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Abstract. I study the heat transfer in systems of weakly interacting particles at low confining pressure in
the normal atmosphere. The particles have surface roughness with self-affine fractal properties, as expected
for mineral particles produced by fracture, e.g., by crunching brittle materials in a mortar. I show that
for small particles (say < 10 μm) with hydrophilic surfaces, at large humidity water capillary bridges
dominate the heat transfer, while for big particles heat transfer via the air dominates. This differs from
vacuum conditions where the propagating electromagnetic (EM) waves give the dominant heat transfer
for large particles, while for small particles both the evanescent EM-waves and the phononic contribution
from the area of real contact are most important.

1 Introduction

Granular materials can be described as homogeneous
media in the continuum approximation, on length scales
much larger than the particle sizes (diameter 2R). The
effective thermal conductivity K is an important prop-
erty of granular materials which may be very different
from the thermal conductivity K0 of a solid block made
from the same material [1,2]. Thus K depends on not
only K0 but on the size and shape of the particles, on
the nature of the particle contact regions, and on the
fraction of the total volume occupied by the particles,
the so-called filling factor. It also depends on the envi-
ronment such as temperature, gas pressure and humid-
ity.

In this study, we will assume that K << K0. This is
always the case for granular solids in a vacuum where
there is no gas or fluid which could facilitate the heat
transfer between the particles, but is often the case also
in the normal atmosphere. In this case, if all the par-
ticles are small enough, the temperature in each parti-
cle may be nearly constant but the temperature change
slightly from one particle to a nearby particle. The effec-
tive thermal conductivity is determined by the heat
transfer between the particles and from dimensional
arguments one expect K ≈ G/R, where G is the ther-
mal contact conductance relating to the heat transfer
rate between two particles to the temperature difference
Q̇ = G(T0 − T1).

Most studies of heat transfer in granular materials
have assumed spherical particles without surface rough-
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ness. However, all solids have surface roughness [3,4]
which affect all contact mechanical [5,6], electrical [7,8]
and thermal properties [9–13]. In this paper we will
study the influence of surface roughness on the heat
transfer between particles in the normal atmosphere
where heat flow in the air and in water capillary bridges
are important. In an earlier paper [14] we have studied
particles in vacuum where the heat transfer involves
the (propagating or evanescent) EM field, and phonon
transfer in the area of real contact.

2 Heat diffusion in particle systems

We assume that the heat transfer between the parti-
cles is so slow that the temperature in each particle is
approximately constant in space. We assume for sim-
plicity that all the particles are spherical with equal
radius R and forming a simple cubic lattice, and that
the temperature depends only on the x-coordinate. The
heat transfer rate from the particle at x − Δx into the
particle at x is G[T (x − Δx) − T (x)] and the heat flow
rate out of the particle at x to the particle at x + Δx
is G[T (x) − T (x + Δx)], where G is the (thermal) con-
tact conductance (see Fig. 1). The net heat flow into
the particle at x is

Q̇ = G[T (x − Δx) − T (x)] − G[T (x) − T (x + Δx)]

≈ G
∂2T

∂x2
Δx2
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Fig. 1 Heat transfer between particles at different temper-
atures

This will give rise to a change in the temperature in the
particle determined by

ρCV
∂T

∂t
= Q̇

where ρ is the particle mass density, C the heat capac-
ity per unit mass and V = 4πR3/3 the volume of the
particle. Thus we get

ρCV
∂T

∂t
≈ G

∂2T

∂x2
Δx2

Using that Δx = 2R we get the heat diffusion equation

ρC
∂T

∂t
= K

∂2T

∂x2

where the effective heat conductivity

K =
3
π

G

R
. (1)

The prefactor γ = 3/π was derived for a simple cubic
arrangements of the particles. Other arrangements of
the spheres result in similar expressions for K, but with
a different prefactor γ (of order unity).

Here we will not discuss the geometrical distribution
of the particles in granular materials (the packing geom-
etry). This topic has been discussed in several papers
(see Ref. [15] for a review). Particular important are
the number of contact points and liquid bridges formed
between the particles as these quantities influence the
contribution to the heat transfer from the area of real
contact and from the fluid in the capillary bridges.

The derivation of (1) is only valid as long as K <<
K0. When this inequality is not obeyed but still K1 <<
K0, where K1 is the thermal conductivity of the fluid
(gas or liquid) surrounding the particles, K will depend
non-linearly on G. This is discussed in Appendix C (see
also Sect. 6).

Note that the effective heat conductivity K has a
factor 1/R. Thus, since for small particles with rough
surfaces capillary bridges dominate the heat transfer,
and since this contribution is nearly independent of the
radius of the particles (see Sect. 5), K will increase as
the size of the particles decrease. For big enough parti-
cles heat diffusion in the air will dominate, and since it

Fig. 2 (a) The heat transfer between two particles in vac-
uum occurs via lattice vibrations (phonons) in the area of
real contact (white arrows) or by electromagnetic radiation
(photons) in the non-contact area (blue arrows). (b) In nor-
mal (humid) atmosphere, in addition to the processes in (a),
heat transfer occur in the atmospheric gas (red arrows) and
in water capillary bridges (white arrows)

gives a contribution to G roughly proportional to RlnR
(see Sects. 3 and 5) the effective heat conductivity K
will increase very weakly as lnR with increasing parti-
cle radius.

3 The thermal contact conductance G

Natural mineral particles, e.g., stone powder produced
by crunching (involving fracture), are not perfect spher-
ical but have very rough surfaces (see Fig. 2). This will
drastically influence the heat contact conductance. In
the most general case the heat transfer between two
particles can occur via several different interfacial pro-
cesses (see Fig. 2):

(a) Contribution from the area of real contact. For
insulators, this corresponds to heat transfer via
phonons (lattice vibrations) which can propagate
from one solid to the other via the area of real con-
tact.

(b) Heat radiation. Here one must in general consider
both the propagating electromagnetic (EM) waves,
which correspond to the normal black-body radia-
tion, and the evanescent EM-waves, which decay
exponentially with the distance from the surfaces
of the solids. The latter will dominate the heat
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Fig. 3 The heat current at a water capillary bridge. In the
solid most of the thermal resistance occur in a volume ele-
ment of linear size w at the junction giving the resistance
∼ w/(K0w

2) = 1/(K0w) where K0 is the thermal conduc-
tivity. This resistance act in series with the resistance of the
capillary (fluid) bridge Rc = 1/Gc

transfer at short surface separation and will be very
important for small particles.

(c) Heat transfer can occur in the surrounding atmo-
sphere by heat conduction (or convection) in the
gas.

(d) In the normal atmosphere fluid capillary bridges
may form and heat diffusion in the fluid bridges will
contribute to the heat transfer. In fact, even in lab-
oratory ultrahigh vacuum experiments mobile con-
tamination molecules occur on most surfaces which
can accumulate in regions where the surface sepa-
ration is small and result in thermal conductance
values many orders of magnitude larger than oth-
erwise expected [16,17]. This is, in fact, a subject
of current research [18].

In the present study, we neglect heat transfer via con-
vection. This is a good approximation for systems of
densely packed small particles as the ratio between the
convective and diffusive heat currents scales with the
particle radius as R3 (see Appendix A).

