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Abstract. We consider belief propagation (BP) as an efficient and scalable tool for state estimation and
optimization problems in supply networks such as power grids. BP algorithms make use of factor graph
representations, whose assignment to the problem of interest is not unique. It depends on the state variables
and their mutual interdependencies. Many short loops in factor graphs may impede the accuracy of BP.
We propose a systematic way to cluster loops of naively assigned factor graphs such that the resulting
transformed factor graphs have no additional loops as compared to the original network. They guarantee
an accurate performance of BP with only slightly increased computational effort, as we demonstrate by
a concrete and realistic implementation for power grids. The method outperforms existing alternatives to
handle the loops. We point to other applications to supply networks such as gas-pipeline or other flow
networks that share the structure of constraints in the form of analogues to Kirchhoff’s laws. Whenever
small and abundant loops in factor graphs are systematically generated by constraints between variables
in the original network, our factor-graph assignment in BP complements other approaches. It provides
a fast and reliable algorithm to perform marginalization in tasks like state determination, estimation, or
optimization issues in supply networks.

1 Introduction

Belief propagation (BP) is an algorithm that is known
from statistical physics [1,2], computer science, artifi-
cial intelligence and information science (for a review
see, for example, [3]). It runs also under the name of
‘message passing’. In some cases, BP provides an exact
rearrangement of the original calculational objective,
while in general it calculates a mean-field approxima-
tion [1–4] to that. The BP method has two established
main advantages over traditional algorithms (such as
least-squares and quasi-Newton methods [5,6]). It is
fast even for large networks, as the computation time
scales linearly in the system size, and it is robust against
large differences in the input parameters. Its robustness
avoids convergence issues associated with the tradi-
tional approach ([7]). These properties make it uniquely
suitable for dealing with large datasets and for frequent
and large-scale network analyses (if possible online),
which are increasingly required for supply networks.

In electric power grids, BP is in principle appli-
cable to optimization problems and state estimation
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(in Sect. 3 we give a concrete implementation for
state estimation). Optimization problems refer to cost-
efficient and low-risk performance under diverse sources
of uncertainties. State estimation is the procedure of
using measurement data to infer an estimate of state
variables such as power flows and phase angles as accu-
rately as possible. State estimation is important to con-
vert system measurements into reliable information on
the true network state and to ensure the stability of
operation. In [8–10], BP-based algorithms were found
to outperform traditional (least-squares) approaches to
state estimation. In particular, the speed and robust-
ness of the BP-based algorithms enable state estima-
tion in real-time [8,11,12] and statistical analyses of
large networks [9,10], even if data are partially missing
[10]. Thus, state estimation combined with BP amounts
to an important step in view of improving supervisory
control and planning decisions in running power grids
if a fast online estimation of the true state of the grid
is required.

A second range of applications of BP are gas net-
works that we consider in some more detail in the
appendix. Natural gas is still one of the important
energy resources worldwide. A reliable and efficient
operation of gas-pipeline networks becomes increasingly
important due to the liberalization of the European gas
market. In [5], the impact of injecting alternative gas
supplies at different locations is studied to facilitate
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decisions on the allowable amount and composition also
of alternative gas sources such as hydrogen and biogas.

BP has been applied to further supply networks [13–
16], other than power or gas networks. The authors of
[13] and [14] used BP to identify faults and contamina-
tion sources in water networks. In [15], a BP algorithm
was shown to effectively optimize public transport for
urban planning and telecommunication networks, while
[16] applied BP to a generic nonlinear resource alloca-
tion problem.

For a given network with an associated graph, the BP
algorithm makes use of an additional auxiliary graph
called the factor graph. The novel contribution of this
paper is the assignment of an appropriate factor graph
to supply networks. If the very factor graph has a tree
structure, BP is known to be exact [17]. In general, BP
implements an approximation corresponding to Bethe
mean-field theory [2–4]. Practically, BP is accurate if
there are only a few short loops in the factor graph.

A naively assigned factor graph directly reflects the
basic variables on the original network and their mutual
dependencies. In the supply networks that we consider
in this paper these interdependencies result from Kirch-
hoff’s laws, corresponding to the conservation of flow at
the vertices of the network (first law) and the constraint
that the drop in variables like the voltage or pressure
sums up to zero around elementary loops (second law).
In general, these laws impose nonlinear constraints on
the flows, and these constraints are responsible for addi-
tional loops in a naively assigned factor graph, even if
the original network is a tree. It is these loops that we
want to avoid by a suitable assignment of factor graphs.
The loops are numerous as the constraints between the
variables are omnipresent in the network. The mathe-
matical structure of these constraints is found in many
supply networks, so that our proposed new algorithm
applies to all of them. Although our method succeeds
in avoiding the many additional small loops in the fac-
tor graphs which result from constraints as mentioned
before, it does not address the possible challenges which
result from loops in the original supply networks. In
the concrete test cases that we consider, the resulting
algorithm still shows an excellent performance with-
out addressing these loops. In cases where these loops
do impede the performance of BP, our method should
be combined with additional approaches. Several such
improvements have been proposed and implemented,
see, for example, [8,18–21].

Such a combination is possible because our method,
which relies on a type of clustering (to be defined
below), changes only the factor graph rather than the
BP algorithm itself. In contrast to other clustering
methods, we propose a systematic way of clustering
factor graphs in terms of clusters which by construc-
tion depend only on a few variables. This way the price
to pay for clustering remains moderate. The resulting
method then improves the speed and convergence of the
BP algorithm.

The paper is organized as follows. In Sect. 2, we
describe the clustering procedure, assigning a factor
graph which differs from a straightforward assignment,

but prevents by construction additional loops in the
factor graph assignment. In Sect. 3, we illustrate the
application of the procedure with state estimation for
the artificial IEEE-300 electrical grid. We discuss the
accuracy and performance of the algorithm. In Sect. 4,
we give an outlook to other applications of our algo-
rithm to power grids. The conclusions are summarized
in Sect. 5. In Appendix A, we point to further pos-
sible supply networks which share the essential struc-
ture of the equations; in particular, we work out the
case of natural gas-pipeline networks with an example
from the steady-state analysis of two realistic GasLib
benchmark networks. Here our method enables the very
applicability of BP, as with our method, BP converges
exceedingly fast while BP with a naive factor graph
assignment does not converge at all.

2 Assigning factor graphs to supply
networks

We consider supply networks consisting of vertices and
links and assume the following generic description:

– To each link in the supply network, a flow of some
quantity is assigned which traverses the link; flows
from vertex i to vertex j and vice-versa are denoted
as fij and fji, respectively.

