % of the popu-
lation. However, this is not very accurate for two reasons:
First, ΓB = 21 % already, and blue collar work is not almost
entirely made of service industry. Second, not all employees
in these sectors are in fact blue collar workers. Therefore, to
make it more realistic and plausible, we multiply this 20 %
by a coefficient of 3

4
and obtain ΓC = 15 %, which defines

the number of employees in the service industry who are in
active contact with customers.

Since we have no statistical data on how many contacts
a service industry worker makes in a given time interval,
we assume μC = 50 and σC = 20, which has the ability to
represent a wide range of jobs.

Compared to other relations, contact between the service
provider and customer lasts much shorter. Therefore, we set
β6 = β2, which results in an exponentially lower transmis-
sion probability than earlier layers.
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Table 2 Parameters defining layer 1

Parameter Value Description

NH 10,000 Number of houses
α 3.96 Shape of household size skewnorm distribution [57,60]
ξ 1.22 Location of household size skewnorm distribution [57,60]
ω 1.75 Scale of household size skewnorm distribution [57,60]
T 3 Number of teachers assigned per class

Table 3 Parameters defining layers 2-7, where μ0 = 0 and σ0 = 1000

Layer X ΓX μX σX μXd σXd βX

2: Blue workforce B 21.0 % [61–63] 7.6 [64–66] 3 μ0 σ0 β1

3: White workforce W 27.0 % [61–63] 7.6 [64–66] 3 μ0 σ0 β1

4: Students S 24.7 % [67] 19.6 [68] 3 μ0 σ0 β1

5: Friendship F - - 12.3 [69,70] 5 μ0 σ0 β1

6: Service industry C 15.0 % [71] 50.0 20 μ0 σ0 β2

7: Random encounters R - - 50.0 20 μ0 σ0 β3

A.6 Layer 7. Random Encounters

Interactions people make in daily life do not consist of
relations between households, colleagues, students in class,
friends known, or cashiers in local stores only. Random
encounters with unknown people occur daily during shop-
ping, traveling, or simply walking by another person.

We also have no prior information about the number of
random encounters, so we assume μR = 50 and σR = 20.

We believe random encounters have even a shorter dura-
tion with lower transmission probability compared to six
layers defined so far. Thus, we set β7 = β3 with an even
lower transmission probability.

A.7 Locality

We assume that displacement d for locality comes from a
Gaussian distribution N (μ0, σ0). We set μ0 = 0 so that
displacement can be either positive or negative. We assume
that σ0 = 1000 for all layers 2–7.
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15. J. Stehlé, N. Voirin, A. Barrat, C. Cattuto, L. Isella,
J.-F. Pinton, M. Quaggiotto, W. Van den Broeck, C.
Régis, B. Lina et al., High-resolution measurements of
face-to-face contact patterns in a primary school. PloS
One 6(8), 23176 (2011)

123



16 Page 12 of 13 Eur. Phys. J. B (2023) 96 :16
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