In an earlier publication, we studied the heat flow in
asteroids and in these case there is no atmospheric gas
and no capillary bridges so only processes (a) and (b)
where relevant. Here we are interested in heat transfer
in the normal atmosphere on earth and in these cases
processes (c) and (d) are most important unless the
temperature is very high, where the EM-wave contri-
bution may dominate.

The phonon heat transfer through the area of real
contact, or the heat transfer in narrow capillary bridges,
involves a constriction resistance, see Fig. 3. The con-
striction resistance arises from the localization of the
heat flow current in a region of lateral size w (see Ref.
[7,19]). The thermal resistance of a cylinder of width
and height w can be obtained from the expression for
the heat current: J = K0ΔT/w giving Q̇ = w2J =
K0wΔT and the constriction conductance G = K0w
and the constriction resistance 1/G = 1/(K0w). The
constriction resistance act in series with these interfa-
cial heat resistances. Thus, for example, the capillary
bridge will result in an effective heat conductance G∗

c
given by

1
G∗

c

=
1

Gc
+

1
K0w

, (2)

where w is the width of the capillary bridge. A similar
equation determines the effective area of real contact
conductance G∗

a. For the heat transfer due to an atmo-
spheric gas between the particles, the constriction resis-
tance is not well-defined because in this case the width
of the heat flow region is of order the particle diameter.
We note that in some cases the constriction resistance
will dominate the heat transfer resistance, but to deter-
mine it one must know the width w of the heat transfer
region. Thus even if the interfacial heat resistance can
be neglected compared to the constriction resistance,
the width w of the heat transfer region must be known.

Contribution to G from the atmospheric gas
Consider two flat and parallel surfaces separated by

the distance u and surrounded by a gas with molecular
mass m. When the surface separation u >> λg, where
λg is the gas molecule mean free path, the heat flow
depends on the gas heat conductivity Kg, and the heat
current

J = Kg
ΔT

u

where ΔT = T1 − T2 is the temperature difference
between the two solids. In this (diffusive) limit a
gas molecules makes many collisions with other gas
molecules before colliding with a wall.

When u << λg one can neglect collisions between the
gas molecules. In this (ballistic) limit the heat transfer
depends on the nature of the collisions between the gas
molecules and the solid walls. As shown in Appendix B
we can interpolate between heat conductance per unit
surface area, αg = J/ΔT , in the diffusive limit and the
ballistic limit using

αg =
Kg

u + aλg
, (3)

where a depends on the so-called thermal accommoda-
tion coefficient α (see Appendix B). In the numerical
calculations below we assume α = 0.5 giving a ≈ 3.3.

Consider now the contact between a sphere and a flat
surface, both without surface roughness. The separation
u(x, y) can be approximated by u ≈ r2/2R for r << R.
Using (3) we get

Gg ≈
∫

d2x
Kg

u + aλg
= 2π

∫ r0

0

dr r
Kg

u + aλg

where we have introduced a cut-off radius r0 < R.
Changing the integration variable to u using rdr = Rdu
gives

Gg ≈ 2πR

∫ u0

0

du
Kg

u + aλg
= 2πRKgln

(
1 +

u0

aλg

)
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where u0 = r2
0/2R. To obtain the total heat conduc-

tance we need to choose r0 to be of order R. Hence
u0 will be proportional to R, or u0 = κR, and we can
write

Gg = 2πRKgln
(

1 +
R

R0

)
, (4)

where R0 = aλg/κ.
For big enough particles R >> R0, Gg will be propor-

tional to Rln(R/R0) and the effective heat conductivity
K = γG/R ∼ ln(R/R0).

For small particles where R/R0 << 1 we get
from (4):

Gg ≈ 2πRKg
R

R0
,

which scales as ∼ R2 with the particle radius and hence
K ∼ R.

Equation (4) was derived for a sphere without surface
roughness. We will show below that surface roughness
has only a relative small influence on Gg. This is in
contrast to the huge influence of surface roughness on
other quantities such as the contribution to the heat
conductance from capillary bridges.

For particles with surface roughness the heat con-
ductance, which is obtained by integrating αg over the
particle surface, can only be obtained by numerical
methods. In the study below we only include a circular
region centered at the point of contact and with radius
r0 = 0.5R. For a smooth sphere the surface separation
for r = 0.5R is u ≈ R/8 and hence κ = 1/8. Heat
exchange will also occur in the region R/2 < r < R,
but it will increase the heat conductance by a factor less
than 2, which we will neglect. Neglecting this contribu-
tion is particularly good approximation when R >> λg

(where Ggas depends on RlnR), i.e. for large enough
particles. We also note that the heat transfer from the
region r > R/2 must be studied using a more accu-
rate approach as the small slope approximation is not
valid, and one cannot expect the heat flow to occur in
the same way as between parallel surfaces at the local
separation given by u(x, y) as is implicit in using (3).
Finally we note that using (1) and (4) gives

K = 2πγKgln
(

1 +
R

R0

)

In order for the effective heat conductivity to be given
by (1) one must assume K << K0 or

2πγln
(

1 +
R

R0

)
<<

K0

Kg
(5)

For silica particles surrounded by atmospheric gas at
room temperature K0/Kg ≈ 40 where we have used
K0 ≈ 1 W/Km and Kg ≈ 0.025 W/Km. Since typically
γ ≈ 0.6 (see Sect. 6) the inequality (5) is satisfied for

particles with radius which obey ln(R/R0) << 10, giv-
ing R << 105R0. At room temperate where λg ≈ 60 nm
and hence R0 = aλg/κ ≈ 1.6 μm. Thus, the inequality
K << K0, which is required in order for the tempera-
ture to be nearly constant in each particle, is satisfied
only if R < 1 mm. For quartz particles K0 ≈ 8 W/Km
the condition K << K0 will be obeyed for almost all
particle sizes. The gas heat transfer occur over most of
the particle surface and in this case there is no constric-
tion modification of the gas contact conductance.

If the gas is replaced by a fluid (e.g. oil or water) with
the thermal conductivity K1 the assumption K <<
K0 may not be satisfied for any particle radius. Here
one must consider two different cases: If the condition
K1 << K0 is satisfied the heat transfer will still be
a function of the heat conductance G but the effec-
tive conductivity cannot be calculated assuming a con-
stant temperature in the particles, i.e., (1) is not valid
and K will depend nonlinear on G (see Appendix C).
If the inequality K1 << K0 is not obeyed a different
approach, e.g., an effective medium theory, is needed
for determining the effective thermal conductivity [25].

Contribution to G from capillary bridges
In a humid atmosphere, for hydrophilic particles

water capillary bridges form in regions between parti-
cles where the surface separation is small enough. Here
we assume that the fluid (water) wets the solid surfaces.
Following Ref. [26], we put water at the interface in all
surface regions where the surface separation u(x, y) is
below the critical separation hc, where hc depends on
the humidity and is given by the Kelvin equation [27–
31].