– Associated with each vertex i is a variable vi; exam-
ples are the voltage in electric circuits, or the pres-
sure in fluid networks.

– The flow fij through a link (ij) is determined by the
variables vi and vj at the vertices at either end of the
link (e.g., Ohms law in electric circuits). The flow is
thus a function fij(vi, vj) of the vertex variables vi

and vj .
– Flows are conserved at each vertex: The sums of

in and outgoing flows are equal. Denoting exter-
nal injections into a vertex i as gi, we thus have
gi =

∑
j∈N(i) fij(vi, vj), where N(i) is the set of

vertices adjacent to vertex i. The injection can thus
be written as a function gi(vi, vj : j ∈ N(i)) of the
vertex variables {vi, vj : j ∈ N(i)}.

The class of problems that we study on these supply
networks is defined by the criterion that the state is
determined in terms of a probability distribution P (v),
depending on the vertex variables v of the following
form:

P (v) =
∏

i

Hi(vi, vj : j ∈ N(i)) ×
∏

(ij)

H(ij)(vi, vj),

(1)

where the products run over all vertices i and all links
(ij) of the network, respectively, and N(i) is the set of
vertices j that are connected to i via a link. The func-
tion Hi depends on the variables {vi, vj : j ∈ N(i)},
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which can in particular incorporate a mutual depen-
dence on vi and on the injection gi(vi, vj : j ∈ N(i)).
The Hij are functions depending on pairs of variables
vi, vj , which may incorporate a dependence on the flows
fij(vi, vj) and fji(vj , vi). In Sect. 3 and Appendix A we
will study the state estimation of power grids and a net-
work analysis of gas pipelines, where we will explicitly
show that these problems reduce to the marginalization
of a probability distribution of the form of Eq. 1.
Applications of Eq. 1. Although Eq. 1 may look
rather specific, it is in fact a general formulation that
comprises the following cases:

– Uncertainty in the state variables: The probability
distribution may express the uncertainty in the val-
ues of the vertex variables vi, the flows fij and/or
the injections gi. Such uncertainty may arise from
fluctuating injections (for example, in renewable
energy generation), or from uncertainties in the
measurements of these quantities (as in the Bayesian
state estimation problem studied in Sect. 3). (If the
value of a quantity is certain, this can be incorpo-
rated as a delta function in the distribution. If noth-
ing about a quantity is known, the associated factor
is assigned a very high variance.)

– Optimization problems: For a given cost function
C(v), one considers the distribution

PT (v) ∝ exp(−C(v)/T ) . (2)

In the limit T → 0 the probability distribution
peaks at the minimal costs C(v). The exponential
turns sums into products, such that the distribu-
tion of Eq. 1 incorporates a minimization of a sum
of costs on the vertex variables, the flows and the
injections. Constraints can be implemented by set-
ting the cost function equal to infinity whenever the
constraints are violated. It is possible to explicitly
take this limit in the BP Eqs. 4–6, thereby convert-
ing them to a form that is more convenient for opti-
mization (called the min-sum algorithm). We refer
to [3,22] for details.

– Constraint satisfaction problems (i.e., finding con-
figurations v that satisfy a number of constraints):
These can be included by studying products of Dirac
delta functions, where each delta function incorpo-
rates a constraint. Alternatively, a cost function is
optimized that assigns a penalty to each violated
constraint. We will use this option to analyze the
steady state of gas-pipeline networks in Appendix
A.

– Optimization under uncertainty: If costs need to be
minimized in an inherently fluctuating environment
[23], decisions on the production, for example, may
lead to stochastic rather than deterministic costs.
For power grids such a situation has been investi-
gated in [24,25], where fluctuations are due to uncer-
tain power injections by renewable resources.

If the distribution of Eq. 1 should be evaluated to
gain insight into the probability of individual variables,
it amounts to a marginalization of this joint probability
distribution by summing or integrating over a subset
of variables. This is the place where BP enters in the
sense that the sums or integrals are performed in a very
efficient way.

2.1 The choice of factor graphs

BP can be used to efficiently calculate marginals of
probability distributions such as those of Eq. 1. It is
convenient if BP makes use of a graphical representa-
tion of the probability distribution in terms of a fac-
tor graph. The factor graph is a bipartite graph, made
of two types of nodes, variable nodes, represented by
circles, and factor nodes, represented by squares. The
assignment of variables and factors is not unique and
a matter of convenience. The procedure of assigning a
factor graph to any probability distribution P (v) pro-
ceeds in the following steps:

1. Partition the vector v into new ’variables’ {xI},
where each xI is a disjoint subset of v (i.e., possibly
containing multiple vi).

2. For each xI , draw a circle. This defines a variable
node of the factor graph. As a special case, the cor-
respondence between variables on the original grid
and the variable nodes on factor graphs may be one
to one in a straightforward assignment (which we
refer to as the naive assignment).

3. Define factors Wa(xa) such that P (v) =
∏

a Wa(xa),
where xa are (in general overlapping) sets of some
of the new variables {xI}.

4. For each factor Wa, draw a square. This is a factor
node of a factor graph.

5. Each factor Wa(xa) depends on xa, which contains
multiple variable nodes xI . Draw an edge between
the factor node Wa(xa) and each variable node xI ∈
xa on which it depends.

Ambiguities in the assignment of the factor graph result
from step (1) and (3).

Example of a straightforward choice of a fac-
tor graph. Let us give a concrete example, consider-
ing a simple building block of three vertices {1, 2, 3} of
a larger network, connected by links (1, 2) and (2, 3)
(shown in Fig. 1a). The distribution (Eq. 1) we are
interested in is then given by:

P (v1, v2, v3) =
[
H1(v1, v2) · H2(v1, v2, v3) · H3(v2, v3)

]

×[
H(1,2)(v1, v2) · H(2,3)(v2, v3)

]
. (3)

Following the steps (1)–(4), the most straightforward
way of assigning a factor graph to this distribution is
to assign a variable node to each vi, and a factor node to
each Hi and each H(ij). The factor graph corresponding
to the distribution (3) is shown in Fig. 1b.
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(a)

(b)

Fig. 1 a Simple building block of a supply network, which
gives the probability distribution of Eq. 3. b The factor
graph assigned in a straightforward way (Sect. 2.1) to Eq. 3,
representing the simple network shown in (a). Note that the
four elementary loops (one of them indicated in blue) would
be absent if each Hi would depend only on vi rather than on
all {vi, vj : j ∈ N(i)}. The dotted lines indicate two clusters
of vertices, which the approach described in Sect. 2.3 will
use to eliminate the loops (after dealing with the overlap at
vertex v2)

In particular, it is important to note that this
straightforward assignment has a number of loops (four
in this case, one of them indicated in blue) though the
original network (Fig. 1a) has none. Responsible for
the loops are the factors Hi: Without these factors, the
topology of the factor graph would directly reflect the
topology of the original supply network (for each ver-
tex it contains a variable node vi, and for each link it
contains a factor node Hij connecting variables nodes
vi and vj). The clustering applied to this factor graph
(to be discussed later) refers to the variable nodes, in
Fig. 1b, we indicate two clusters with dotted lines, over-
lapping in variable node v2. In Fig. 2, we show how to
deal with the overlaps. Moreover, if Hi would depend
only on vi (rather than on all {vi, vj : j ∈ N(i)}), the
factor nodes corresponding to Hi would be leaf nodes
and create no loops.

