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Abstract.
Multiplex networks frame the heterogeneous nature of real systems, where the multiple roles of nodes, both
functionally and structurally, are well represented. We identify these vital nodes in a multiplex network
so that we can control a pandemic outbreak like COVID-19, eliminate damage from a network attack,
maintain traffic, and so on. Vital node identification has attracted scientists in various fields for decades.
In this paper, we propose a hybrid supra-cycle number and hybrid supra-cycle ratio based on the cycle
structure, and present an extensive experimental analysis by comparing our indexes and several different
indexes in four real multiplex networks on layer nodes and multiplex nodes. The experimental results show
that these proposed indexes have good robustness, synchronization, and transmission dynamics. Finally,
we provide an in-depth understanding of multiplex networks and cycle structure, and we sincerely hope
more valuable academic achievements are proposed in the future.

1 Introduction

The understanding of complex networks has greatly
improved over recent decades, and researchers have
made tremendous achievements in both theory and
application. However, these remarkable efforts do not
mean that we have a sufficient understanding of com-
plex networks, because the framework of a complex net-
work is partly systematic and partly chaotic [1], and
becomes increasingly intricate with the acceleration of
internet development. Recently, the focus of network
science has been shifting from discovering macroscopic
statistic regularity [2–4] to decomposing microscopic
structural organization [5,6] and further revealing the
explicit roles played by such microscopic elements as
nodes [7] and edges [8].

Indeed, nodes play different roles not only in struc-
tures but also in the function of complex systems, and
understanding how nodes affect each other is critical for
further research. It is important to identify vital nodes
functionally and topologically [9], which helps us to con-
trol epidemic outbreaks [10,11] and rumors [12], reduce
and eliminate the damage from cyber attacks [13–16],
prevent catastrophic outages in power grids [17] and
the internet, maintain traffic and telecommunication
networks [18], target receptor proteins and key genes
for molecular biological drugs [19], and predict success-
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ful persons or groups based on collaborative networks
[20,21].

However, a perfect method for identifying vital nodes
has not yet been found, as it is never a trivial task,
and the directions in identification methods and even
various criteria have been inconsistent. In the first
place, there are two main branches for identifying vital
nodes [22], one based on the neighborhood and the
other based on the path. In reality, different meth-
ods fit different situations, which means that for vital
node identification, a universal method is theoretically
and practically unavailable. Moreover, the criteria in
this task are diverse for the same reason. In some
scenarios where we need to protect populations from
an epidemic, a susceptible-infected-susceptible (SIS)
model, susceptible-infected-recovered (SIR) model [23],
or susceptible-infected-recovered-infected) model [24]
perform well. And in other scenarios where we have
to maintain a network and minimize loss when it is not
possible to implement protection for all nodes, node
removal is more suitable. Last but not least, sometimes
identifying a group of coupled vital nodes is more useful
than identifying a series of single nodes; topologically, it
means the vital element could be a motif or a commu-
nity in the identification process. However, identifica-
tion of vital motifs or vital communities will be explored
in future research; this paper will focus on nodes.

As mentioned above, methods for vital node identifi-
cation can be divided into two branches, methods based
on neighborhood and methods based on path, and these
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methods can also be classified according to the topo-
logical structure: chain, star, or cycle [25]. Researchers
have pieced together an increasingly clear picture of
the function and interaction of disparate structures in
a variety of dynamical processes, including the roles of
different motifs in biological networks, the transmission
of information and behaviors, and the self-sustaining
process of star structures in an epidemic. Aside from
chain and star structures, cycles are a ubiquitous part
of networks and play an unalterable role in storage,
synchronizability, and controllability of network func-
tion. A cycle is a measurement of similitude between
a target network and tree network, which means the
model network cannot reproduce cycles as well as the
real network [26]. The methods proposed in this paper,
a supra-cycle number and supra-cycle ratio, are based
on a cycle structure, where the former index describes
the importance of the node in a global scale, while the
latter index describes the same in a local scale. A cycle
ratio is designed like a clustering coefficient and edge
multiplicity [7]; the three methods focus on the local
proportion of a certain structure in a network.

Methods of identifying vital nodes were originally
designed for single-layer networks, but in reality, indi-
viduals have multiple relationships, and it is biased to
describe a complex system as a single-layer network. A
multiplex network is a pragmatic framework in which
multiple relationships of individuals are represented in
different layers (same relations are represented in a sin-
gle layer). There are same nodes in each layer, and inter-
layer connection only exists between the same nodes
represented in a different layer. The framework of a
multiplex network is shown in Fig. 1. A multiplex net-
work is a special multilayer network. On the one hand,
it retains some characteristics of a single-layer network,
in that every layer in a multiplex network can be con-
sidered a single-layer network because there are same
nodes in each layer, and inter-layer connections are spe-
cial; on the other hand, inter-layer connections do exist,
which is the hallmark of a multilayer network.

Considering the special nature of a multiplex net-
work, the symbolically basic element we focus on can
be different. Zhao et al. [27,28] divide the nodes of a
multiplex network into two categories: a multiplex node
(MN, a collection of the same node in different lay-
ers) and a layer node (LN, the replica of a MN in each
layer). Researchers have made much progress based on
the MN. Halu et al. [29] define Multiplex PageRank
by drawing on biased random walks. Solé-Ribalta et al.
[30] redefine the betweenness centrality and proposed
an algorithm to compute it in an efficient way. Solá et
al. [31] extend the concept of eigenvector centrality to a
multiplex network. But by contrast, the LN has received
less attention. Zhao et al. [32] extend several indexes or
algorithms from single-layer networks to multiplex net-
works and find explosive immunization is always best
for the identification of vital LNs by performing them
on different kinds of multiplex model networks.

In this paper, we focus on cycle number and cycle
ratio [33], which were newly proposed indexes for
vital node identification, and extend them to multi-

plex networks. We compare the evaluation results to
other indexes through robustness, synchronization, and
immunization, and we make a further conclusion from
two viewpoints (MN and LN), which reveals the appli-
cability of our method.