The (macroscopic) Kelvin equation relates the equi-
librium curvature of the liquid–vapor interface with the
vapor pressure, as derived by equating the chemical
potentials between two bulk phases:

1
reff

=
kBT

v0γ
ln

PS

P

where reff is the mean radius of curvature such that
1/reff = 1/r1+1/r2 (where r1 and r2 are the two surface
principal radius of curvatures) for the liquid meniscus.
Here kB is the Boltzmann constant, T is the tempera-
ture, γ the surface tension of water, v0 = V/N the vol-
ume of a water molecule in water and P/PS the relative
humidity (PS and P are the saturated and actual water
vapor pressure, respectively). For water v0 ≈ 29.7 Å3

and γ ≈ 0.072 J/m2.
One radius of curvature, say r1, is of the meniscus in

the direction normal to the interface and will in general
be much smaller than r2. We will denote it with rc in
what follows. The separation hc ≈ rc(cosθ0 + cosθ1)
where θ0 and θ1 are the water contact angle on the
two solid surfaces. As an example for water assuming
complete wetting (θ0 = θ1 = 0) and room temperature,
at the relative humidity P/PS = 0.5 for water hc ≈
1.5 nm.
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The heat flow per unit surface area is given by

αc =
Kw

u + bλw
, (6)

where Kw is the thermal conductivity of water and λw

the mean free path of a water molecule which is an
atomic distance of order 0.3 nm, and b a number of
order unity.

The contribution to the thermal conductance from
capillary bridges is obtained by integrating (6) over the
wet surface area. For a sphere in contact with a flat
surface (no surface roughness) we get

Gc =
∫

d2x
Kw

u + bλw
= 2π

∫ r0

rc

drr
Kw

u + bλw

where r0 is the radius of the circular wet region cen-
tered at the contact point, and rc a cut-off length where
the surface separation if of order the size of a water
molecule. Using u ≈ r2/2R we get

Gc = 2πRKw

∫ hc

uc

du
1

u + bλw

= 2πRKwln
(

hc + bλw

uc + bλw

)
. (7)

The thermal conductivity of water at T = 20◦C is
Kw = 0.598 W/mK, while the atmosphere gas thermal
conductivity is ∼ 20 times smaller, Kg = 0.025 W/mK.
At T = 20◦C and 1 bar the air molecule mean free
part is about λg ≈ 60 nm, while we will use for water
λw ≈ 0.3 nm.

As an example, for the relative humidity P/PS = 0.5
we get at T = 20◦C the height of the capillary bridge
hc ≈ 1.5 nm and with uc = 0.3 nm and bλw ≈ 1 nm we
get from (7)

Gc ≈ 2πRKwln(2.5/1.3) ≈ 4RKw

or Gc ≈ 2 × 10−6 W/K for a R = 1 μm particle. For
particles with large surface roughness the lateral size
of the capillary bridge will be smaller than for par-
ticles without surface roughness. Thus we will show
in Sect. 5 (see Fig. 9) that for a granite particle at
P/PS = 0.5 the thermal conductance due to water cap-
illary bridges (neglecting the constriction resistance)
is Gc ≈ 5 × 10−8 W/K independent of the particle
radius for R > 0.1 μm. The lateral size of the capillary
bridges are relatively small and the heat conductance
Gc need to be corrected by the constriction contribu-
tion, Gc → G∗

c (see Sect. 5).
In Ref. [14] we have studied the contribution to the

thermal conductance from phonon transfer in the area
of real contact and from the electromagnetic field, and
here we will only briefly review the main results.

Contribution to G from the area of real contact
Heat transfer between two particles can occur by

phonon transfer in the area of real contact. There are

two contributions to the thermal resistance, which act
in series, associated with this process. One is the con-
striction resistance and is usually assumed to dominate.
However, this assumes that the material at the interface
interact as strongly as in the bulk. This may be the case
in many practical (engineering) applications where the
material in the contact regions are plastically deformed
and where (for metals) cold-welded regions form. How-
ever, here we are interested in the contact between brit-
tle mineral particles at low contact pressure where the
particle-particle interaction is very weak. In this case,
most of the contact resistance may be due to the weak
coupling between the solids at the interface. In Ref. [14]
we have shown that this is the case assuming there is
no external force squeezing the particles together, but
they are kept together only by the Van der Waals inter-
action. Assuming an atomic-sized contact in Ref. [14]
we showed for silica particles that the interfacial heat
conductance Ga ≈ 3.8 × 10−11 W/K and the contact
resistance Ra = 1/Ga ≈ 2.6 × 1010 K/W.

In Ref. [14] we showed that the interfacial resis-
tance is larger than the constriction resistance 1/(acK0)
where K0 ≈ 1 W/Km is the silica thermal conductivity
and ac ≈ d0 ≈ 0.3 nm the diameter of the contact area.
Thus 1/(acK0) ≈ 3 × 109 K/W. Since the constriction
resistance and the interfacial resistance Ra act in series
they add together. We will show below that for particle
systems located in the atmospheric gas the heat transfer
in the area of real contact can be neglected compared
to the contribution from the gas heat transfer.

We note that the assumption of negligible squeezing
pressure is a good approximation for the first 1 cm layer
of particles in asteroids, but on earth there will always
be an external force (e.g. the gravitational force) which
will squeeze particles together. We will address the role
of the squeezing pressure on the thermal conductance
in another paper.

Contribution to G from the EM field
The heat flux per unit area between two black-bodies

with flat surfaces (of area A0 ∝ R2) separated by d is
given by the Stefan-Boltzmann law [32]

J = σ
(
T 4

1 − T 4
0

)
(8)

where T1 and T0 are the temperatures of solids 1 and
0, respectively. The Stefan-Boltzmann constant

σ =
π2k4

B

60�3c2

where � the reduced Planck’s constant and c the light
velocity. Note that (8) is only valid if the surface sepa-
ration d is larger than the wavelength λ of the emitted
radiation. Since ck = ω where the wavenumber k =
2π/λ we get λ = 2πc/ω = 2πc�/�ω ≈ 2πc�/kBT where
we have used that a typical photon energy �ω is of order
kBT . At T = 273 K we get dT = c�/kBT ≈ 10 μm.

We assume T1 − T0 = ΔT << T0 and expand J to
first order in ΔT :
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J = σ4T 3
0 ΔT

Hence the radiative heat transfer coefficient

αr = 4σT 3
0

and the interfacial heat conductance Gr ≈ αrA0.
In this limiting case, the heat transfer between the

bodies is determined by the propagating electromag-
netic (EM) waves radiated by the bodies and does not
depend on the separation d between the bodies. Electro-
magnetic waves (or photons) always exist outside any
body due to thermal or quantum fluctuations of the cur-
rent density inside the body. The EM-field created by
the fluctuating current density exists also in the form of
evanescent waves, which are damped exponentially with
the distance away from the surface of the body. For an
isolated body, the evanescent waves do not give a contri-
bution to the energy radiation. However, for two solids
separated by d < dT , the heat transfer may increase
by many orders of magnitude due to the evanescent
EM-waves; this is often referred to as photon tunneling
[33]. In the present case, the heat transfer is associ-
ated with thermally excited optical (surface) phonons.
That is, the electric field of a thermally excited optical
phonon in one solid excites an optical phonon in the
other solid, leading to energy transfer. The excitation
transfer occurs in both directions but if one solid is hot-
ter than the other, there will be a net transfer of energy
from the hotter to the colder solid.