Number of extra loops in a naive assign-
ment. The total number of extra loops can be deter-
mined as follows. In general, the total number of
loops in a graph, here the factor graph, is given by
(� connected components + � edges − � vertices) [26].
The naively assigned factor graph contains factor nodes
Hi and Hij and variable nodes vi as well as edges con-
necting these nodes. As mentioned before, if we con-
sider only the variable nodes, the factor nodes Hij

and the edges connecting them, the resulting struc-
ture directly reflects the topology of the original sup-
ply network, in particular it has the same amount of
loops. The amount of extra loops in the factor graph

(as compared to the supply network) can thus be calcu-
lated as (� additional edges due to factor node {Hi} −
� additional nodes which are of type Hi). On the fac-
tor graph, each Hi must be connected by an edge to
all variable nodes in {vi, vj : j ∈ N(i)}: The amount
of extra edges is thus given by

∑
i |vi, vj : j ∈ N(i)| =∑

i(1 + |N(i)|). The number of extra nodes is simply∑
i 1 (one factor node for each Hi). In total the num-

ber of extra loops in the factor graph is thus given by∑
i(1 + |N(i)|) − ∑

i 1 =
∑

i |N(i)| = 2 · � links. This
means in the example of Fig. 1b that there are 2 · 2 = 4
extra loops (where the number of links can be found
from Fig. 1a). The dependence of Hi on further vari-
ables from N(i) due to ubiquitous constraints on all of
the network variables thus leads to a proliferation of
loops in the factor graph.

2.2 Sketch of the BP algorithm

To fix the notation, we summarize the basic steps of
the BP algorithm. For a given factor graph with vari-
able nodes {xI} and factor nodes Wa(xa) (such that
P (x) =

∏
a Wa(xa)), BP can be used to calculate

marginals PI(xI) ≡ ∫ ∏
J �=I dxJP (x) and Pa(xa) ≡

∫ ∏
J:xJ /∈xa

dxJP (x). Here we will give the basic BP-
algorithm, for which several extensions exist [8,18–21],
as mentioned in the introduction. The steps of the BP-
algorithm for the marginalization are the following:

Initialization. For each factor-variable pair (a, I) that
is connected on the factor graph (that is, for which
xI ∈ xa), messages {mI→a(xI),ma→I(xI)} are initial-
ized uniformly: At time t = 0, the messages are set to
mt=0

I→a(xI) ∝ 1 and mt=0
a→I(xI)

∝ 1. The messages are functions of the variables, If
the variables are discrete or if the factors are Gaussian
(implying also Gaussian messages) the messages can be
parameterized by a few real numbers. Otherwise one
needs to find an approximation, such as a discretization
of the messages [22,27] or the basis function expansions
considered in [28]. In case of Gaussian distributions we
initialize the messages with zero mean and large vari-
ance to generate a uniform distribution.

Updates. At each step t, we keep track of approxima-
tions {bt

I(xI)} and {bt
a(xa)} (with I and a running

over all variable and factor nodes respectively), which
for large t are supposed to converge to the marginals
of P (x) according to bI(xI) → PI(xI) and ba(xa) →
Pa(xa). The approximations are given in terms of the
messages {mt

I→a(xI),mt
a→I(xI)}, which are updated

according to:

mt+1
J→a(xJ) =

∏

b�=a;xJ∈xb

mt
b→J (xJ) (4)

mt+1
a→I(xI) =

∫
[ ∏

J �=I;xJ∈xa

mt+1
J→a(xJ )

]

×[
Wa(xa)

] ×
∏

J �=I;xJ∈xa

dxJ , (5)
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bt+1
I (xI) ∝

∏

a:xI∈xa

mt+1
a→I(xI) . (6)

bt+1
a (xa) ∝

∏

a:xI∈xa

mt+1
I→a(xI) . (7)

Note that the notation xI ∈ xa means that variable
node I and factor node a are connected on the fac-
tor graph. The updates are repeated until a reason-
able stopping criterion is reached, for example, when
bt+1
I (xI) − bt

I(xI) or bt+1
a (xa) − bt

a(xa) reach some
desired tolerance.

Output. The sets {bI(xI)} and {ba(xa)} then give
the approximations of the marginals {PI(xI)} and
{Pa(xa)}, respectively, that we want to determine.

2.3 Systematic clustering of short loops in factor
graphs

Importantly, in relation to our application to supply
networks, we should distinguish between the topology
of the original network such as the power grid and the
topology of the associated factor graph. As we have
seen in Sect. 2.1, even if the graphical representation of
the original network is a tree, a naively assigned factor
graph may unavoidably contain loops. Our statements
below refer always to the topology of the factor graph.

Clustering is a method to find factor graph repre-
sentations with a reduced number of loops by aggre-
gating multiple variable nodes and/or factor nodes into
a reduced set of variable or factor nodes. For variable
nodes this corresponds to treating a subset of the vari-
ables as a new single variable node, while for factor
nodes their clustering corresponds to multiplying fac-
tors together to obtain a new, aggregated factor. The
catch in the choice of factor graphs is that the larger
the subsets xa, the more difficult is the calculation of
messages resulting from Eqs. 4–5. In the extreme case,
where the whole distribution is clustered into a sin-
gle factor, the algorithm simply returns the original
marginalization problem bI(xI) =

∫
P (x)

∏
J �=I dxJ ,

such that BP is exact but of no advantage anymore.
Thus it is important to find a clustering that 1. guar-
antees a high accuracy, and 2. avoids difficulties in com-
puting the messages via Eqs. 4–5.