This paper is organized as follow. Initially, we math-
ematically define the problem we are focused upon and
introduce several indexes and our indexes in the Meth-
ods section. Then we present the main idea of our algo-
rithm and the time complexity in the experiments sec-
tion, and we analyze the experimental results. Finally,
we make a conclusion based on a theoretical perspective
and the experimental results in the Conclusion section.

2 Problem definition

A multiplex network is a combination of several single-
layer networks which contain the same nodes (or repli-
cas of the same nodes) and a different intra-layer con-
nection. A multiplex network is a framework to per-
fectly describe the multiple relationships between indi-
viduals in real-world complex systems including social
networks, transportation networks, biological networks,
etc.

Figure 1 gives three illustrations of a multiplex frame-
work. We take Fig. 1a, b as an example. Users are con-
nected on different social apps. Every user is an MN
when the user is embedded in the framework as a node.
Users interact on TikTok via blue links and on Face-
book via green links (as shown in the left panel). When
different users are connected with a kind of link in the
same layer and there are same the individuals in dif-
ferent layers, the individuals are LNs in each layer (as
shown in the right panel). As a result, MNs represent
individuals, and LNs represent accounts of social apps,
and there is same explanation for Fig. 1c–f. Different
cities are connected by aviation via a blue link in Fig. 1c
and by railway via a green link in Fig. 1d, where MNs
represent cities, and LNs represent stations; different
gene fragments are physically connected via a blue link
in Fig. 1e and functionally connected via a green link in
Fig. 1f, where MNs represent gene fragments, and LNs
represent the specific role the gene fragments play.

Per the definitions of MN and LN we show above, the
difference between MNs and LNs is whether the basic
element is a coupled node or a single node. Mathemat-
ically, multiplex network G with N nodes and M layers
can be described as follows:

Dμ =

M
︷ ︸︸ ︷

{Gα, Gβ , · · · } (1)

Research based on MNs help us understand the individ-
uals that have multiple interactions in a complex sys-
tem, and research based on LNs helps us focus on every
single role played by individuals, and benefits us when
focusing on a multilayer network with different nodes
in each layer. Thus, the task of vital node identification
in multiplex networks can be defined as follows.
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Fig. 1 Illustrations of MNs and LNs in a multiplex network. a, b Different relationships between four users on TikTok and
Facebook. c, d Aviation and railway relationships between four cities. e, f Physical and functional relationships between
four gene fragments

Problem definition: Propose an index or algorithm to
rank MNs/LNs, such that we can find a set of MNs/LNs
to better protect or minimize the damage in specific
tasks.

3 Methods

Many methods of identifying vital nodes are designed
for single-layer networks, and researchers put effort into
reframing them for multiplex networks. In this section,
we introduce several methods and compare them with
our methods through percolation, synchronization, and
immunization.

3.1 Methods based on a star structure

3.1.1 Degree centrality

Degree centrality is the easiest way to achieve identi-
fication, and it has been well performed in all sorts of
networks. When it comes to a multiplex network with
M layers and N nodes in each layer, the degree cen-

trality of an LN vα in layer α, denoted as DCL(iα), is
shown as follows:

DC(iα) =
∑

iα,jα∈V α

aiαjα (2)

where aiαjα is the element of the adjacency matrix for
layer α in row i column j, and aiαjα equals 1 if vα

i and
vα

j are connected and 0 otherwise; V α is the set of nodes
in layer α.

Similarly, the degree centrality of an MN vi, denoted
as DCM(i), is shown as follows:

DC(iα) =
M
∑

m∈L

∑

im,jm∈V m

aimjm (3)

where L is the set of layers. Mathematically, the degree
centrality of an MN couples the degree centrality of
LNs.
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3.1.2 K-core decomposition

K-core decomposition is a process to obtain important
nodes, which decomposes graph step by step. Accord-
ing to degree centrality, nodes with higher degree are
more important than the others, which means these
vital nodes are in the inner layer. The steps are as fol-
lows: in the first stage of removal, nodes with degree one
are removed at first, then if other nodes with degree one
appear because of the removal, the network is repeat-
edly processed until there is no node with degree one.
Thus, all the removed nodes are considered to have the
same importance in this method, and these removed
nodes form the 1-core. The next stage of removal is
conducted for the nodes with degree two. Repeat the
removal stage by stage until the network is completely
decomposed.

The k-core decomposition is applied in each single
layer of the multiplex network [34], which means for
LNs, the coreness (k-core value) of nodes is still a num-
ber, but for MNs, the k-core value of nodes is a label
consisting of several number; for example, a node with
k-core value (aα, bβ) means the coreness is a in layer α,
and the coreness is b in layer β). For the sake of obtain-
ing a united standard, we sum up the coreness of the
LN as the coreness of the MN.

3.1.3 ClusterRank

Unlike the degree and k-core decomposition, for the
ClusterRank [35], researchers not only consider the
number of nearest neighbors but also take into account
the interaction among them. ClusterRank was origi-
nally designed for a directed network, but it can also
be applied to an undirected network. In a multiplex
network with M layers and N nodes in each layer, the
ClusterRank value of LN vα

i in layer α can be redefined
as follows:

DR(iα) = f(ciα)
∑

jα∈Γiα

(kout + 1) (4)

where f(ciα) is a function of the clustering coefficient
ciα of vα

i , kout is the out degree of vα
i , and Γiα

is the
set of nearest neighbors of vα

i .
Similarly, the ClusterRank value of the MN vi can be

redefined as follows:

DR(i) =
M
∑

m∈L

f(cim)
∑

jm∈Γim

(kout + 1) (5)

where L is the set of layers in the multiplex network.

