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Abstract. The recently developed model of the epidemic spread of two virus strains in a closed population
is generalized to the situation typical for the couple of strains delta and omicron, when there is a high
probability of omicron infection soon enough after recovering from delta infection. This model can be
considered as a kind of combination of SIR and SIS models for the case of competition of two strains of
the same virus with different contagiousness in a population. The obtained equations and results can be
directly implemented for practical calculations of the replacement of strains of the SARS-CoV-2 virus.
A comparison between the estimated replacement time and the corresponding statistics shows reasonable
agreement.

1 Introduction

Existing models for the spread of infection describe the
free-running development of an epidemic and all its
stages. There are two basic models for such descrip-
tion: the susceptible–infected–susceptible (SIS) and
susceptible–infectious–removed, susceptible–exposed–
infectious–removed (SIR, SEIR). The SIS model goes
back to the pioneering investigations of malaria by
Ronald Ross [1] and uses the assumption that the recov-
ered people can immediately get infection again. Exist-
ing SIR models assume that the recovered people save
immunity during epidemic (see, e.g., [2,3]). There are
many versions of those models [4–10] (see also refer-
ences therein). The balance between the susceptible and
infected members of population under the various con-
ditions of infection transfer is the subject of research in
[8,11,12].

Recently, the delayed time-discrete epidemic model
(DTDEM) considering the typical long duration of the
COVID-19 disease has been developed [13]. In [14,15],
this specific delay has been presented in differential
form. The delay discussed in [13–15] assumes that the
recovered patient is immune, and in this respect fits the
SIR model, rather than SIS. The considered delay mod-
els do not imply the allocation of a separate category
of hidden virus carriers (see, e.g., the SEIR models in
[16,17]). Latent carriers of the virus can infect others
without delay and are similar to the infected ones. Cur-
rently, the simplest SIS, SIR and SEIR baseline models
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are being developed taking into account the vaccination
process [18–20].

Nowadays, the actual problem is the strain appear-
ance and circulation in application to COVID-19 [21–
23]. In the recent preprint [21], the SIR-type model was
considered for the case of the coexistence of two strains
of the COVID-19 virus spreading in the same popu-
lation. In [21], as in the pioneer paper [22] devoted
to the circulation of several strains in a population, it
was assumed that after being ill with any strain, those
who recovered were completely immune. We called
this assumption about the properties of strains “strain
orthogonality”, bearing in mind a certain analogy with
the mathematical orthogonality of functions. An impor-
tant difference between [21] and [22] is the complete
disappearance of strains at long times. This is due to
the fact that [21] considers times much shorter than
the average time of a human life. It should be noted
that in reality, the long-term circulation of strains (see
[22]) is mainly not associated with the finite average
lifetime and assumptions about the nature of the birth
and death of healthy people in the population. The pro-
longed circulation of strains is due to the emergence of a
new, more contagious strain in the patient’s body dur-
ing a long-term illness with another strain that is easily
susceptible to mutations (like SARS-CoV-2, for exam-
ple) in the absence of a universal vaccine. For infections
such as influenza, the main sources of mutations are
carriers external to humans (birds, pigs, and other rep-
resentatives of the animal world). In this paper, we do
not include these factors, which differ significantly from
those considered in [21,22] and require separate study.
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Due to different contagiousness, a replacement of a
less contagious strain to a more contagious one takes
place; it was quantitatively described in [21] and, in
concrete application to COVID-19, in [22] under the
“strain orthogonality” condition. In [22] the character-
istic details of such a process were revealed, such as the
necessary conditions for the emergence of a maximum
in the curves describing the current number of virus
carriers, a decrease in the peak incidence of a less con-
tagious strain when a more contagious strain appears,
a faster depletion of the part of population that has
not affected by any strain. This means a more rapid
course of the epidemic when a more contagious strain
appears (if a third, even more contagious strain, does
not arise) and increase in the required level of recov-
ered patients to achieve collective immunity (if it turns
out to be possible) when a less contagious strain of the
virus is replaced by a more contagious one, etc.