2.3.1 Generating the clustered factor graph

In the clustered factor graph that we propose, we assign
a variable node to each link of the original network.
Thus, each of these variable nodes is a tuple consist-
ing of the vertex variables at each end of that link. For
a simple tree network, as in Fig. 2a, this is indicated
in Fig. 2b. In Fig. 2b, the tuples of vertex variables are
shown that are supposed to make up the variable nodes
of the clustered factor graph. For each link (ij), the vari-
able node at this link consists of the two vertex vari-
ables (vi, vj) at each end of the link. However, the vari-
able nodes are overlapping in the sense that each ver-
tex variable vi is contained in multiple variable nodes:

The variable node (vi, vj) for each link (ij) : j ∈ N(i)
connected to vertex i contains the variable vi. When
copying the vertex variables to decouple the clusters
(Fig. 2c), one has to compensate the copying by intro-
ducing δ-constraints which enforce that all copies of a
given vertex variable remain equal. This copying proce-
dure is a generalization of the Shafer–Shenoy algorithm
[29] (in the sense that the Shafer–Shenoy algorithm
requires the so-called ’running intersection property’,
while the copying procedure here does not). Mathe-
matically this amounts to an identity operation, but
it allows us to improve the performance of BP by elimi-
nating loops from the factor graph. Connecting the clus-
tered variable nodes to the factor nodes then leads to a
tree-like factor graph as in Fig. 2d.

The number of clusters a given vertex variable
belongs to, is equal to the number of links connected
to the vertex. We thus have to make a copy for each of
those links. Thus we define a probability distribution
which depends on all the copies of v-variables, while
the original v-variables are integrated out by delta con-
straints:

Pc(vc) ≡
∫

P (v)
∏

i

([ ∏

j∈N(i)

δ(vc
ij − vi)

]
dvi

)
,

where vc ≡ {vc
ij : j ∈ N(i)} is the set of all copies

of vertex variables vi kept for those links (ij) that are
connected to vertex i (thus, vc

ij is a copy of vi). Stated
differently, each link connecting vertices i and j keeps
a copy of vi and vj at its ends, and the delta function
constrains the copies to remain equal to the original
variables. Figure 3 shows the multiplication of vertex
i by three further copies, carried by the incident links
toward vertices j, l, k. From the definitions it is clear
that calculating marginals in Pc is equivalent to calcu-
lating marginals in the original distribution P (v). The
advantage is that Pc contains no extra loops, it can be
represented as a loop-free factor graph for which BP is
exact if the supply network itself has no loops. Writing
out Pc explicitly, we get

Pc(vc) =
[ ∏

i

∫

dvi

{
Hi(vi, v

c
ji : j ∈ N(i))

∏

j∈N(i)

δ(vc
ij − vi)

}][ ∏

(i,j)

H(ij)

(
vc

ij , v
c
ji)

)]
. (8)

In the first product, we have explicitly kept the v-
integration to include the δ−constraints, while the v-
integration has been carried out in the second product.
Note that each Hij depends on a single variable on the
new factor graph, while Hi may depend on several vari-
ables on the factor graph.

Now we are ready to define the clustered factor graph.
As anticipated already in Fig. 2a–d, we are able to
assign a factor graph to Pc which has the same amount
of loops as the original network.
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(a) (b)

(d)(c)

Fig. 2 a A simple tree network. b The striped ellipses indicate the clusters proposed as new variable nodes: Each cluster
is assigned to a link and consists of the vertex variables at each end of that link. c Copying process of the vertex variable
nodes on the factor graph to avoid overlapping. d Adding factor nodes Hi between those variable nodes that enter Hi of
Eq. 8, including the δ-constraints, and attaching leaf nodes (dashed squares) (one for each variable node) that represent
the Hij-terms of Eq. 8. Note that (d) has the same tree structure as (a), where the links of (a) with attached vertices
become variable nodes in (d) and the vertices of (a) have their counterpart in Hi, δ-factor nodes with edges correspondingly
attached. The links of the original network furthermore give an additional leaf node on the factor graph

Fig. 3 Copying procedure of the vertex variables as
already used in Fig. 2. The variable vi is copied to vc

ij , v
c
ik

and vc
il, one copy for each incident link

Variable nodes. As variable nodes we use the tuples
(vc

ij , v
c
ji), one for each link (ij) of the original network

(Fig. 2a).

Factor nodes. Each vertex i of the original net-
work gives a factor node

∫
dvi

{
Hi(vi, v

c
ji : j ∈

N(i))
∏

j∈N(i) δ(vc
ij − vi)

}
, abbreviated as Hi · δ, see

Fig. 2d. Each link (ij) of the original network gives a
factor node H(ij)

(
vc

ij , v
c
ji).

The new factor graph is illustrated in Fig. 2d. The
new variable nodes partition vc. Multiplying all the fac-
tors together gives the full distribution Pc(vc) of Eq. 8.
This is thus a valid factor graph. Note that here the
new variable nodes (vc

ij , v
c
ji) are assigned to the links

rather than to the vertices of the original network. The
reason is that the copied variables enter always in pairs,
one vertex variable for each end of the link. The orig-
inal variables can be retrieved from the corresponding
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copied variables at any of the links entering the vertex
from the various directions.

Claim: The resulting factor graph has exactly as many
loops as the original supply network. The factor at each
vertex i depends on {(vc

ij , v
c
ji) : j ∈ N(i)}; thus on the

factor graph we connect the factor nodes (Hi · δ) at
each vertex i to all variables (vc

ij , v
c
ji) representing links

incident to i. Given only variables (vc
ij , v

c
ji) and factors

at the vertices of the supply network, the factor graph
thus has the same topology as the supply network, with
a variable for each link and a factor for each vertex, see
Fig. 2d. The other factors, associated with each link,
depend on only one variable node each and are thus
leaf nodes. The topology of the factor graph thus equals
the topology of the supply network with the addition of
some leaf nodes. In particular, it therefore has the same
number of loops. This is graphically seen in Fig. 2d.

2.3.2 The flow-only factor graph as a special case

Before comparing the results of BP on the straightfor-
ward and the clustered factor graphs (Sects. 2.1 and
2.3.1), let us first discuss a special case of our cluster-
ing. The clustering simplifies if the whole distribution
(Eq. 1) can be written in terms of flows fij(vi, vj) rather
than vertex variables:

Pf (f) ≡
[ ∏

i

Hi(
∑

j∈N(i)

fij)
]

×
[ ∏

(i,j)

Hij(fij)
]
, (9)

and additionally we assume that fij = −fji to imple-
ment flow conservation. If one would explicitly keep the
dependence on v, writing the flows as fij(vi, vj), one
sees that the distribution still corresponds to a distri-
bution of the form of Eq. 1. If we assign a factor graph
to this distribution Pf in a straightforward way, using
as variables fij (= −fji) for each (ij), and factors Hi for
each vertex and Hij for each link, the factor graph has
exactly the same topology as the clustered factor graph
we proposed. The advantage is that the expressions are
simpler due to the absent dependence on vi, vj .