3.1.4 Semi-local centrality

Semi-local centrality [36] makes a good balance between
the neighbor and path. These vital methods of node
identification based on neighbors have the advantage of
simplicity, but the topological structure is never taken

into consideration. These methods based on the path
effectively process the topological structure, but they
are not suitable for large-scale networks because of
great complexity. Essentially, semi-local centrality takes
into account the direct neighbors of nodes, including
first-order and second-order neighbors, and the first-
order and second-order neighbors of these direct neigh-
bors. In semi-local centrality, researchers partly intro-
duce the characteristics of the path and keep the sim-
plicity at the same time. In a multiplex network with
M layers and N nodes in each layer, the semi-local cen-
trality of LN vα

i in layer α can be redefined as follows:

SCL(iα) =
∑

jα∈Γ(iα)

∑

kα∈Γ(jα)

N(kα) (6)

where Γ(iα) is the set of first-order neighbors of LN vα
i ,

Γ(jα) is the set of first-order neighbors of LN vα
j , and

N(kα) is the amount of neighbors which vα
i can reach

in a 2-hop.
When it comes to an MN, we take the inter-layer

structure into consideration, and the semi-local central-
ity of the MN is redefined as follows:

SCL(iα) =
M
∑

m,n∈L

∑

jm∈Γ(im)

∑

kα∈Γ(jm)∪Γ(im)

N(k) (7)

Topologically, this definition couples the intra-layer and
the inter-layer neighbors which LNs can reach in a 4-
hop.

3.2 Methods based on a chain structure

3.2.1 Betweenness centrality

Betweenness centrality in a single-layer network is
defined as the proportion of shortest paths that pass
through a given node. Nodes with high betweenness
centrality usually act as hub, and thus a bridge which
connects subgraphs is constructed when several such
nodes are connected (a bridge may also consist of one
hub node), and the network is probably cut into pieces
when such nodes are removed. In a multiplex network
with M layers and N nodes in each layer, because paths
can be inter-layer or intra-layer, the betweenness cen-
trality of LN vα

i is redefined as follows:

BC(iα) =
∑

sm∈V m,tn∈V n,iα∈V α

σ(sm, tn | iα)
σ(sm, tn)

(8)

where V m, V n, V α is the set of nodes in layer m, n,
α, σ(sm, tn) is the number of shortest paths from LN
vm

s in layer m to LN vn
t in layer n, and σ(sm, tn‖iα)

is the number of shortest paths that pass through the
given LN vα

i in σ(sm, tn). Specifically, if vα
i ∈ {vm

s , vn
t },

σ(sm, tn‖iα) = 0.
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Similarly, the betweenness centrality of MN vi is rede-
fined as follows:

BC(i) =
M
∑

m,n,r∈L

∑

sm∈V m,tn∈V n,ir∈V r

σ(sm, tn | ir)
σ(sm, tn)

(9)

where L is the set of layers in the multiplex network.

3.2.2 Closeness centrality

Closeness centrality eliminates the disturbance by sum-
marizing the distance from the target node to all other
nodes while evaluating the importance of nodes. When
it comes to a multiplex network with M layers and N
nodes in each layer, the closeness centrality of LN vα

i is
redefined as follows:

CC(iα) =
N − 1

∑

iα∈V α,jm∈V m d(jm, iα)
(10)

where vm, vα is the set of nodes in layer m, α, and
d(jm, iα) is the distance from LN jm in layer m to LN
iα in layer α.

Similarly, the closeness centrality of MN vi is rede-
fined as follows:

CC(i) =
M
∑

n,m∈L

N − 1
∑

in∈V n,jm∈V m d(jm, in)
(11)

where L is the set of layers in the multiplex network.

3.3 Methods based on a cycle structure

3.3.1 Supra-cycle number

A cycle is a path which contains three or more nodes;
the nodes are connected end to end, and the size of
cycle is the number of nodes it contains. Once a cycle
does not contain a smaller cycle inside, it is the basic
cycle, and the smallest basic cycle is the smallest one
in the basic cycle of a given node. For a node vi, the
length of the smallest basic cycle is the girth of vi when
the cycle contains the node. As shown in Fig. 2, we
can obtain the incidence matrix by enumerating all the
smallest basic cycles in the network, and the cycle num-
ber matrix from the incidence matrix (algebraically, the
cycle number matrix equals the incidence matrix multi-
plied by the inverse of the incidence matrix, and topo-
logically, the cycle number matrix is the distribution
of the smallest basic cycle where the element in row
i, column j equals the number of smallest basic cycle
containing node vi and node vj).

When the network shifts from a single-layer network
to a multiplex network, the cycle is not only intra-layer
but also inter-layer; thus, we set a weight for the inter-
layer cycle because network dynamics and behaviors
change when inter-layer interactions happen. Also, the

situation changes when the basic elements shift from
LNs to MNs. We set the quotient between the maxi-
mum in the spectrum of inter-layer networks and the
maximum in the spectrum of intra-layer networks as
the weight of inter-layer edges [37], and this process is
shown in Fig. 3.

3.3.2 Supra-cycle ratio

The cycle ratio of node vi in a single-layer network with
n nodes is defined as follows based on the cycle number:

CR(i) =

{

0, cij = 0
∑n

j=1
cij

cjj
, otherwise (12)

where cij is the element of the cycle number matrix in
row i column j. The process of calculation is shown in
Fig. 2.

When the ratio index is based on the supra-cycle
number rather than the cycle number, the index
becomes a supra-cycle ratio, and the process is shown
in Fig. 3.

When the cycle ratio is applied in a multiplex net-
work, the results of the supra-cycle ratio change with
supra-cycle number, but the process from cycle number
to cycle ratio, which is shown in Fig. 3, does not change
(Table 1).

If we treat the inter-layer edge the same as the
intra-layer edge, the process of cycle number and cycle
ratio calculation in the single-layer network can be per-
formed without changing the supra-cycle number. The
unweighted supra-cycle number and supra-cycle ratio
are not performed well enough because the inter-layer
edge usually plays different roles in the multiplex net-
work, and the difference between the inter-layer edge
and intra-layer edge does not influence the index. We
reset the importance of the inter-layer cycle that is
adaptive for a multiplex network structure (Table 2).