In the present paper, the basic equations [21,22] are
generalized to the case of “strain non-orthogonality”.
The respective generalized equation we named “strain-
stream” ones. These equations are the development of
a general mathematical approach of the “principle of
competitive exclusion” (see, e.g., Murray [23]) in epi-
demiology. In papers [24,25], the first applications of
this principle were considered for the strain transmis-
sion. In [26] the model of malaria transmission, which
considers the seasonal fluctuations in mosquito pop-
ulation density or spatial heterogeneity with periodic
migration, was proposed. It was shown that the strain
heterogeneity can generate periodic behavior as a con-
sequence of the interaction between parasite strains and
host immunological defences. The model of two strain of
dengue circulation in host population due to the trans-
mission from the infected mosquitoes has been devel-
oped in detail [27]. In both papers, a vector transmitted
disease (caused by different sources of infection: para-
sites or viruses) is considered on the basis of various
differential equations. The extended SIR-type model
for COVID-19 waves has been presented in [28] (see
also recent the paper [29]) to fit this model calculations
to the data in Tonghua City in China (see also refer-
ences therein). The qualitative consideration of “strain
non-orthogonality” has been considered on the basis of
simplified model in [30].

It should be stressed that the mathematical structure
of various models allows some comparisons in spite of
the different processes and conditions which lead to the
specific results.

The model under consideration makes it possible,
in the presence of a minimum number of parameters,
to quantitatively describe various specific situations of
coexistence and struggle of two strains for dominance
in a population of living organisms. The specific exam-
ples considered in this work were based on the choice of
initial conditions that correspond to the emergence of a
second strain of high contagiousness (for example, omi-
cron) against the background of an already developed
epidemic with the dominance of the delta strain. To
describe such a situation, it suffices to take into account
the initial conditions, bringing them into line with the

actual level of delta disease in a certain population, to
the time the strain appeared in South Africa, which was
subsequently named omicron by WHO.

At the same time, if we are interested in the rivalry of
two strains (for specificity, below we designate delta-1
and omicron-2) in any country, region, city or local-
ity, we naturally must use the available statistical data
on the incidence, caused by the 1 strain when cases of
the disease caused by the 2 strain appear. The detail
data concerning COVID-19 disease for different coun-
tries, without differentiation on strains are quite fully
reflected in [31]. City data are presented on the web-
sites of the respective countries (e.g., the Robert Koch
Institute in Germany, Stopcoronavirus in Russia, the
Johns Hopkins Institute in the USA, etc.). There are
also recent publications on the strain replacement cases
and the respective statistics (see, e.g.,[32–34] and refer-
ences therein).

2 Equations for the case of “strain
non-orthogonality”

This generalization reflects the observable property to
be infected with a high probability by the strain 2 of
the COVID-19 disease for those who have already been
ill and recovered from infection caused by the strain 1.
This means that immunity to strain 2 is not developed
(or is only partially developed) after disease caused by
strain 1. Obviously, for strains that cause COVID-19
(as well as for influenza viruses), there is only a limited
period of immunity but much longer than the average
disease duration. In fact, the property of “strain non-
orthogonality” means that infection caused by strain
2 (omicron) can appear with some probability even
immediately after recovering from the disease caused by
strain 1 (e.g., delta). According to our knowledge, the
disease COVID-19 caused by two strains which simulta-
neously coexist in one sick person was not observed (in
contrast with the rare cases of COVID-19 and flu). At
the same time, according to the existing statistical data
infection 1 was not observed after infection by strain 2.
The additional reason for this is a fast disappearance
of the less contagious strain, as we demonstrate below.