Not all distributions of the form of Eq. 1 can be
written as in Eq. 9 in terms of flow only. For exam-
ple, the distribution of Eq. 9 cannot constrain the
flows to Kirchhoff’s second law, so one requirement is
that the original network is a tree. In this case, the
flows are exclusively determined by the conservation
law gi =

∑
j∈N(i) fij , and do not receive extra con-

straints from the vertex variables v. Another require-
ment is that the choice of the distribution of Eq. 1
does not involve the vertex variables v directly, but
only indirectly through {gi} and {fij}. If the network
does not satisfy these requirements, the flow-only dis-
tribution (Eq. 9) can still be used as an approxima-
tion, where we ignore the constraints that the vertex
variables v induce on the flows. In the case of an elec-
tric power grid, this corresponds to ignoring Kirchhoff’s
second law, taking only power flow conservation into
account. We call this approximation the “flow-only”-

approximation, which we considered in [10]. We will
further compare this approximation to our clustering
in Sect. 3.

2.3.3 Comparison of factor graphs

We defined three different ways of constructing a factor
graph from a probability distribution of the form of
Eq. 1:

– the naively assigned factor graph (Sect. 2.1), from
here on denoted as Fv,

– the factor graph clustered according to our proce-
dure of Sect. 2.3.1, denoted as Fc,

– the flow-only factor graph (Sect. 2.3.2), completely
ignoring the vertex variables (according to Eq. 9),
denoted as Ff .

Figure 4 compares how these factor graphs look like
concretely for the simple network of Fig. 1. Fc and Ff

have the same amount of loops as the original network,
in this case none. Fv has an increased number of loops,
where the difference in the amount of loops is given
by

∑
i |N(i)|, as argued before in Sect. 2.1. These fac-

tor graphs lead to three different sets of BP equations
(following Eqs. 4–7).

3 A concrete implementation: Bayesian
inference for state estimation in power
grids

The previous section contains the general formulation
of our clustering method; it gives an improved BP for
supply networks by considerably reducing the number
of loops in the factor graph. In this section we will use
a realistic implementation for state estimation in power
grids as a concrete test case to show the improvement
over the naive assignment of factor graphs. The goal
in state estimation problems is to reliably retrieve the
underlying state of the system in terms of its variables.
The variables are correlated by power flow equations
and in principle accessible to measurements, but these
are affected by errors, therefore some care is needed to
reliably estimate the state.

In AC-power grids, the power flow equations restrict
the measured values for active (reactive) power injec-
tions at vertex i, the active (reactive) flows between
vertex i and vertex j, as well as the voltages, given
the conductances and susceptances of the transmis-
sion lines. The DC-approximation to the AC-equations,
which we consider in more detail, corresponds to a lin-
earization of the AC-equations which is justified for
high-voltage grids when angle differences are small and
Ohmic power losses can be neglected. In this case, the
DC-approximated AC-equations read

fij = Bij(θi − θj) , gi =
∑

j∈N(i)

fij (10)
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(a) (b)

(d)(c)

Fig. 4 a A simple network, which gives the probability distribution of Eq. 3. b The factor graph assigned in the straight-
forward way (Sect. 2.1) to Eq. 3. c The factor graph assigned to the same distribution by our clustering procedure. d The
factor graph assigned to the flow-only approximation of the same distribution, as described in Sect. 2.3.2

with θi the phase angles at the vertices i, gi representing
active power injections at vertices i, fij the active power
flow. The susceptances Bij are provided in the data sets
of the considered grids and N(i) denotes the set of ver-
tices directly connected to vertex i by a transmission
line. In [10] we ignored the first of Eq. 10 and considered
only the flows as variables characterizing the state of the
system. This corresponds to the flow-only approxima-
tion discussed in Sect. 2.3.2. In principle, the injections
gi, the flows fij and more recently also the angles (via
phasor measurement units (PMUs)) are accessible to
direct measurements. However, one can do better than
taking these direct measurements for the state estima-
tion and use Bayes’ theorem in the form of

P (x|z) =
P (z|x)Ppr(x)

Ppr(z)
, (11)

where P (z|x) is the probability that a state x would
give data z and Ppr(x) is the prior belief that the state
is x. If no prior knowledge exists about x, it will be
chosen as a uniform distribution. The prior belief over
data, Ppr(z), is independent of x; hence it only provides
a normalization constant and is irrelevant for our pur-
poses. Bayes’ theorem is then used for state estimation
and real-time processing of measurement data.

The injections {gi} and flows {fij} = {−fji} are
restricted by the DC-approximated power-flow equa-
tions (Eqs. 10), so we can write fij and gi as functions
of the angles, fij(θi, θj) and gi(θi, θj : j ∈ N(i)). Denot-
ing a given measurement as za (always a scalar), and the
subset of variables which enter the measurement as θa ,
we then assume za = f(θa)+ξa, where ξa are generated
independently from Gaussian distributions with known
standard deviations σa. The function f represents the

scalar quantity which is measured, specified as a func-
tion of the angle variables. If we consider direct mea-
surements of state variables (gi, θi or fij), then we have
f(θa) equal to gi(θi, θj : j ∈ N(i)), 1(θi) or fij(θi, θj),
respectively.

Measurement errors of this form thus give P (za|θa) ∼
N(f(θa), σa), which contribute to the joint probability
distribution P (z|θ) =

∏
a P (za|θa). If no direct mea-

surement is available, it is convenient to write this as
a measurement with σa → ∞ (and za arbitrary). With
Bayes’ theorem we get:

P (θ|zg,zf ,zθ)

= P (zg,zf ,zθ|θ)Ppr(θ)

=
[ ∏

i

P (zgi
|gi(θi, θj : j ∈ N(i)) × P (zθi

|θi)
]

×
[ ∏

(i,j)

P (zfij
|fij(θi, θj))

]
× Ppr(θ) , (12)

where zg,zf and zθ denote the set of power injection,
flow and angle measurements, respectively. Thus, this
distribution gives the likelihood that the true state is
θ, given the measurements in zg,zf ,zθ. In view of
the state estimation problem, we are interested in cal-
culating marginals of Eq. 12 such as P(ij)(θi, θj) ≡∫ ∏

k �=i,j dθkP (θ|zg,zf ,zθ) to calculate likely values of
the flow fij and the corresponding phase angles (and
similar for other quantities). To calculate the marginals,
we have to deal with a number of integrals of large prod-
ucts over all vertices and transmission lines.
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3.1 BP for power grid state estimation:
performance in terms of speed and accuracy

The distribution P (θ|zg,zf ,zθ), as a function of θ, is
of the form of the general distribution given in Eq. 1
(assuming a uniform prior). We can thus use BP to solve
the state estimation problem and compare the results
for the different factor graphs.