In Ref. [14] we have studied the role of the EM field
for the heat transfer between particles in a vacuum
with applications to asteroids. The same treatment is
approximately valid if the particle system is located in
atmospheric gas. For room temperature the EM heat
transfer is negligible compared to the heat transfer by
the atmospheric gas and water capillary bridges (see
Fig. 7 below).

4 Surface roughness power spectra of
fractured mineral stones

All surfaces of solids have surface roughness and
mineral particles produced by fracture have usually
large roughness which exhibit self-affine fractal behav-
ior. This implies that if a surface area is magni-
fied new (shorter wavelength) roughness is observed
which appear very similar to the roughness observed at
smaller magnification, assuming the vertical coordinate
is scaled with an appropriate factor.

The roughness profile z = h(x) of a surface can be
written as a sum of plane waves exp(iq·x) with different
wave vectors q. The wavenumber q = |q| = 2π/λ, where
λ is the wavelength of one roughness component. A self-
affine fractal surface has a two-dimensional (2D) power
spectrum C(q) ∼ q−2(1+H) (where H is the Hurst expo-
nent related to the fractal dimension Df = 3−H), which
is a strait line with the slope −2(1 + H) when plotted

on a log–log scale. Most solids have surface roughness
with the Hurst exponent 0.7 < H < 1 (see Ref. [3]).

The most important information about the surface
topography of a rough surface is the surface roughness
power spectrum. For a one-dimensional (1D) line scan
z = h(x) the power spectrum is given by

C1D(q) =
1
2π

∫ ∞

−∞
dx 〈h(x)h(0)〉eiqx

where 〈..〉 stands for ensemble averaging. For surfaces
with isotropic roughness the 2D power spectrum C(q)
can be obtained directly from C1D(q) as described else-
where [34,35].

Contact mechanics theory [36] shows that the (elas-
tic) contact between two solids with different surface
roughness h1(x) and h2(x), and different elastic prop-
erties (Young’s modulus E1 and E2, and Poisson ratio
ν1 and ν2) can be mapped on a problem of the contact
between an elastic half space (with the effective mod-
ulus Eeff and Poisson ratio ν = 0) with a flat surface,
and a rigid solid with a combined surface roughness
h(x) = h1(x) + h2(x). If the surface roughness on the
two surfaces are uncorrelated then the surface rough-
ness power spectrum of the rigid surface

C(q) = C1(q) + C2(q),

where C1(q) and C2(q) are the power spectra of the
original surfaces. The effective modulus of the elastic
solid is determined by

1
Eeff

=
1 − ν2

1

E1
+

1 − ν2
2

E2

If both particles are made of the same material and
produced the same way (e.g. by crunching) then C(q) =
2C1(q) and Eeff = E1/[2(1 − ν2

1)].
For randomly rough surfaces, all the (ensemble aver-

aged) information about the surface is contained in the
power spectrum C(q). For this reason the only infor-
mation about the surface roughness which enter in con-
tact mechanics theories (with or without adhesion) is
the function C(q). Thus, the (ensemble averaged) area
of real contact, the interfacial stress distribution and
the distribution of interfacial separations, are all deter-
mined by C(q) [37–39].

Note that moments of the power spectrum deter-
mine standard quantities which are the output of most
stylus instruments and are often quoted. Thus, for
example, the mean-square roughness amplitude 〈h2〉
and the mean-square slope 〈(∇h)2〉 are easily obtained
as integrals involving C(q). We will denote the root-
mean-square (rms) roughness amplitude with hrms and
the rms slope with ξ. For isotropic roughness, the 2D
mean-square roughness amplitude is the same as the
1D mean-square roughness amplitude, but the mean-
square slope is a factor of 2 larger in the 2D case.

Using an engineering stylus instrument we measured
the roughness profile z = h(x) of 14 mineral stones,
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Fig. 4 The stones 1–13 used for the calculations of the
power spectra shown in Fig. 5. The stones (in German) 1
sodalith, 2 rosenquartz, 3 hämatit, 4 onyx, 5 roter jaspis,
6 bergcristall, 7 leopardit, 8 feuercalcit, 9 amazonit, 10
schlangenjaspis, 11 orangencalcit, 12 obsidian, 13 gabbro,
was bought on amazon.de and was used as they arrived.
The stones have diameters ∼ 3 − 4 cm

Fig. 5 The surface roughness power spectrum as a func-
tion of the wave number (log–log scale) for a fractured gran-
ite stone surface 0 (thick red line) and for the stones 1–13
shown in Fig. 4. Note that the stones 2,5,7 and 12 shows
similar roughness power spectra as for granite, while the
stone 4 (onux) has a power spectrum nearly a factor of 100
smaller than for the granite surface, corresponding to the
scaling factor s = 0.1 in the theory calculations

namely granite and the 13 mineral stones shown in
Fig. 4. The topography measurements were performed
using Mitutoyo Portable Surface Roughness Measure-
ment Surftest SJ-410 with a diamond tip with the
radius of curvature R = 1 μm, and with the tip-
substrate repulsive force FN = 0.75 mN. The scan
length L = 10 mm and the tip speed v = 50 μm/s.

Figure 5 shows the surface roughness power spectrum
as a function of the wave number (log–log scale) for a

fractured granite stone surface 0 (thick red line) and
for (in German) 1 sodalith, 2 rosenquartz, 3 hämatit, 4
onyx, 5 roter jaspis, 6 bergcristall, 7 leopardit, 8 feuer-
calcit, 9 amazonit, 10 schlangenjaspis, 11 orangencalcit,
12 obsidian, and 13 gabbro. Note that the stones 2,5,7
and 12 shows similar roughness power spectra as for
granite, while the stone 4 (onux) has a power spectrum
nearly a factor of 100 smaller than for the granite sur-
face, corresponding to the scaling factor s = 0.1 in the
theory calculations. See Fig. 4 for pictures of the min-
eral stones 1 − 13.

5 Gas and capillary contribution to G:
numerical results

We have calculated the heat contact conductance using
the same approach as used to study the adhesion
between particles with random surface roughness in
Ref. [6]. No two natural stone particle have the same
surface roughness, and the heat transfer between two
particles will depend on the particles used. To take this
into account we have generated particles (with linear
size L = 2R) with different random surface roughness
but with the same surface roughness power spectrum.
That is, we use different realizations of the particle sur-
face roughness but with the same statistical properties.
We first generate a smooth particle with radius R (or
radius of curvature R) and add the surface roughness
h(x, y) which has zero mean height, 〈h〉 = 0.

For each particle size, we have generated 60 parti-
cles using different set of random numbers. The surface
roughness was generated as described in Appendix A
of Ref. [4] by adding plane waves with random phases
φq and with the amplitudes determined by the power
spectrum:

h(x) =
∑
q

Bqei(q·x+φq)

where Bq = (2π/L)[C(q)]1/2. We assume isotropic
roughness so Bq and C(q) only depend on the mag-
nitude of the wavevector q.