As in [28] we denote S the number of never infected
people in a closed population consisting of N people, I1
and I2 are the number of strain carriers of type 1 and
2. The simplified SIR-type hooking model equations
describing the epidemic spread for the case of two “ non-
orthogonal” strains in the close population N can be
written in the form using the variables I1(t)/N = y1(t),
I2(t)/N = y2(t), S(t)/N = u(t)

du(t)
dt

= −p1y1u − p2y2u, (1)

dy1(t)
dt

= p1y1u − y1
T1

, (2)

dy2(t)
dt

= p2y2u − y2
T2

+ p2γ2
y2(t)y1(t)

T1
. (3)
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The values T1 and T2 are the average durations of the
diseases caused by strains 1 an 2. Parameters p1 and
p2 are the characteristics of the contagiousness for two
strains, which are determined as the product of the
quantity of dangerous contacts nc of the infected people
per day and the average susceptibility k of the healthy
person on dangerous distance [13,14]. The new term in
Eq. (3) describes the infection process by strain 2 of the
people recovered after the disease caused by strain 1.

The coefficient 0 ≤ γ2 < 1, hereinafter referred to as
the Viral Link Attenuation Factor (VLAF), describes a
certain decrease in the probability of getting 2 after
being infected with 1 (partial increase in immunity)
compared to the probability of getting 2 without hav-
ing been ill before 1 (i.e., directly from the group u).
This is due to the production of antibodies after the
disease caused by the 1 strain (or after vaccination),
which perform some protective function against strain
2.

However, the last term in Eq. (3) only qualitative
describes the infection process by strain 2 of the peo-
ple recovered after the disease caused by strain 1. Peo-
ple after infection 1 can be infected by the strain 2
not immediately, but after some time. This circum-
stance should be accounted for the explicit description
of the “strain non-orthogonality”. To find the respec-
tive equations we divide all virus carriers of strain 2 into
two groups—y2←S and y2←1 . The proportion of those
infected with strain 2 who were not ill with strain 1
(i.e., infected from the set S who were not ill with any
of the strains) is designated y2←S and those infected
with strain 2 from the set of those who had previously
been sick by strain 1 are designated y2←1. The entire
set of patients with strain 2 is equal to y2 = y2←S +
y2←1 . Then, the system of equations reads

du(t)
dt

= −p1y1u − p2y2u, (4)

dy1(t)
dt

= p1y1u − y1
T1

, (5)

dy2←S(t)
dt

= p2y2u − y2←S

T2
, (6)

dy2←1

dt
= γ2p2f(t)y2 − y2←1

T2
. (7)

Here, the function f(t) is the proportion of those who
have or had at moment t strain 1, but did not have
strain 2 . To find function f(t) necessary to take into
account that only a part from all people who have been
ill x1(t)

x1(t) =
∫ t

0

dτp1y1(τ)u(τ) (8)

can contribute in f(t). The function x1(t) contains all
people who have been ill with strain 1 by time t (they
are extracted only from S). Among them are those
identified as ϕ(τ) who obtain strain 2 after being ill
with strain 1 at time t (they are taken from the set

x1(τ) − ϕ(τ)). According to the model, they cannot
get sick again with strain 2 and therefore must be sub-
tracted from x1(t) to find f(t)

f(t) = x1(t) − ϕ(t). (9)

Therefore, this subtracted function ϕ(t) is determined
by the integral equation

ϕ(t) = γ2

∫ t

0

p2f(τ)y2(τ)dτ

= γ2

∫ t

0

p2[x1(τ) − ϕ(τ)]y2(τ)dτ. (10)

From (9) and (10), taking into account (8), it follows

∂f(t)
∂t

= p1y1(t)u(t) − γ2p2f(t)y2(t). (11)

Summarizing Eqs. (6), (7), we arrive at equations of the
model of “strain non-orthogonality”, which considers
that after disease caused by strain 1 one can be infected
by strain 2 (but not vice versa)

du(t)
dt

= −p1y1u − p2y2u, (12)

dy1(t)
dt

= p1y1u − y1
T1

, (13)

dy2(t)
dt

= p2y2u + γ2p2f(t)y2 − y2
T2

, (14)

∂f(t)
∂t

= p1y1(t)u(t) − γ2p2f(t)y2(t). (15)

It is easy to see that all people x2(t) diseased by strain
2 at time t can be calculated by integral

x2(t) =
∫ t

0

dt′p2y2(t′)u(t′) +
∫ t

0

dt′p2γ2y2(t′)f(t′).