In the following, the subscript x shall indicate for
which factor graph Fx is evaluated: Fv (the straight-
forward factor graph), Fc (the clustered factor graph),
and Ff (the flow-only factor graph). We use BP to solve
the state estimation problem on the IEEE-300 bench-
mark network [30]. The IEEE-300 network is a realis-
tic and heterogenous benchmark network with 300 ver-
tices, 411 links and 112 loops, it is described in more
detail in Appendix C. As explained in Sects. 1 and
2.3, the use of the new algorithm refers to the avoid-
ance of extra loops in the associated factor graph. We
do not modify the 112 loops (by clustering some ver-
tices) in the IEEE-grid, but keep them and compare
the performance with and without the loops in the
assigned factor graphs. Note that the number of addi-
tional loops in the naively assigned factor graph would
be

∑
i |N(i)| = 2 · � links = 2 × 411 = 822 on top of the

112 loops of the IEEE-300 grid, and all these additional
loops would be short.

We will consider measurements of the power flows,
measurements of the power injections, and, if PMUs
are assumed to be present, measurements of the phase
angles. We discuss two situations: one where all of the
variables are measured (measurement devices at every
vertex and transmission line), and one—the more real-
istic case—where only the flows and injections are mea-
sured (i.e., without any PMUs). The flow and injection
measurements are assumed to have an error ξa with
variance σ2

a = 10−3, while the angle measurements, if
present, are assumed to have an error ξa with variance
10−6. Using these values, we randomly draw the mea-
surements z following the description in the previous
section, and use BP to find estimates of the state vari-
ables by calculating marginals of P (θ|z).

For comparison, we first make use of a “damping”
method proposed in [8] to improve the convergence of
BP on Fv (since numerical simulations have shown that
naively running BP on Fv gives diverging estimates).
According to this damping procedure of [8], for each
Gaussian message mt

x→y ∼ N(μt
x→y, (σ2)t

x→y) of Eqs. 4
and 5 one chooses with probability 1/2 either δ = 0 or
δ = 1 (P (δ = 0) = P (δ = 1) = 1/2), and updates:

μt+1
x→y = δ × μ̂t+1

x→y + (1 − δ) × 1/2 ×
(
μ̂t+1

x→y + μt
x→y

)
,

(13)

where μ̂t+1
x→y is the mean of the message that would have

been calculated at step t+1 without damping. The vari-
ance σ2

x→y is damped equivalently. Thus, with proba-
bility 1/2 the message is updated as usual, and other-
wise damped by a factor of 1/2. Testing the method

according to Eq. 13 for different damping parameters
and comparing it to the damping algorithm proposed
in [19], we indeed find that damping according to [8]
(Eq. 13) improves the convergence the most. For the
results for Fv we will use this “damped” version of BP
and use it as the best existing alternative, which is still
outperformed by our method. For Fc and Ff , the algo-
rithm converges without problem also without damp-
ing, so we will consider their undamped versions.

3.2 Results for the factor graphs Fv , Fc and Ff

We present our results for the predictions from the
three factor graphs Fv, Fc and Ff . (Details on the
implementation are given in Appendix D.) We focus
here on the estimation of the flows {fij} (in Fc

and Fv these can be retrieved as Bij(θi − θj)). BP
on Fv, Fc and Ff will produce different estimates
of the marginals {P(ij)(fij)}, which we will denote
by {bv

i (fij)}, {bc
i (fij)} and {bf

i (fij)}, respectively. To
retrieve their accuracy, we need a way to compare them
with the ‘true’ marginals P(ij)(fij).

Note that the variables of the factor graph Fc are
tuples θc

ij , θ
c
ji, the beliefs resulting from Fc depend

on θi, θj , so that averages or variances of the flows
Bij(θi−θj) can be directly calculated using these beliefs
as the probability distribution P(ij)(θi, θj) according to
Eq. 6, when calculating expectation values. In contrast,
the variables of Fv are θi, the resulting beliefs depend
on θi separately. In this case, the variance of the flow
fij cannot simply be obtained as the sum (B2

ij times
the variances of θi and θj), since θi and θj are corre-
lated. The marginal distribution of fij = Bij(θi−θj), in
particular its variance, must be calculated from Eq. 7.

Since we assume all factors are Gaussian, the marginal
distributions of the flows are Gaussian as well, so we
denote them by their mean and standard deviation as
P(ij)(f(ij)) ∼ N(μ(ij), σ(ij)). Here the subscript (ij)
represents the flow variables in the following. We cal-
culate the means {μ(ij)} via the least-squares approach
and the standard deviations {σ(ij)} by a matrix inver-
sion. Both the means and standard deviations that are
calculated in this way are presumed to set the accurate
benchmark for a comparison to the accuracy of the dif-
ferent implementations of BP. Each implementation of
the factor graph with x ∈ {v, f, c} gives an estimate
bx
f(ij)

(f(ij)) ∼ N(μx
(ij), σ

x
(ij)), which should be close to

the benchmark values μ(ij), σ(ij). For a chosen method
x we summarize the estimates into the average square
error of {μx

(ij)} and {σx
(ij)} by defining:

Δμ ≡ 1
411

∑

(ij)

(μx
(ij) − μ(ij))2 (14)

Δσ ≡ 1
411

∑

(ij)

(σx
(ij) − σ(ij))2 , (15)

where the sum runs over all 411 links of the IEEE-300
network. We use these deviations to assess the accuracy
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of the estimates provided by the different implementa-
tions of BP. Since random generation of the measure-
ment data z leads to differing errors, we repeat the
procedure 100 times. For a fair comparison, we note
that per BP iteration the wall-clock time for a native
Python 3.7 implementation (on an Intel i5-2400 pro-
cessor) of Ff , Fc and Fv takes 0.01 s, 0.03 s, and 0.1 s,
respectively. The implementation is given in the supple-
mentary material. Native Python is relatively very slow
(up to two orders of magnitude slower than other faster
implementations) and the calculations can be massively
parallelized, so these time-scales can be significantly
reduced (the relative speed of BP on the different factor
graphs are expected to remain more or less unchanged).