We have used nominally spherical particles with 7
different radii, where the radius increasing in steps of
a factor of 2 from R = 78 nm to R = 5.06 μm. The
longest wavelength roughness which can occur on a par-
ticle with radius R is λ ≈ 2R so when producing the
roughness on a particle we only include the part of the
power spectrum between q0 < q < q1 where q0 = π/R
and where q1 is a short distance cut-off corresponding
to atomic dimension (we use q1 = 1.4 × 1010 m−1). We
will refer to these particles as granite particles because
the power spectra used are linear extrapolation to larger
wavenumber of the measured granite power spectrum.
For more details about the numerical procedure see
Ref. [6].

We will now present numerical results for the heat
conductance of granite particles. We will also consider
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Fig. 6 Heat transfer between a rigid particle in contact
with a rigid flat surface in a humid atmosphere. The parti-
cle has surface roughness and is in contact with a smooth
surface in one point. The heat transfer occurs between the
solids by heat transfer (diffusive or ballistic) in the surround-
ing atmospheric gas and in the water capillary bridges. The
capillary bridges are in thermal (kinetic) equilibrium with
the surrounding gas of water molecules

particles with the same sizes as above but with larger
and smaller surface roughness, obtained by scaling the
height h(x, y) for the granite particles with scaling fac-
tors s = 0 (smooth surface), 0.1, 0.2, 0.4, 1 and 2.
Note that scaling h(x, y) by a factor of s will scale
the power spectrum with a factor of s2 but it will not
change the slope of the C(q) relation on the log–log
scale so the Hurst exponent (and the fractal dimension)
is unchanged.

We assume that the heat current depends on the sur-
face separation u(x, y) as J(x, y) = KgΔT/(u+aλg) in
the dry surface area, and J(x, y) = KwΔT/(u+bλw) in
the surface area filled with water. This holds accurately
only in the small slope approximation (for a discus-
sion of the accuracy of this method, see Ref. [10]). The
total heat conductance Gtot is obtained by integrating
J(x, y)/ΔT over the surface area (see Fig. 6). We obtain
the capillary Gc and the gas Gg heat conductance by
integration of J(x, y)/ΔT over the wet and dry surface
area, respectively. The capillary contribution needs to
be corrected by the constriction contribution so that
Gc → G∗

c and Gtot = G∗
c + Gg.

Consider now the contact between silica particles
(s = 1) in the normal atmosphere (gas pressure p =
1 bar) at the relative humidity RH = 0.5. Figure 7
shows the cumulative probability for the heat conduc-
tance due to heat conduction in the water capillary
bridges for many particle radius from R = 0.08 μm
to 5.06 μm. The probability distributions are obtained
from 60 simulations for each particle radius. The 60
simulations use 60 different realizations of the particle
surfaces topography but with the same power spectra.
Note that the heat conductance is nearly the same inde-
pendent of the particle radius. This is not the case for
the heat conductance from heat flow in the gas which
increases with the particle radius faster than linear (see
Fig. 9).

In Fig. 7 we also show the heat conductance due to
the evanescent electromagnetic (EM) waves (in vac-
uum) which was studied in Ref. [14]. Note that the heat
transfer in the capillary bridges is much more important
that the EM wave contribution, i.e. we expect much
larger heat conductance in the normal atmosphere than
in vacuum.

Fig. 7 The cumulative probability for the heat conduc-
tance due to the evanescent electromagnetic (EM) waves
(in vacuum), and due to heat conduction in water capillary
bridges (in the normal atmosphere at the relative humidity
RH = 0.5). For silica particle (s = 1) at T = 20◦C and for
many particle radius from R = 0.08 μm to 5.06 μm. The
probability distributions are obtained from 60 simulations
for each particle radius. The 60 simulations use 60 different
realizations of the particle surfaces topography but with the
same power spectra. The calculations are for the granite sur-
face (scaling factor s = 1, Hurst exponent H = 1) at 293 K,
parameter R is effective particle radius

Figure 8 shows the contribution to the heat conduc-
tance from the heat flow in (a) the water capillary
bridges, Gc, and in (b) the gas, Gg, for particles in the
normal atmosphere (p = 1 bar gas pressure) at the rela-
tive humidity RH = 0.5. Results are shown for smooth
particles (s = 0), and for particles with the granite
particle roughness scaled by the factor of s. The con-
ductance is obtained by averaging over 60 realizations
of the surface roughness for each particle radius. The
s = 0 line in (a) is given by (7) and has the slope 1 cor-
responding to a linear increase in Gc with increasing
particle radius R.

For smooth spherical particles (s = 0) the heat
conductance contribution from the capillary bridges
increases linearly with the particle radius, but for s = 1
and s = 2 the heat conductance is independent of the
particle radius. The contribution from heat transfer in
the gas increases with the particle radius as ∼ R2 for
small particle radius while for larger radius than used
here it increases nearly linearly with R (or as ∼ RlnR).
The cross-over from Gg ∼ R2 to a ∼ RlnR with increas-
ing particle radius is due to the switching from ballistic
to diffusive gas motion dominating the heat transfer.
Note that Gg is only weakly dependent on the particle
surface roughness, compared to the strong dependency
of Gc on the roughness parameter s.

To illustrate how the heat transfer depends on the rel-
ative humidity, consider again silica particles (s = 1) in
the normal atmosphere (p = 1 bar) as we increases the
humidity from P/P0 = 0.1 to 0.95. Figure 9 shows the
contribution to the heat conductance from heat trans-
fer in the capillary bridges and in the atmospheric gas
as a function of the logarithm of the particle radius.
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Fig. 8 The thermal conductance due to (a) water capil-
lary bridges, Gc, and due to (b) heat transfer in the air,
Gg. For the relative humidity RH = 0.5 and at p = 1 bar
gas pressure. Results are shown for smooth particles (s = 0)
and for particles with the granite particle roughness scaled
by the factor of s. The results are averages of 60 simula-
tions for each particle radius using 60 different realizations
of the particle surfaces topography but with the same power
spectra

Note that for large enough particles the contribution to
the heat conductance from the heat flow in the gas will
dominate the total conductance.

Figure 10 shows the heat conductance due to heat
transfer in the atmospheric gas as a function of the log-
arithm of the particle radius for dry air (relative humid-
ity P/P0 = 0). We show results for the gas pressure
p = 0.001, 0.01, 0.1 and 1 bar.

We now consider the role of constriction resistance.
This requires determining the lateral size of the water-
filled region, and of the gas filled region. Figure 11 shows
the heat flow current ∂J(x, y, T )/∂T in the water cap-
illary bridge in the xy plane. The center of the square
region is at the point where the particle makes con-
tact with the plane. The result is for (a) s = 1 (granite
particle) and (b) for s = 0.1, with the particle radius
R = 0.32 μm at the relative humidity RH = 0.71.