(16)

All coefficients in Eqs. (12, 13, 14, 15) are posi-
tive, p1,2 > 0, T1,2 > 0, γ2 > 0, and values of all
variable functions lie in the interval (0, 1). There is
only one stationary solution to Eqs. (12, 13, 14, 15),
y1,2 = 0, u = u0, where u0 is an arbitrary constant.
The stationary state is unstable, that is, in the vicin-
ity of zero one of the functions y1,2(t) grows in time, if
u0 > min[1/(p1T1), 1/(p2T2)].

Suppose that initially u(0) = u0 and y1,2(0) ≈ 0.
Throughout the present study we are interested in the
case when both y1,2(t) grow in time, that is, u0 should
be large enough, u0 > max[1/(p1T1), 1/(p2T2)]. Accord-
ing to Eq. (12), u(t) is always a decreasing function
of time and sooner or later infected fractions of pop-
ulation start decreasing. Evidently, y1,2(t → ∞) → 0,
however an asymptotic value, u(t → ∞) → u∞, depend
on initial conditions. It may be only deduced from the
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Fig. 1 Function y1(t) of strain 1 carriers, when the second strain is absent (p2 = 0) for u(0) = 0.8 (solid) and for u(0) = 0.7
(dashed). The parameters are p1 = 0.15, y1(0) = 0.01, the average duration of the virus carrier T1 = 15 days

qualitative analysis that u∞ should be small enough,
u∞ < min[1/(p1T1), 1/(p2T2)].

The two-strain propagation model developed in [21]
is the limiting case of the considered general model (12,
13, 14, 15) for γ2 = 0. In this case Eq.(15) is split off
and Eqs. (12, 13, 14) are closed.

3 Numerical solution for various immunity
parameter VLAF

The analysis of the stability of the stationary solution
carried out above is similar to one in [21]. It shows
that the necessary condition for the development of an
epidemic process at γ2 = 0 is the condition piTiu0 > 1.
This condition remains valid for Eqs. (12, 13, 14, 15).

As was revealed in [21] for γ2 = 0, using the exam-
ple of specific initial conditions and parameters pi and
Ti, the coexistence of two viruses of different conta-
giousness leads over time to the replacement of the less
contagious strain by a more contagious one, even if the
share of the latter at the beginning of the process was
significantly smaller than less contagious. The results
of calculations for specific parameters that correspond
to the simultaneous emergence of an epidemic with two
strains of different contagiousness are shown in Figs.
1 (epidemic process in the presence of strain 1 only,
when p2 = 0) and 2 (comparison of the dynamics of the
epidemic in the presence of both strains for the model
under consideration with γ2 = 0.3).

Thus, Figs. 1 and 2 serve to demonstrate the process
of mutual influence of strains during the development of
an epidemic for the case of “strain non-orthogonality”
based on Eqs. (12, 13, 14, 15).

As is easy to see, strain 1 is slightly suppressed by
strain 2 since the value of maximum for the solid curve
in Fig. 2 is lower than in Fig. 1 for u(0) = 0.8. A com-
parison of these figures shows that the duration of strain
1 circulation is suppressed (� 2 times shorter for the
used parameters) due to the appearance of strain 2. A
comparison of Figs. 1 and 2 shows that circulation of
strain 2 is shorter than circulation of strain 1 in the case
of strain 2 absence. It is easy to see that for arbitrary
parameters the maximum for strain 1 in Fig. 2 is shifted
to earlier time in comparison with Fig. 1. This peculiar-
ity, mentioned in [21], is valid also for the strain-stream
model under consideration.

In this paper, we are interested in the impact of a
possible infection with strain 2 after recovery from an
infection caused by strain 1. This situation corresponds
to the epidemic process observed with the appearance
of the omicron strain. An important difference from the
specific examples considered in [21] is the appearance
of strain 2 under conditions of a developed epidemic of
strain 1, which is characterized by rather large initial
values of u(0) and y1(0).