We designed an algorithm to calculate the supra-
cycle number and supra-cycle ratio. Firstly, we cut off
all nodes with coreness one because a coreness greater
than one is a necessary condition for a cycle structure.
Secondly, we enumerate all the smallest basic cycles.
Each search for the smallest basic cycle can be regarded
as the shortest path problem, and the complexity of the
shortest path problem is o(N + E) in a network with
N nodes and M edges. Finally, we get the supra-cycle
number and supra-cycle ratio. The multiplex network
has E edges, M layers, and N nodes in each layer. The
complexity of our algorithm is o(N(N + E)), and in a
real network, the complexity is o(N ′(N ′ + E′)), where
N ′ � N , E′ � E. A real network is usually sparse,
and an amount of nodes are removed from the original
network initially; thus, the network we actually process
is N ′ nodes and E′ edges, which is much smaller than
the original network).
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Fig. 2 Cycle number and cycle ratio in a single-layer network. a An example of a single-layer network with ten nodes. b
Cycle number matrix of the network example, and how the cycle ratio is obtained from the cycle number matrix

Table 1 Enumerating the smallest basic cycles, the cycle number (CN) and the cycle ratio (CR) of a network example
are calculated

Node Associated smallest basic cycle 2 CN CR

1 {1, 2, 3, 4, 8} 1 23/6
2 {1, 2, 3, 4, 8} 1 23/6
3 {1, 2, 3, 4, 8}, {3, 6, 7, 8} 2 88/15
4 {1, 2, 3, 4, 8} 1 23/6
5 {5, 7, 10}, {5, 7, 9}, {5, 7, 8}, {5, 9, 10} 4 49/15
6 {3, 6, 7, 8} 1 61/30
7 {3, 6, 7, 8}, {5, 7, 10}, {5, 7, 9}, {7, 9, 10}, {5, 7, 8} 5 21/4
8 {1, 2, 3, 4, 8}, {3, 6, 7, 8}, {5, 7, 8} 3 133/20
9 {5, 7, 9}, {7, 9, 10}, {5, 9, 10} 3 77/30
10 {5, 7, 10}, {7, 9, 10}, {5, 9, 10} 3 77/30

3.3.3 Minimum flux criterion

The weight setting of an inter-layer edge is usually put
into use on layers pair by pair, and it is not only for
precision of weights but also for complexity, because the
complexity of spectrum calculation increases exponen-
tially when a network grows. But an inter-layer cycle
structure is not limited to two layers; when an inter-
layer cycle stretches across more than two layers, we
introduce the minimum flux criterion to evaluate the
significance.

The minimum flux criterion is stated as follows: the
importance of the inter-layer cycle structure equals
the minimum weight of the inter-layer edges it con-
tains. One of the characteristics of a path is its
flux depends on the minimum flux along the whole
path, which works like a bottleneck, and the cycle
structure can be regarded as a specific path struc-
ture with directional or bidirectional infinite continu-
ity.

3.3.4 Graph mapping simplification

This algorithm will not perform well when a multiplex
network explosively grows. Specifically, we can map all
layers into a single layer, which is shown as Fig. 4. This
mapping process will cause distortion (in Fig. 4, inter-
layer cycle {3, 5, 3′, 5′} disappear after mapping), but
in comparison with the simplification in complexity, the
distortion is acceptable.

3.3.5 Hybrid indexes based on Bayesian inference

Although we introduce an inter-layer cycle structure to
identify vital nodes in the framework of a multiplex
network, and make adjustment to the nonequivalent
importance between inter-layer edges and intra-layer
edges, the reliability of the adjustment is not quantified.
For a convincing and precise theoretical method, we
introduce Bayesian inference to make a choice between
the unweighted indexes and the weighted indexes.
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Fig. 3 The supra-cycle number and supra-cycle ratio in a multiplex network. a An example of a multiplex network with
two layers (layer α and layer β). b The “unweighted” supra-cycle number and supra-cycle ratio calculation in the network
example. c The weighted supra-cycle number and supra-cycle ratio for a multiplex network, where Dαβ is the weight of the
inter-layer edge, which is 0.4 in this case

To describe the reliability of an index, we set up a
random event set Ω at first, where Ω = {Θ1,Θ2,Θ3},
P (Θ1) + P (Θ2) + P (Θ3) = 1, event Θ1 represents the
index is highly reliable, event Θ2 represents the index
is unreliable, and event Θ3 represents the reliability of
index is uncertain. Taking the cycle number of node
vi as an example and denoting it as CN(i), the basic
probability assignment [38] can be defined as follows:

Pi(Θ1) =
|CN(i) − CNmin|

CNmax − CNmin + α
(13)

Pi(Θ2) =
|CN(i) − CNmax|

CNmax − CNmin + α
(14)

where CNmax = max{CN(1),CN(2), . . . ,CN(n)},
CNmin = min{CN(1),CN(2), . . . ,CN(n)}, and α is a
user-defined parameter, α ∈ [0, 1]. For the sake of sim-
plicity, the α equals 1 in this paper. There are two states
Θ1 and Θ2 in Θ3, and the ratio β = P (Θ1Θ3)

Θ3
is designed

to describe preference for the reliability, β ∈ [0, 1]. The
ratio β is also a user-defined parameter, and it usually
equals 0.5. The reliability can be easily rewritten as
P (Θ1) + βP (Θ3).