For the same system as in Fig. 11(a) in Fig. 12 we
show the logarithm of ∂J(x, y, T )/∂T in the water cap-
illary bridge (red), and in the atmospheric gas (blue),
along the x-axis through the point where the particle
make contact with the plane. Note that the heat flow
in the water capillary bridge extends laterally of order
[see Fig. 11(a)] aw ∼ 30 nm giving the constriction
contribution to the contact resistance ≈ 1/(K0aw) ≈

Fig. 9 The heat conductance due to heat transfer in cap-
illary bridges and in the atmospheric gas as a function of
the logarithm of the particle radius. For several relative
humidity’s from P/P0 = 0.1 to 0.95. For the temperature
T = 20◦C and the gas pressure p = 1 bar. The results are
averages of 60 simulations for each particle radius using 60
different realizations of the particle surfaces topography but
with the same power spectra

Fig. 10 The heat conductance due to heat transfer in the
atmospheric gas as a function of the logarithm of the particle
radius. For the relative humidity P/P0 = 0, the temperature
T = 20◦C and for gas pressures increasing from p = 0.001
to 1 bar. The results are averages of 60 simulations for each
particle radius using 60 different realizations of the particle
surfaces topography but with the same power spectra

3 × 107 K/W where we have used the silica heat con-
ductivity K0 ≈ 1 W/mK. This is similar but larger than
the (water) capillary heat contact resistance (see Fig. 9)
Rc = 1/Gc ≈ 1 × 107 K/W. Since these resistances act
in series the contact conductance is dominated by con-
striction contribution G ≈ K0aw ≈ 3×10−8 W/K. Note
that this is true for all radius of the particles because
the size of the wet region is nearly independent of the
radius of the particle for the rough particles considered
here (granite, s = 1). The physical reason for this is that
the surface roughness, rather than the particle radius
of curvature, determine the region where the surfaces
are close enough to form the capillary bridge.

As the relative humidity increases the effective diam-
eter of the water-filled region will increase, but this
will reduce both the constriction resistance and the
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Fig. 11 The heat flow current ∂J(x, y, T )/∂T in the water
capillary bridge in the xy plane, centered at the point where
the particle makes contact with the plane. For (a) a granite
particle (s = 1) and (b) for s = 0.1, with the radius R =
0.32 μm and the gas pressure p = 1 bar, the temperature
T = 20◦C and the relative humidity RH = 0.71. The black
region at the center of the capillary bridge [very small in
(a) but big in (b)] is a region where the surface separation
u < uc = 0.3 nm where we assume no water molecules occur

capillary bridge resistance. Thus for RH = 0.95 the
width of the water-filled region is about (see Fig. 13)
aw ≈ 250 nm giving the constriction resistance ≈
1/(K0aw) ≈ 4 × 106 K/W. In this case, the water con-
tact resistance is (see Fig. 9) Rc = 1/Gc ≈ 6×105 K/W
i.e. the constriction resistance will still dominate. Note
that even if the capillary bridge heat resistance can
be neglected, the lateral size of the capillary bridge is
needed to calculate the constriction resistance.

At very high humidity the water occupies a region
with a radius of order the size of the particle. In this
limit the constriction resistance looses its meaning, and
the thermal conductivity of the system is determined

Fig. 12 The logarithm of the heat flow current
∂J(x, y, T )/∂T in the water capillary bridge (red) and in
the atmospheric gas (blue) along the x-axis through the
point where the particle makes contact with the plane. For
granite particle (s = 1) with the radius R = 0.32 μm and
the gas pressure p = 1 bar, the temperature T = 20◦C and
the relative humidity RH = 0.71

Fig. 13 The effective radius rwet = (Awet/π)1/2 of the
region occupied by water (capillary bridges) as a function
of the particle radius (log–log scale). For several relative
humidity’s from P/P0 = 0.1 to 0.95. For the temperature
T = 20◦C and the gas pressure p = 1 bar. The results are
averages of 60 simulations for each particle radius using 60
different realizations of the particle surfaces topography but
with the same power spectra

by the heat flow in a composite system consisting of
particles immersed in the fluid.

For the particle sizes we have studied above, the
gas constriction resistance can be neglected. This fol-
lows from the fact that at least for small particles the
gas heat transfer does not decrease very much with
the distance from the contact point between the par-
ticle and the flat (see Fig. 12), while at the same time
the gas heat resistance is rather high because of the
low thermal conductivity of the gas as compared to
the particles. Thus even for the biggest particle with
R ≈ 5 × 10−6 m we have (see Fig. 8) Gg ≈ 10−6 W/K
and hence Rg ≈ 106 K/W, while the constriction resis-
tance ≈ 1/(K02R) ≈ 105 K/W. Thus the gas contact
conductance is mainly determined by the heat transfer
through the gas giving G ≈ Gg ≈ 10−6 W/K.
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Fig. 14 The calculated heat conductivity K as a func-
tion of the logarithm of the particle radius. We have used
K = γGg/R with γ = 0.6. The thermal heat conductance
due to gas conduction (gas pressure p = 1 bar, relative
humidity RH = 0), Gg, are calculated for the surface rough-
ness scaling factor s = 1 (red line), 0.7 (blue line), 0.5 (green
line), 0.3 (pink line), 0.1 (yellow line, below the black line)
and 0 (black line). The dashed lines are extrapolations to
larger particle radius

6 Discussion

Figure 9 shows that for particles with large roughness
(s = 1), even at the relative humidity RH = 0.95, the
air heat transfer will dominate the total heat conduc-
tance if the particle radius R > 10 μm. The effective
heat conductivity of quartz sand has been studied as
a function of the particle size and the water content
[40]. For dry sand, the heat conductivity depends very
weakly on the sand particle radius, roughly as lnR for
R > 10 μm, as expected from theory.

When K << K0 the temperature in each particle
can be considered as constant and then K ≈ γG/R
(see Sect. 2). The parameter γ depends on the arrange-
ments of the particles (e.g. random or ordered), on the
particle surface roughness, and on the porosity (void
volume over total volume). Loosely packed sand has a
porosity between 0.4 − 0.5 which gives γ between 0.4
and 0.7 depending on the model used for the arrange-
ments of the particles (see, e.g., Fig. 20 in Ref. [14]).
In Fig. 14 we show the thermal conductivity calculated
for dry particles using K = γG/R with γ = 0.6 assum-
ing only heat transfer in the air gas surrounding the
particles. The rapid variation in the slope of the K
curve with decreasing particle radius for small particle
radius is due to the transition from diffusive to ballistic
gas heat transfer when the surface separation decreases
below the gas molecule mean free path [see Eq. (13)].
The dashed curves show extrapolated results to typical
sand particle diameters ∼ 0.1 − 1 mm, and gives ther-
mal conductivity’s in the range K = 0.2 − 0.5 W/Km
typically observed for loosely packed dry quartz sand
[41,42]. The thermal conductivity of quartz is about
K0 ≈ 8 W/Km so the condition K << K0 is approxi-
mately obeyed. (Note: quartz is crystalline SiO2 while
silica is amorphous SiO2; the phonon mean free path

Fig. 15 When the effective thermal conductivity K of a
particle system is not much smaller than the thermal con-
ductivity K0 of the solid particles, then the temperature in
the particles will not be constant but will drop in the heat
flow direction. In this case the temperature change at the
interface between the particles ΔT = Tb − Tc (which will
vary over the interface) will be smaller than in the differ-
ence T1 − T0 in the average particle temperatures. This will
reduce the heat flow and hence the effective thermal conduc-
tivity from what would be the case when the temperature
in the particles would be uniform

is higher in the crystalline state than in the amor-
phous state, and this is the origin of the much larger
thermal conductivity of quartz than of silica where
K0 ≈ 1 W/Km.)