The results of the numerical solution of Eqs. (12, 13,
14, 15) for the initial conditions simulating the situa-
tion of the appearance of omicron in already developed
epidemic of the delta strain are shown in Figs. 3, 4, 5.

The proportions of y1(t) and y2(t) infected with
strains 1 and 2 are shown in Fig. 3 left and right, respec-
tively, for different parameters γ2. As in Figs. 1 and
2, the initial condition for the proportion of the pop-
ulation that did not encounter either of the two con-
sidered strains was chosen at the level of u(0) = 0.8,
which significantly exceeds the official statistics for, e.g.,
Germany at the time the omicron strain appeared in
the country. By such an overestimation, we take into
account a significant number of unreported cases of dis-
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Fig. 2 Functions y1(t) (solid) and y2(t) (dashed) of the virus carriers for the case when both strains exist. The parameters
are p1 = 0.15, p2 = 0.4, y1(0) = 0.01, y2(0) = 10−7, u(0) = 0.8, the average duration of the virus carrier T1 = T2 = 15 days,
γ2 = 0.3

Fig. 3 Comparison of the function y1(t) (left) and y2(t) (right) for different values γ2 = 0 (solid), γ2 = 0.2 (dashed) and
γ2 = 0.8 (dash-dotted) of virus carriers for the case when both virus strains exists. The parameters are p1 = 0.15, p2 = 0.4,
y1(0) = 0.01, y2(0) = 10−7, u(0) = 0.8, the average duration of the virus carrier T1 = T2 = 15 days

eases with the delta strain at the time of the appearance
of the omicron strain. The same qualitative picture is
observable also in other countries. The initial propor-
tion of those infected with strain 1 is chosen to be rather
high y1(0) = 0.01, which also corresponds to the pres-
ence of a significant number of hidden virus carriers that
can actively infect others. Note, that the purpose of this
work is to identify the general patterns of the develop-
ment of the epidemic in the presence of two strains,
and not a calculation based on a detailed analysis of
the changing situation from day to day and incomplete
statistical data. Nevertheless, the specific time for the
essential replacement of strain 1 by strain 2 is in reason-
able agreement with statistical data obtained in Eng-
land [32]. We have stress that the statistical data on
strain replacement can be different for different coun-
tries and regions due to various conditions.

As follows from Fig. 3, the impact of the appearance
of strain 2 capable of infecting those who have been
ill with strain 1 depends significantly on the value of
VLAF γ2. The larger 0 ≤ γ2 ≤ 1, the faster the process

of infection with strain 1 is suppressed, i.e., it is forced
out faster than in the case with γ2 = 0 [21] (see also
Fig. 1 ). At the same time, as γ2 grows, the current
proportion of strain 2 carriers grows, exceeding by a
factor of � 3.5 at the maximum proportion of strain 1
carriers under the chosen parameters.

The effect of a non-zero value γ2 on the fraction u(t)
of non-affected by strains at all is shown on Fig. 4. The
possibility to become infected with strain 2 soon after
disease caused by strain 1 is high. There is much faster
and complete depletion of the share of non-affected.
This means that with a certain parameter γ2, herd
immunity becomes practically unattainable and almost
everyone must get sick due to strain 2. It is of interest
to determine values γ2 for which the stationary value
of the proportion of the population not affected by any
of the viruses is reached. It can be considered as a
numerical characteristic of herd immunity. The calcu-
lation carried out up to 1000 days (not presented in
4) showed that with the selected parameters, the solid
curve corresponding to the absence of strain 2 tends
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Fig. 4 Function u(t) for the various cases: the second strain is absent (p2 = 0), the parameters are p1 = 0.15, y1(0) = 0.01,
the average duration of the virus carrier T1 = 15 days for u(0) = 0.8 (solid); both strains coexist, the recovered are immune
(the case considered in [21]), the parameters are p1 = 0.15, p2 = 0.4, y1(0) = 0.01, y2(0) = 10−7, T1 = T2 = 15 days for
u(0) = 0.8 (dash-dotted), γ2 = 0; both strains coexist, the parameters are p1 = 0.15, p2 = 0.4, y1(0) = 0.01, y2(0) = 10−7,
T1 = T2 = 15 days for u(0) = 0.8, γ2 = 0.2 (dashed)