The disadvantage for the reliability mentioned above
is obvious; the parameters α and β contain too much
subjective decision. Thus, we use Bayesian inference to
make a better decision. Firstly, the indexes should be
normalized within 0 and 1. Then we set a probability
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Table 2 Enumerating the smallest basic cycles, the supra-cycle number and the supra-cycle ratio of the network example
are calculated. We denote node vi in layer α as i, and node vi in layer β as i′. The wSCN is the weighted supra-cycle
number, and the wSCR is the weighted supra-cycle ratio

Node Associated smallest basic cycle wSCN wSCR

1 Inter-layer {1, 5, 1′, 4′, 5′}, {1, 4, 5, 1′, 4′} 3.8 5.3636
Intra-layer {1, 2, 5}, {1, 3, 5}, {1, 2, 3}

2 Inter-layer null 3 2.5493
Intra-layer {1, 2, 5}, {1, 2, 3}, {2, 3, 5}}

3 Inter-layer {3, 5, 3′, 5′} 3.4 4.0481
Intra-layer {1, 2, 5}, {1, 3, 5}, {1, 2, 3}}

4 Inter-layer {1, 5, 1′, 4′, 5′}, {1, 4, 5, 1′, 4′} 0.8 2.7792
Intra-layer null

5 Inter-layer {1, 5, 1′, 4′, 5′},{1, 4, 5, 1′, 4′},{3, 5, 3′, 5′}, 4.6 8.1094
{4, 5, 4′, 5′}

Intra-layer {1, 2, 5}, {1, 3, 5}, {2, 3, 5}}
1′ Inter-layer {1, 5, 1′, 4′, 5′}, {1, 4, 5, 1′, 4′} 0.8 2.8844

Intra-layer null
2′ Inter-layer null 0 0

Intra-layer null
3′ Inter-layer {3, 5, 3′, 5′} 0.4 1.5379

Intra-layer null
4′ Inter-layer {1, 5, 1′, 4′, 5′}, {1, 4, 5, 1′, 4′}, {4, 5, 4′, 5′} 1.2 4.1381

Intra-layer null
5′ Inter-layer {1, 5, 1′, 4′, 5′}, {3, 5, 3′, 5′}, {4, 5, 4′, 5′} 1.2 3.1504

Intra-layer null

Fig. 4 a The original structure of a multiplex network. b The structure of a multiplex network after mapping

evaluation function as follows:

P (Θ1 | ¬Θ′
1) =

P (Θ1)
∏

i=2,3 P (Θ′
1 | Θ)

P (Θ′
1)

(15)

where Θ and Θ′ represent two different indexes. We
choose an index as the reliable index of the node when
the probability of the index is higher than another. We
denote the index from the unweighted cycle number
and weighted cycle number by probability as a hybrid
supra-cycle number, and we get a hybrid supra-cycle
ratio in the same way. The hybrid supra-cycle number
and hybrid supra-cycle ratio of the example graph in
Fig. 3 can be recalculated, and the ranks similar to the

weighted supra-cycle number and weighted supra-cycle
ratio come out, which is shown in Table 3.

For the sake of rigor, we will compare the hybrid
supra-cycle number, the hybrid supra-cycle ratio, and
some other methods in the Experiments section.

4 Experiments

In this section, we test and compare the indexes men-
tioned above by their performance on robustness, syn-
chronization, and transmission dynamics. All the exper-
iments for evaluation apply in four real multiplex
networks: multiplex social networks of a sample of
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Table 3 Recalculation of the indexes, the hybrid supra-
cycle number, and the hybrid supra-cycle ratio of a network
example. wSCN is the weighted supra-cycle number, wSCR
is the weighted supra-cycle ratio, HSCN is the hybrid supra-
cycle number, and HSCR is the hybrid supra-cycle ratio

Node wSCN wSCR HSCN HSCR

1 3.8 5.3636 0.8261 0.6614
2 3 2.5493 0.6522 0.3144
3 3.4 4.0481 0.7391 0.4992
4 0.8 2.7792 0.2857 0.3634
5 4.6 8.1094 1 1
1′ 0.8 2.8844 0.2857 0.3877
2′ 0 0 0 0
3′ 0.4 1.5379 0.1429 0.2101
4′ 1.2 4.1381 0.4286 0.5471
5′ 1.2 3.1504 0.4286 0.5532

physicians in the United States [39], a multiplex air
transportation network of the European Union [40],
a multiplex genetic and protein interaction network
of Caenorhabditis elegans [41,42], and a multiplex co-
authorship network of the arXiv free scientific reposi-
tory [43]. The essential information of each network is
shown in Table 4.

4.1 Robustness analysis

Robustness and stability are always the core issue in
network study. In the identification of vital nodes, rein-
forcing the protection for these vital nodes we select will
help us to maintain the network, which can enhance its
robustness and stability. Node removal attack [44] is a
common method to evaluate the rank of vital nodes,
where we assume a network is under attack by removal
of nodes, and the removal always takes place on the
most important node of the rank in each iteration;
and the size of the largest giant connected component
(GCC) in the left part of the network represents the
performance of our vital node identification method.

The difference between removal of MNs and LNs is
obvious: when removal happens to a node, all replicas
of the node will be removed from the network if we do
research on the MN, and only the node itself will be
removed if we do research on the LN. Experiments on

four multiplex networks are shown in Figs. 5, 6, 7, and
8.

In Figs. 5 and 6, we compare indexes, including the
unweighted supra-cycle ratio (SCR), unweighted supra-
cycle number (SCN), hybrid supra-cycle ratio (HCR),
hybrid supra-cycle number (HCN), degree centrality
(D), semi-local centrality (S), ClusterRank (Clu), k-
core index (Co), betweenness centrality (B), and close-
ness centrality (Clo).

In Fig. 5, it is obvious that HCN and HCR do not
perform as well as SCN and SCR when the network
is not huge enough (Fig. 5a), and the situation changes
when the network grows (Fig. 5b–d). By the way, degree
centrality and betweenness centrality have good per-
formance as well, for which there are two reasons. On
one hand, nodes with a high degree work as hubs and
nodes with betweenness centrality working as bridges in
the network; GCCs are vulnerable on removal of these
nodes. On the other hand, node removal attack does not
reflect the difference between inter-layer interaction and
intra-layer interaction.

In a multiplex network with M layers and N nodes in
each layer, robustness [45] of the network is defined as
follows:

R =
1
N

N
∑

i

g(i) (16)

where the relative size g(i) is the number of nodes in
the largest giant connected component after removing
i nodes, and the normalization factor 1/N makes sure
the robustness of different networks can be compared.
Obviously, a smaller R means a quicker collapse, thus
better performance. The result is shown in Table 5.