We note that sand particles, e.g., beach sand, are usu-
ally “polished” because the wind, or the ocean waves,
move particles so that they rub against each other,
wearing down rough edges and smoothing surfaces.
Thus sand particles may have a power spectra much
smaller than that for the granite surface (s = 1) pro-
duced by crunching (fracture), but the heat transfer in
the air is not strongly dependent on the particle sur-
face roughness. However, the contribution from capil-
lary bridges depends strongly on the surface roughness.

For wet sand, I am not aware of any studies where the
sand is in thermal (or kinetic) equilibrium with humid
air at typical humidity’s. Instead the sand is mixed with
water but the amount of water is so high as to effec-
tively correspond to almost 100% humidity. In this case
the fraction of the total mass (or volume) occupied by
water is determined by measuring the weight of the dry
and wet sand. As the water content increase from 0 to
saturated water content (all cavities filled with water),
the heat conductivity for quartz sand in one (typical)
study [42] increases from K ≈ 0.3 W/Km to 3 W/Km,
i.e., by a factor of ≈ 10. In this case the condition
K << K0 is no longer satisfied, and the expression
K ≈ γG/R is not valid. This is the reason (see Fig. 15)
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for why K increases less than otherwise expected, given
by the ratio of the thermal conductivity of water and
air, which equals 0.6/0.025 ≈ 24.

In Appendix C I propose a formula for the effec-
tive thermal conductivity, valid approximately for any
K/K0 as long as K1 << K0, given by

K = γ
G

R

1
1 + γ′G/(RK0)

, (9)

where γ and γ′ are of order unity but depend on the
porosity, particle surface roughness and the arrange-
ments of the particles. The ratio between the ther-
mal conductivity’s for the water-filled and the gas-
filled quartz particle systems depends on the ratio γ′/γ,
which can be chosen so as to reproduce the observed
ratio K(water)/K(gas) ≈ 10 (see Appendix C).

In this study, we have assumed that there is no
applied pressure squeezing the particle system. If an
applied pressure occur, and if large enough, the parti-
cles will deform plastically (or by brittle fracture) in
the particle-particle contact regions, and the area of
real contact will increase and the particle will approach
each other which will affect both the heat transfer via
the atmospheric gas and the capillary bridges. We will
study the influence of an applied pressure in another
paper.

7 Summary and conclusion

We have studied the heat transfer in weakly interacting
particle systems in the normal atmosphere. The parti-
cles have surface roughness with self-affine fractal prop-
erties, as expected for mineral particles produced by
fracture, e.g., by crunching brittle materials in a mor-
tar. The surface topography of several types of mineral
stones was studied and the power spectra calculated.

For small particles (say < 10 μm) with hydrophilic
surfaces, at large humidity water capillary bridges dom-
inate the heat transfer, while for big particles heat
transfer via the air dominates. This differs from vac-
uum conditions where the propagating electromagnetic
(EM) waves give the dominant heat transfer for large
particles, while for small particles the evanescent EM-
waves and the phononic contribution from the area of
real contact are most important.

The calculated effective conductivity was compared
to experimental data for quartz sand particles. The
observed magnitude and the dependency of the conduc-
tivity on the particle radius is in rough agreement with
the theory predictions for dry sand. For wet sand no
detail comparison of theory with experiment is possible
since no equilibrium between the water gas phase and
the water capillary bridges occur, and hence the rela-
tive humidity is not well defined or known. In addition,
for the high water content typically used in experiments
the thermal conductivity K is so large that K << K0

no longer holds accurately, but for this limit we have
proposed an approximate formula [see Eq. (9)].
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Appendix A: Convective heat transfer in
small particle systems

Thermal energy can be transferred from hot places to cold
places by convection. Convection occurs when warmer areas
of a liquid or gas rise to cooler areas in the liquid or gas. In
the present study the liquid (water) forms capillary bridges
and no convective heat flow can occur in the liquid. However
(atmospheric) gas occurs in the cavity regions between the
particles and convective heat (and mass) flow could occur
in the gas.

Here we are interested in the spontaneous or natural con-
vection of heat driven by the gravity force resulting from the
mass density difference between the cold and warm fluid (or
gas). This process is in general unimportant for the heat
transfer in (densely packed) small particle systems where
the cavity regions between the particles have the linear size
of the order of particle radius R. If ΔT is the temperature
difference in the fluid over the cavity distance R then the
difference in the fluid mass density is Δρ ≈ βΔT , where β
is the thermal expansion coefficient. Thus fluid in the upper
half of the cavity region is more heavy than the bottom half
by an amount that scales as Δm ∼ ΔρR3 which gives the
gravity force ΔF = gΔm ∼ gΔρR3, where g is the grav-
ity constant. The fluid pressure Δp ∼ ΔF/R2 ∼ gΔρR.
In a stationary state (constant fluid flow velocity) this
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pressure difference must be balanced by the friction stress
from the viscosity of the fluid which scales as ηv/R giving
v ∼ gΔρR2/μ = gβΔTR2/μ. The heat transfer due to the
thermal conductivity scales as Jdiff ∼ κΔT/R, where κ is
the fluid heat conductivity. The convective heat flow cur-
rent Jconv ∼ ρvCVΔT , where CV is the fluid heat capacity,
giving Jconv/Jdiff ∼ ρvCVR/κ = (gβCV /μκ)ρΔTR3. Thus
the convective heat transfer, driven by gravity, divided by
the diffusive heat transfer scales as ∼ R3, so the convective
heat transfer will be unimportant for systems of (densely
packed) small particles.

Appendix B: Diffusive and ballistic gas con-
tribution to G

Consider two flat and parallel surfaces separated by the dis-
tance u and surrounded by gas with molecular mass m.
When the surface separation u >> λ, where λ is the gas
molecule mean free path, the heat flow depends on the gas
heat conductivity Kg, and the heat current

J = Kg
ΔT

u

where ΔT = T1 − T2 is the temperature difference between
the two solids. In this (diffusive) limit a gas molecules makes
many collisions with other gas molecules before colliding
with a wall.