Figure 5 shows how the error on the variance Δσ

saturates for BP on the different factor graphs. For
all situations discussed above, the estimated variances
converge fast to small values. The estimates provided
by Fc are significantly more accurate than those pro-
vided by Fv, which are again significantly more accurate
than those provided by Ff . Note that Fv corresponds to
the standard implementation of BP with a naive factor
graph assignment.

Focusing on the estimates for the mean, the conver-
gence of the estimates for the different scenarios are
shown in Fig. 6. Figure 6a shows the situation where
PMU measurements are included. After convergence,
the means predicted by Fv and Fc are both exact (as
is in general true for means predicted by Gaussian BP
[31,32]). However, Fc converges in much less iterations
than Fv, by around a factor of 400. Looking at the mean
estimates for the situation without PMUs, as shown in
Fig. 6b, the situation is similar. Fc converges quickly to
the exact answer. Although it is not shown here, exper-
iments indicate that eventually the mean predicted by
Fv does converge. However, the time scale over which it
converges is so much larger (about 106 iterations) that
it renders the final estimate practically irrelevant. In
practice, in the absence of angle measurements even Ff

performs better than Fv.
In summary of Figs. 5 and 6, it should be empha-

sized that our comparison refers to the performance of
different BP-algorithms, differing by the assigned fac-
tor graph, for which the newly proposed assignment
Fc performs best. In contrast to other approaches such
as least-squares or quasi-Newton methods, the general
supremacy of BP based algorithms was demonstrated
already in [8–10], as mentioned in the introduction.

4 Outlook to other applications of the
algorithm to power grids

Our clustering rule for loopy factor graphs can be used
for any distribution of the form of Eq. 1. It thus applies
for BP to a variety of supply networks, if the flows are
conserved at the vertices and are determined by vari-
ables at the vertices (v, in our notation). In the fol-
lowing we mention different versions of power flow in

Fig. 5 The saturation of the variance predicted by BP
on the different factor graphs, as measured by the average
square error Δσ (see Eq. 15), showing that the clustered ver-
sion of BP is most accurate: a with angle measurements, b
without angle measurements. The variances predicted by Fc

and Ff do not depend on the values of the chosen measure-
ments. The variances predicted by Fv are slightly different
every time BP is run because of the probabilistic damping
(Eq. 13); here an average over 100 random measurement sets
is shown. Note that Fv corresponds to the standard factor
graph assignment and serves as the best version of existing
alternatives

electricity grids and discuss applications to gas-pipeline
networks and fluid flow networks in the appendix. Prob-
lems that are studied in relation to power flow include
power flow analysis, i.e., solving the power flow equa-
tions, similar to what we analyze for the gas pipe net-
work in Appendix A, optimal power flow [22], state esti-
mation [8,33], as considered in Sect. 3, and optimiza-
tion under uncertainty [24,25]. In these applications,
typically three different power flow equations are dis-
tinguished:
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Fig. 6 The convergence of the mean predicted by BP on
the different factor graphs, as measured by the average
square error Δμ (Eq. 14), as a function of the number of BP
iterations, showing that BP with only flows (Ff ) is fastest
but not very accurate, while clustered BP (Fc) converges
reasonably fast and gives the exact answer (up to machine
precision). When un-clustered BP (Fv) does converge it also
gives the exact answer; this takes, however, very long: a
with angle measurements, b without angle measurements.
The predictions depend on the values of the measurements;
here the lines give an average of Δμ over 100 sets of random
measurements. The filled region gives the standard devia-
tion of Δμ between different random sets of measurements

– The DC-approximation as used in Sect. 3 as an
approximation of the AC-equations, valid for high
voltages at low power losses. Note that despite the
name, the application of the DC-approximation is
to AC-networks.

– In a Direct Current (DC)-network, the size of the
current Iij between vertices i and j is given by
Ohm’s law Iij = (Vi − Vj)/Rij , where Vi and Vj

are the voltages at vertices i and j and Rij is the
resistance of the link connecting vertices i and j.
DC is used in low-voltage distribution grids and in
very long distance transmission [34].

– Alternating Current (AC) is typically used for high-
voltage long-distance transmission [34]. The net-
work voltages {Vi(t)} oscillate at a constant fre-
quency ω, such that Vi(t) =

√
2|Vi| sin(ωt + θi).

Here |Vi| is the voltage magnitude. Together with
the phase angles θi, they can be determined from
the equations

fP
ij = |Vi||Vj |

[
Gijcos(θi − θj) + Bijsin(θi − θj)

]

−|Vi|2Gij , (16)

fQ
ij = |Vi||Vj |

[
Gijsin(θi − θj) − Bijcos(θi − θj)

]

+|Vi|2Bij , (17)

where fP
ij and fQ

ij are the active and reactive power
flow, each of which is conserved at the vertices.
Solving the equations requires the specification of
the quantities Bij and Gij for each transmission
line, known as the susceptance and the conduc-
tance, respectively, which can be calculated from
the impedance and resistance of the transmission
line [34]. To implement AC in our framework, the
tuples (θi, |Vi|) should be considered as the vertex
variables vi. Due to the nonlinearity of Eq. 16, BP
should be combined, for example, with GN, as in
[33].

For power grids, a situation with uncertain costs
due to fluctuations in uncertain power injections by
renewable resources was investigated in [24,25]. In this
case, each possible production assignment leads to a
different distribution of the form of Eq. 1. Uncer-
tain power injections may enter the probability dis-
tribution P (v) of Eq. 1 as a product over all vertices∏

i exp
{ − [gi − ∑

j∈N(i) fij(vi, vj)]2/(2σ2
i )

}
if the pro-

duction fluctuates according to such a Gaussian dis-
tribution with variance σ2

i around some mean injec-
tion gi, while fixed and controllable production at
vertices k would multiply this term by

∏
k δ(gk −∑

j∈N(k) fkj(vk, vj)). P (v) induces a distribution of
flows P ({fij}) which directly indicates possible over-
flows of transmission lines. BP may then be used to
calculate average costs induced by the production gk

at the set of controllable production vertices. These
costs can furthermore include probabilistic constraints
on {gk} which enforce, for example, that severe link
overloads are rare [24]. In [23], it is shown that such
an optimization can be performed with BP using the
fact that marginals of the distribution satisfy the BP
equations (to be given below). This is mathematically
similar to the ’survey propagation’ studied in [1] and
investigation of large deviations given in [35].