When it comes to MNs, we can get several other
indexes by mapping all the layers of the network into a
single-layer network. In Fig. 7, SCRM, HCRM, SCNM,
and HCNM are SCR, HCR, SCN, and HCN, respec-
tively, in the mapping network.

We select the best performing index in Fig. 7 and
compare it with other indexes in Fig. 8. The results
reveal that the hybrid indexes based on cycle structure
have better performance, and the indexes in the map-
ping network have advantages both in performance and
complexity.

Table 4 The essential information of the test multiplex network

Name Category Node Edge Layer Used layer

CKM–physicians–innovation Physics 246 1551 3 3
multiplex

EU air transportation multiplex Transportation 450 3588 37 4
Network transportation

C. elegans multiplex Biology 3879 8181 6 4
GPI network

ArXiv Netscience multiplex Coauthorship 14,489 59,026 13 2
coauthorship
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Fig. 5 The GCC size of a multiplex network after a q fraction of LNs is removed. We compare indexes about cycle structure
here in these subgraphs. a CKM–physicians–innovation multiplex network. b EU air transportation multiplex network. c
C. elegans multiplex GPI network. d ArXiv Netscience multiplex

Fig. 6 The GCC size of a multiplex network after a q fraction of LNs is removed. We compare best performing indexes
in Fig. 5 with several other indexes. a CKM–physicians–innovation multiplex network. b EU air transportation multiplex
network. c C. elegans multiplex GPI network. d ArXiv Netscience multiplex

There are multiple reasons for the better performance
of HCNM and HCRM; the removal of MNs diminishes
the influence of the inter-layer edge on GCC, and appar-
ently the weight setting more or less fixes distortion
caused by mapping. We quantify the robustness of net-
works on MN removals, which is shown in Table 6.

4.2 Pinning control

We evaluate the validity of the indexes in synchroniza-
tion by pinning these selected top nodes of rank [46].
Generally, the interacting dynamics of a network with
N nodes is shown as follows:

ẋi = f(xi) + σ
N

∑

j=1

lijΓ(xij) + Ui(x1, . . . , xn)

(17)

where the xi ∈ R is the state of node i, the coupled
strength is denoted as positive constant σ, lij is the ele-
ments of a Laplacian matrix of the network, the inner
coupled matrix Γ is positive semi-definite, and Ui is the
controller of node i. The goal of pinning control is driv-
ing the system from an initial state to a target state
in finite time by pinning some nodes. Similar to the
robustness test, all the nodes are ranked in descending
order by the indexes; then the nodes are successively
pinned, which starts from the top rank. The synchro-
nization can be measured by the smallest nonzero eigen-
value of the principal submatrix [46,47], and the higher
synchronization is correlated with the higher value. We
denote it as μ(L−Q), where Q is the number of pinned
nodes, and L−Q is the principal submatrix after delet-
ing Q nodes. Inspired by the evaluation equation of
robustness, the analogous evaluation equation for syn-
chronization is proposed by researchers:

Table 5 Robustness of four multiplex networks by the indexes mentioned above on LN removal

CKM–physicians–innovation EU air transportation C. elegans ArXiv netscience

SCR 0.1389 0.1986 0.2937 0.0074
SCN 0.1456 0.2079 0.3020 0.0152
HCR 0.1752 0.1218 0.1879 0.0061
HCN 0.1672 0.1466 0.2634 0.0158
D 0.1381 0.1144 0.1765 0.0089
S 0.1825 0.2005 0.6918 0.0090
Clu 0.2326 0.3920 0.7032 0.0735
Co 0.2574 0.2244 0.3722 0.0365
B 0.1353 0.1915 0.2081 0.0078
Clo 0.1796 0.2966 0.4101 0.0076

Significant bold values are less robustness value means smaller average GCC, which means the network collapses quicker
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Fig. 7 The GCC size of a multiplex network after a q fraction of LNs is removed. We compare indexes about cycle structure
here in these subgraphs. a CKM–physicians–innovation multiplex network. b EU air transportation multiplex network. c
C. elegans multiplex GPI network. d ArXiv Netscience multiplex

Fig. 8 The GCC size of a multiplex network after a q fraction of LNs is removed. We compare indexes about cycle structure
with other indexes in these subgraphs. a CKM–physicians–innovation multiplex network. b EU air transportation multiplex
network. c C. elegans multiplex GPI network. d ArXiv Netscience multiplex

Table 6 Robustness of four multiplex networks by the indexes mentioned above on MN removal

CKM–physicians–innovation EU air transportation C. elegans ArXiv netscience

SCR 0.1590 0.2408 0.2590 0.0664
SCN 0.1616 0.2096 0.2435 0.0926
HCR 0.1772 0.1772 0.1783 0.0644
HCN 0.1710 0.1949 0.2243 0.0943
SCRM 0.1649 0.1667 0.1626 0.0893
SCNM 0.2038 0.1838 0.2157 0.0716
HCRM 0.1779 0.1654 0.1717 0.0455
HCNM 0.2017 0.1870 0.2198 0.0716
D 0.1723 0.1595 0.1515 0.0569
S 0.1855 0.1824 0.6098 0.0893
Clu 0.2622 0.3871 0.6353 0.1996
Co 0.2298 0.2194 0.3373 0.1411
B 0.1604 0.1823 0.1760 0.0893
Clo 0.1814 0.2668 0.4697 0.0748

Significant bold values are less robustness value means smaller average GCC, which means the network collapses quicker

P =
1

Qmax
+

Qmax
∑

Q=1

μ(L(−Q)) (18)

where Qmax is the maximum of pinned nodes. In simu-
lations, we set the maximum equal to 10% nodes. The
result of pinning LNs by different indexes is presented
in Table 6. We highlight the top two indexes in each
network, and the result shows that indexes based on a
cycle structure have good performance on synchroniza-
tion but not the best all the time (Tables 7, 8).