The kinetic theory of gases gives [20,21]

Kg =
1

3
CV v̄λg, (B1)

where v̄ is an average gas molecule velocity (see below), and
λg the gas molecule mean free path due to collisions with
other gas molecules. In (B1) CV is the heat capacity per
unit volume which for a diatomic gas is given by

CV ≈ 1

2
(3 + 2)

N

V
kB =

5

2

N

V
kB, (B2)

where we have assumed that only the 3 translations and the
2 rotations are thermally activated (the vibration mode has
too high energy to be thermally activated). Using (B1) and
(B2) gives

Kg =
5

6

N

V
kBv̄λg (B3)

Using PV = NkBT we can write

Kg =
5

6

P

T
v̄λg

The mean free path [20,21]

λg =
V

Nσ
√

2
(B4)

where σ is a molecular cross section. From (B3) and (B4)
we get

Kg =
5

6

kBv̄

σ
√

2

The average velocity

v̄ =

(
8kBT

πm

)1/2

Hence Kg is independent of the gas pressure but scales as
T 1/2 with the gas temperature. From (B4) the mean free
path

λg =
kBT

Pσ
√

2

depends on both the gas pressure and the temperature.
When u << λg one can neglect collisions between the gas

molecules. In this (ballistic) limit the heat transfer depends
on the nature of the collisions between the gas molecules and
the solid walls. If we assume that the gas molecules stick to
a wall when colliding with it, and if they fully thermalize
before desorbing, then it is trivial to estimate the energy
transfer between the walls. Thus the average kinetic energy
of a molecule desorbing from a wall at temperature T is
U = (5/2)kBT (2 rotations plus 3 translations). The average

velocity v̄z = v̄/2, where v̄ = 〈v〉 = (8kBT/πm)1/2, and the
heat flow current J ≈ (N/V )(v̄/2)(5/2)kBT . If the two walls
have the temperatures T1 and T2, respectively, the net heat
flow will be

J = J1 − J2 ≈ 5

4

Nv̄

V
kBΔT,

where we have assumed that ΔT = T1 − T2 << T1. Note
that from ideal gas law PV = NkBT so that

J ≈ 5

4

P v̄

T
ΔT (B5)

In general, a gas molecule may not completely thermalize
when colliding with a wall, and to describe this the thermal
accommodation coefficient is defined by [22]

α =
Ein − Ere

Ein − Eth
,

where Ein and Ere are the (average) energy of a molecule
before and after colliding with a wall, and Eth the energy of
a gas molecule fully thermalized with the wall. Note that 0 <
α < 1, where α = 1 correspond to the fully thermalized case,
and α = 0 to the case where there is no energy exchange
between the wall and the molecule, where the heat current
J must vanish. The heat current for u << λg and arbitrary
α is given by [23,24]

J ≈ 1

4

P v̄

T

(
α1

2 − α1
+

α2

2 − α2

) (
1 +

f

4

)
ΔT, (B6)

where α1 and α2 are the accommodation coefficients for the
two different walls and f the number of internal degrees of
freedom equal to f = 2 for a diatomic molecule (two rotation
modes; the vibration mode is assumed to be not thermally
activated). Assuming f = 2, and that both solids are of the
same material so that α1 = α2 = α, we get

J ≈ 3

4

P v̄

T

α

2 − α
ΔT (B7)

Note that for α = 0 there is, as expected, no heat transfer
between the walls, while for α = 1 (B7) reduces to (B5)
except for a numerical factor 3/5 due to inaccuracy in the
derivation of (B5) (one need to calculate 〈vzU〉 rather than
〈vz〉〈U〉 and they differ by a factor of 3/5).

We can interpolate between heat conductance per unit
surface area, αg = J/ΔT , in the diffusive limit and in the
ballistic limit using

αg =
Kg

u + aλg
, (B8)
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where we choose a so that J = αgΔT reduces to (B6) for
u << λg. Using (B8) and (B5) for u << λg we get

αg =
Kg

aλg
=

5

6a

P

T
v̄. (B9)

Comparing (B6) with (B9) gives

1

a
=

3

10

(
α1

2 − α1
+

α2

2 − α2

) (
1 +

f

4

)
(B10)

Using f = 2 and α1 = α2 = α gives

a =
10(2 − α)

9α

In the numerical calculations below we assume α = 0.5 giv-
ing a ≈ 3.3.

Appendix C: Approximate formula for the
heat conductivity

The derivation of (1) is only valid as long as K << K0.
When this inequality is not obeyed but still K1 << K0,
where K1 is the thermal conductivity of the fluid (gas or
liquid) surrounding the particles, the temperature will not
be constant in the particles and K will depend non-linearly
on G.

Consider the heat flow in a simple cubic lattice of cubic
blocks (side of length L), and separated by a small distance
u, see Fig. 16. The temperature in the blocks decreases lin-
early with the distance between the two surfaces in the heat
flow direction. Thus the heat current

J = K0
Ta − Tb

L
(A1)

The heat flow between the blocks is assumed proportional to
the temperature difference Tb −Tc between the two surfaces
of the blocks at the interface:

Q̇ = JL2 = G(Tb − Tc) (A2)

The effective heat conductivity K of the block system is
defined by

J = K
Ta − Tc

L + u
(A3)

Fig. 16 Heat flow in a simple cubic lattice of cubic blocks
(particles). The heat transfer in the gap region (separation
u) is assumed proportional to the temperature difference
Tb − Tc at the interface

Using (A1)-(A3) gives

K =
G

L

1 + u/L

1 + G/(LK0)
(A4)

To generalize this to particles with the (average) radius R
we first choose L = 2R to get

K =
G

2R

1 + u/(2R)

1 + G/(2RK0)

and more generally we write

K ≈ γ
G

R

1

1 + γ′G/(RK0)
(A5)

where γ and γ′ are numbers of order unity which depends
on the geometrical parameters (the spatial arrangement and
the shape of the particles). For K0 → ∞ from (A5) we get
K ≈ γG/R while for K0 → 0 we get K ≈ 0. This latter
result is not strictly true because even when the thermal
conductivity of the particles vanish it is possible for heat
to diffuse in the fluid (liquid or gas) surrounding the parti-
cles because the fluid is assumed to percolate. However, this
involves heat flow in the fluid in regions far from the particle-
particle contact region, which we have neglected in our study
(see Sect. 3). For G → 0 we get K → 0 as expected, and
for G → ∞ we get K → K0γ/γ′. In this limit, we expect
K > K0 which imply γ > γ′.

We can determine γ′/γ so that (A5) gives the observed
ratio K(water)/K(gas) ≈ 10 between the thermal conduc-
tivity of water saturated and dry quartz sand. Thus using

K(gas) ≈ γ
Gg

R
, (A6)

and

K(water) ≈ γ
Gw

R

1

1 + γ′Gw/(RK0)
, (A7)

where we have assumed the same arrangements of the par-
ticles in the dry and in the wet state so γ is unchanged, we
get

K(water)

K(gas)
≈ Gw

Gg

1

1 + γ′Gw/(RK0)
(A8)

Using that

Gw

RK0
=

Gw

Gg

Gg

RK0
=

Gw

Gg

1

γ

K(gas)

K0

we can write (A8) as

K(water)

K(gas)
=

Gw

Gg

1

1 + (γ′/γ)(Gw/Gg)(K(gas)/K0)

Using K(water)/K(gas) ≈ 10, Gw/Gg = Kw/Kg ≈ 24 and
K(gas)/K0 ≈ 0.3/8 gives γ′/γ ≈ 1.56, which does not obey
the condition γ > γ′. This indicate that K0 may be smaller
than the ideal (perfect lattice) quartz thermal conductivity
≈ 8 W/m. Thus, for example, using K0 = 4 W/m would
give γ′/γ ≈ 0.78. Alternatively, the arrangements of the
particles in the dry and wet state are different, and the γ in
(A6) and (A7) differ.
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