Fig. 5 Function x1(t) (left) of the people affected by the strain 1 and x2(t) (right) of the people affected by the strain 2
for different values γ2 = 0 (solid), γ2 = 0.2 (dashed) and γ2 = 0.8 (dash-dotted) of virus carriers for the case when both
virus strains exists. The parameters are p1 = 0.15, p2 = 0.4, y1(0) = 0.01, y2(0) = 10−7, u(0) = 0.8, the average duration
of the virus carrier T1 = T2 = 15 days

to u(t = 1000) = 0.205, the dash-dotted curve (corre-
sponding to the case γ2 = 0 [21] of full lengthy in time
immunity after each of the diseases caused by the strain
1 or 2) tends to 0.052 and the dotted curve correspond-
ing to the case under consideration Eqs. (12, 13, 14,
15) for γ2 = 0.2 tends to u(1000) = 0.007. In the latter
case the level of collective immunity is only 0.7 percent
of the population.

Figure 5 shows the curves for the total part of peo-
ple (sick plus recovered, or affected) x1(t) with strain 1
(left) and strain 2 (right), calculated according Eqs. (8)
and (16). All three curves for the function x1(t) (left)
and for the function x2(t) (right) in Fig. 5 correspond
to the circulation of two strains, but for different val-
ues of γ2. The parameters in Fig. 5 correspond to those
selected in Fig. 3. As it follows from Fig. 5 the function
x1(t) decreases as γ2 increases, while the function x2(t)
grows. This behavior corresponds to the general pat-
tern of replacement of a less contagious virus by a more

contagious one, with the greater efficiency, the greater
the VLAF value.

The formulated equations and the model under con-
sideration can be easily extended to the considera-
tion of vaccination and different quarantine measures,
accounting the government and personal restrictions,
vaccination process, etc. In general we accounted, after
recovering from strain 1, a person may not immedi-
ately become infected with strain 2. However, and tak-
ing into account the more elaborated equations which
takes into account the delay factor associated with time
shifts is beyond the scope of this work. Also the cases
of death, re-infection with the same strain long time
after recovery, limited time for vaccination efficiency
and other known factors can be included in a more
elaborated models. Above, we restricted our considera-
tion to the case of the free-running epidemic under two
“non-orthogonal” strains of a same virus. This assump-
tion can be considered as realistic for fast developing
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epidemic caused by, e.g., the omicron strain (or another
highly contagious virus strain) appeared in a popula-
tion affected earlier by a less contagious virus strain.
The considered model clarifies the main specific fea-
tures of competition of two “non-orthogonal” viruses
in population.

4 Conclusions

The principal picture of the replacement of one strain
by another has already been revealed in the recently
considered mathematical model [21], where the basic
equations were proposed that describe the replacement
of a less contagious strain by a more contagious one.
Further development of the theory is connected with
taking into account the incomplete “orthogonality” of
the strains under consideration. This is manifested in
the fact that with a significant mutation of the virus,
leading to a different molecular structure, a different
virulence, and a different clinical picture of the disease,
both strains, spreading in the population, are more
interdependent. Immunity to one of them (for example,
due to a previous disease), generally speaking, does not
means the presence of immunity in relation to another.
So, for example, omicron can infect those who have
recovered from the delta strain, but not vice versa.

Thus, the situation cannot be described in the frame-
work of SIR and similar models, where all recovered
patients have a long immunity, nor within the SIS
model, where immunity disappears immediately after
recovery. This important property is taken into account
by transferring to the “strain-stream” equations by for-
mulation of Eqs. (12, 13, 14, 15). The additional term
includes the new VLAF parameter γ2 ≤ 1, due to the
development of partial immunity to strain 2 as a result
of the disease caused by strain 1, or to the effective vac-
cination against strain 1, giving partial protection also
against strain 2.
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