4.3 Transmission dynamics

The SIR model is a classical method for network trans-
mission dynamic research, and it can also be used

for evaluation of vital nodes identification. Researchers
developed the SIR model to simulate the pandemic.
Every individual can be in one of three states: sus-
ceptible (S), infected (I), recovered (R). Individuals
in the S state are regarded as healthy ones and easy
to be infected. Individuals in the I state are able to
infect healthy ones and can also probably transfer into
state R (simulating recovery). Individuals will not be
infected or infect others again once transferring into
state R. Recently, scholars did abundant research on
the SIR model in a disease–information coupled multi-
plex network [48], which revealed the inhibition effect of
information on disease spread. When those vital nodes
we select are set as initially infected individuals (seed
nodes), the speed and breadth of transmission reflects
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Table 7 Synchronization of four multiplex networks by the indexes mentioned above on pinning LNs

CKM–physicians–innovation EU air transportation C. elegans ArXiv netscience

SCR 3.4886E−16 4.3906E−18 1.4376E−18 5.6773E−20
SCN 3.2663E−16 4.8838E−18 9.8974E−19 4.5442E−18
HCR 3.6865E−16 3.7540E−18 2.8520E−18 7.9041E−18
HCN 3.1922E−16 4.2485E−18 1.0656E−18 5.7689E−18
D 3.6354E−16 2.8187E−18 6.1360E−19 4.5442E−18
S 4.0932E−16 3.8061E−18 6.7993E−19 2.9700E−18
Clu 3.2718E−16 3.8053E−18 1.1256E−18 1.2458E−18
Co 3.1186E−16 3.9261E−18 1.1242E−18 1.2458E−18
B 3.7463E−16 2.3368E−18 1.8688E−18 1.7515E−17
Clo 4.4551E−16 4.6898E−18 5.6352E−19 1.2544E−18

Significant bold values are bigger synchronization value means bigger average smallest nonzero eigen value when more and
more nodes are pinned, which means better synchronization

Table 8 Synchronization of four multiplex networks by the indexes mentioned above on pinning MNs

CKM–physicians–innovation EU air transportation C. elegans ArXiv netscience

SCR 1.4657E−16 1.1359E−17 4.0218E−18 1.6203E−17
SCN 1.4453E−16 1.0451E−17 5.9910E−18 2.4618E−18
HCR 3.3132E−16 1.4187E−17 1.8656E−18 3.1507E−18
HCN 2.4974E−16 1.2156E−17 4.9718E−18 6.0328E−18
SCRM 3.4227E−16 9.8288E−18 2.2731E−18 6.9271E−18
SCNM 2.1900E−16 1.1158E−17 9.4398E−19 1.6440E−17
HCRM 1.8943E−16 1.1435E−17 9.3987E−19 6.9276E−18
HCNM 2.2931E−16 1.2348E−17 2.2049E−18 1.6441E−17
D 1.9295E−16 1.3035E−17 1.1866E−18 1.4862E−17
S 4.4781E−16 9.2381E−18 4.5992E−18 2.9334E−18
Clu 2.8172E−16 1.2269E−17 1.0051E−18 1.1762E−17
Co 2.9362E−16 1.8097E−17 2.0366E−18 1.8794E−17
B 1.4632E−16 1.2092E−17 2.0366E−18 2.1846E−17
Clo 1.9109E−16 1.4626E−17 1.9267E−18 6.1986E−18

Significant bold values are bigger synchronization value means bigger average smallest nonzero eigen value when more and
more nodes are pinned, which means better synchronization

the importance of seed nodes, which is deemed as the
performance of the vital node identification method.

In this paper, epidemic spread is not limited in every
single layer; nodes in the I state can infect others in
different layers. Unlike the single-layer network, when
transmission happens in the same layer, nodes in the
I state infect others with a probability β1, and with
probability β2 when transmission happens in different
layers. Nodes in the I state recover at recovery rate
γ. For LNs, inter-layer transmission is easy to define:
transmission between a node and its replica is inter-
layer. But for MNs, the node is infected in every layer
once any one of its replicas is infected, and in this cir-
cumstance, inter-layer transmission should be defined
in another way: a transmission process is inter-layer if
an MN gets infected in a layer and infects others in dif-
ferent layers. Figure 9 provides a diagram of inter-layer
transmission for LNs and MNs.

The dynamic equations of the SIR model in a multi-
plex network are shown as follows:

d(s)
dt

= −β1s(t)i(t) − β2s(t)i(t) (19)

di(s)
dt

= β1s(t)i(t) + β2s(t)i(t) − γi(t) (20)

dy(t)
dt

= γi(t) (21)

where t is the time (iteration steps), and S, i(t), and
γ(t) are the number of nodes in states S, I, and R.
When the intra-layer infection rate β1 equals 0.01, the
inter-layer infection rate β2 equals 0.005, and the recov-
ery rate γ equals 0.05. We select the top 1% nodes as
seed nodes and simulate the whole process of the trans-
mission 50 times, then compare the average of variable
proportion of nodes in state I under different vital node
identification methods, which is shown in Figs. 10, 11,
12, and 13.

When an LN is the basic element in our research,
we make comparison between SCN and HCN, and SCR
and HCR in multiplex networks we used above. The
results show that HCN and HCR have better perfor-
mance most of time, and the advantages of HCN and
HCR are not clear when the network is way too small.
The transmission of LNs shows some similar character-
istics to transmission in a single-layer network, because
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Fig. 9 Inter-layer transmission in a multiplex network consisting of two layers and five nodes in each layer. The nodes
in the S state are blue, the nodes in the I state are red, and the orange arrow is the transmission process. a Inter-layer
transmission for LNs: node vα

1 infects vβ
1 . b Inter-layer transmission for MNs: node v1 gets infected in layer α and infects

node v4 in layer β

Fig. 10 When the LN is the subject of study, comparison between SCN and HCN is in subgraph (a–d), and comparison
between SCR and HCR is in subgraph (e–h). Subgraphs (a) and (e) are simulations in the CKM–physicians–innovation
multiplex network. Subgraphs (b) and (f) are simulations in the EU air transportation multiplex network. Subgraphs (c)
and (g) are simulations in the C. elegans multiplex GPI network. Subgraphs (d) and (h) are simulations in the ArXiv
Netscience multiplex

Fig. 11 Comparison among several sets of LNs from different indexes. a CKM–physicians–innovation multiplex network.
b EU air transportation multiplex network. c C. elegans multiplex GPI network. d ArXiv Netscience multiplex

the transmission of LNs can be regarded as transmis-
sion in a single-layer network with two infection rates.
Because of the similitude, HCN and HCR do not show
overwhelming advantages, and if we take simplicity into
consideration, indexes based on an unweighted cycle
structure show less but similar practicability in the
transmission task.

We make comparison among HCN, HCR, and some
other indexes in four multiplex networks. Although
HCN and HCR do not have more superb performance
than SCN and SCR all the time, situations with other
indexes are much better, where HCR is the best for
both speed and breadth of transmission in three cases
[subgraph (b), subgraph (c), and subgraph (d)] and
the second best once [subgraph (a)]; HCN just has less
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Fig. 12 When MN is the subject of study, comparison between SCN, HCN, SCNM, and HCNM is in subgraph (a–d),
and comparison between SCR, HCR, SCRM, and HCRM is in subgraph (e–h). Subgraphs (a) and (e) are simulations
in a CKM–physicians–innovation multiplex network. Subgraphs (b) and (f) are simulations in an EU air transportation
multiplex network. Subgraphs (c) and (g) are simulations in a C. elegans multiplex GPI network. Subgraphs (d) and (h)
are simulations in an ArXiv Netscience multiplex

Fig. 13 Comparison among several sets of MNs from different indexes. a CKM–physicians–innovation multiplex network.
b EU air transportation multiplex network. c C. elegans multiplex GPI network. d ArXiv Netscience multiplex

performance than HCR and betweenness centrality in
two cases [subgraph (b) and subgraph (d)]. There is an
exception that betweenness centrality is also one of the
best methods for the transmission task, but between-
ness centrality has tremendous disadvantages for com-
plexity, which is a disaster when a network grows. And
comparing with betweenness centrality, our algorithm
of HCN and HCR has remarkable success for complex-
ity in a huge sparse network.

When we work on MNs, the performance of HCN
and HCR gets better. In Fig. 12, we make a compari-
son with CNs and CRs. The data prove that HCN and
HCR have advantages for both speed and breadth. But
the interesting thing is that HCN and HCR not only
perform well; HCNM and HCRM also have advantages
for both speed and breadth, and sometimes they are
even better than HCN and HCR (Fig. 12b, f). This phe-
nomenon suggests that HCNM and HCRM have good
performance in transmission tasks as well, and when
the algorithm is applied to a very huge multiplex net-
work, especially a very dense multiplex network, map-
ping the network into a single layer can achieve good
compromise between complexity and performance.

The reason why the transmission process performs
well based on HCNM and HCRM is very clear. Although

an inter-layer transmission is redefined on MNs, it is not
real layer-to-layer transmission because this inter-layer
transmission requires continuity in the process or step.
Real inter-layer transmission is a topological process,
but the principle of transmission for an MN is once
a node gets infected, all replicas get infected; thus, it
is impossible to redefine inter-layer transmission topo-
logically. With the limit of the principle, the effect of
inter-layer edges is ignored for a multiplex network.

The disadvantage of transmission for an MN causes
similar performance between HCN and HCNM, and
HCR and HCRM, but it does not mean the inter-layer
cycle structure and the weight setting are worthless.
The limit of the transmission principle for the MN does
not change the fact that the transmission process still
works on inter-layer cycle structures, and these inter-
layer cycle structures are not as important as the intra-
layer cycle structures, which makes sure that the hybrid
indexes based on cycle structure are an effective way to
deal with transmission tasks.
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5 Conclusion

In this paper, we introduce the cycle number and cycle
ratio at first and develop them into a multiplex network.
We integrate the nonequivalent importance between
inter-layer edges and intra-layer edges and the reliabil-
ity of the nonequivalence by Bayesian inference, then
propose two indexes, the hybrid supra-cycle number
and hybrid supra-cycle ratio, to identify two differ-
ent types of vital nodes (LNs and MNs), and evalu-
ate their performance with several different indexes in
three aspects: robustness, synchronization, and trans-
mission dynamics. In most cases, the two indexes have
good performance, and we draw the following conclu-
sions based on these experimental results: (i) Compar-
ing with hybrid supra-cycle number, the hybrid supra-
cycle ratio has better performance on a local scale; (ii)
Our index is more suitable for study on MNs than LNs;
and (iii) Mapping a multilayer network into a single-
layer network is a time-saving and space-saving prepro-
cessing step, especially for research on MNs in very huge
multiplex networks.

We end this paper by presenting several open issues.
Firstly, we work a lot on the LN because there is more
than one kind of multilayer network, and we try to
develop the cycle structure into a general multilayer
network which may contain different nodes in different
layers, and the MN will not exist; but the hybrid supra-
cycle number and hybrid supra-cycle ratio on the LN
do not work as well as on the MN, which means more
reasonable, more effective, and more practical meth-
ods are needed. Moreover, although we preprocess the
multiplex network by removing nodes in which the k-
core number is equal or less than 1, the complexity of
our algorithm on a huge but sparse network greatly
decreases, which causes uncertainty in vital node iden-
tification. Besides, the order of cycle is not involved in
the framework. Similar to the high-order cluster coef-
ficient, we try to frame and analyze the order of cycle
on network function and dynamics, and quantify these
effects and interactive behaviors. Last but not least, our
work focuses on topology, and the properties of nodes
are not, but should be, involved for a better understand-
ing of complex networks. We hope these missing parts
are fulfilled in the future.
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