5 Conclusions

For applications of BP, we considered a new assignment
method of factor graphs which avoids the generation of
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additional loops as compared to the original supply net-
works. Our method applies to state estimation or opti-
mization problems whose state can be described by a
probability distribution that factorizes over the vertices
and over the links of the network. If these distributions
are summed or integrated over upon marginalization,
BP provides an efficient way of organizing the sum or
integrals over these products. In the naive assignment of
a factor graph, the variables on the original supply net-
work are chosen as variable nodes on the factor graph,
while the factors of the probability distribution deter-
mine the factor nodes on the factor graph. Constraints
and physical laws between the variables on the origi-
nal grid may then induce additional loops on the factor
graph that are detrimental for the convergence speed of
BP. Our main goal was to avoid these loops.

This means that our algorithm does not address the
handling of loops in the graphical representation of the
original supply networks, which may differ in size and
reflect the original network architecture. Such loops
will survive our factor graph representation and may
impede the convergence or accuracy of BP. Our method
is supposed to complement other methods such as loop
expansions and additional clustering rather than replac-
ing them. For practical applications, we have further-
more focussed on cases in which the messages them-
selves are Gaussian functions so that the messages
reduce to a few real numbers to be sent. In particu-
lar, we have assumed Gaussian distributed errors in the
state estimation problems, and used successive Gaus-
sian approximations in the steady-state analyses.

In the cases we considered, additional loops in the
factor graphs result from constraints between the vari-
ables which are analogues to the two Kirchhoff laws in
power grids, one corresponding to flow conservation at
vertices (the flow in general being electricity, gas, water,
air, soil, traffic), the second one restricting a quantity
related to energy (voltage, pressure, time, other costs)
along loops in the grid. The shared mathematical struc-
ture of these constraints explains the wide range of
applicability of our algorithm. When the resistance in
the transmission lines of the original grid are depend-
ing on the flow, the analogue of Kirchhoff’ s second law
amounts to a nonlinear relation (differently from Ohm’s
law). In this case an additional iterative method such
as the Gauss–Newton method is required, and BP can
be applied in the intermediate steps.

While our algorithm enhances the accuracy and
improves the convergence speed, the additional compu-
tational effort is moderate. We have explicitly worked
out this approach for the state estimation on a bench-
mark power grid. In the appendix we describe the state
determination on two benchmark gas-networks with
nonlinear flow relations, the latter case detailed in 2.3.1.
We compared the performance of three factor graphs:
the naively assigned, the newly proposed clustered fac-
tor graph, and the flow-only factor graph. The naively
assigned one can lead to accurate results, but at the
price of slow convergence if at all. The flow-only factor
graph ignores constraints from (the analogue of) Kirch-
hoff’s second law, it is thus less accurate but useful for

a first estimate and fast. The clustered factor graph is
both fast and accurate and—combined with an iterative
procedure in case of nonlinear constraints—it is widely
applicable. Further applications to other indicated sup-
ply networks should be worked out in the future.
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Appendix A: steady-state analysis in natural
gas-pipeline networks

Why is a steady-state analysis important? Gas transmission
network operators are obliged to offer as much freely alloca-
ble capacity as possible. They are supposed to ensure that
gas traders or consumers feed in or withdraw gas at their
entries or exits without being concerned about the impact
on the overall grid. On the other hand, to meet the statu-
tory carbon emission targets, the use of natural gas has to
decline in the course of time. New sources of alternatives
(hydrogen, biogas) are discussed so that the distribution
network may be challenged by a mixture of gas input. In
this case, a steady-state analysis of a gas network is required
under varying operational conditions. In steady-state anal-
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yses, nodal pressures and pipe flows are computed for given
values of source node pressures and gas consumption.

We choose our benchmark gas-networks from GasLib [36].
GasLib is a collection of technical gas network descriptions
as well as “contract based nomination data”. It is based on
real-world network data from the gas transport company
Open Grid Europe GmbH. “The data are distorted in order
to yield a realistic gas network that is significantly differ-
ent from the original”, but to serve as benchmarks for test
simulations.

In analogy to state estimation problems as we considered
for power grids, state estimation or leak detection may be
applied to gas (or water) transport systems to convert sys-
tem measurements into reliable information on the network
state. In our application here, instead we want to determine
the steady state, that is the gas flow and pressures through-
out a gas-pipe network, based on input that is assumed to
be accurate [5,37–39]. We will perform these calculations
with BP for the two realistic natural gas networks (Gaslib-
134 and Gaslib-40), to compare the factor graphs described
in Sect. 2. For the gas-pipe networks, the data of the bench-
mark networks allow in principle a complete determination
of flows and pressures at all vertices of the network. How-
ever, to illustrate our method, we do not make use of the
input values of the three largest generators of the gaslib-
134, but specify instead the pressures at these stations, so
that the unknown variables (flow, pressures, injections) are
in principle fully determined, but less easily accessible. This
mimics a realistic situation in a gas network and serves as
test bed for our method. To ensure that the system is fully
determined, at each vertex either the injection of gas (posi-
tive or negative) or the pressure has to be specified. Given
a gas flow equation relating flow Qij through a given pipe
(ij) with the pressure pi and pj at the ends, the pressure
at the vertices and the flows through the pipes can then be
calculated.

As a gas-flow equation we use

Qij = aijsgn(p2
i − p2

j )
(
p2

i − p2
j

)0.5 (A.1)

for coefficients aij specific to each transmission line. For
more details we refer to Sect. 5. Combined with the conti-
nuity equation

gi =
∑

j∈N(i)

Qij , (A.2)

where gi is the injection at vertex i, the pressure and flows
throughout the network can then be calculated. Treating the
flow equations as constraints on {pi} and following Sect. 2,
the equations can be solved by BP. Eq. A.2 (Eq. A.1) cor-
responds to the first (second) Kirchhoff’s law, respectively.

Appendix A.1: steady-state analysis for gas
networks: BP combined with Gauss–Newton

To explicitly show the application of BP to this problem, we
first map the solution to the equations to a (least-squares)
minimization problem, a standard method in the numeri-
cal solution of non-linear equations. (As for the power state
estimation, finding the means (and more generally the Maxi-
mum Likelihood Estimate [33]) can be formulated as a least-
squares minimization problem, which we used as benchmark
for comparison.) For convenience we use the square of the

pressures as variables, rather than the pressures themselves
and define vi ≡ p2

i . We denote the set of known (squared-)
pressures v̄i by v̄, the set of known injections ḡi by ḡ, and
assume that these quantities fully determine the system. We
then define the cost function in terms of vi, vj :

C(v) ≡
∑

ḡi∈ḡ

(ḡi −
∑

j∈N(i)

Qij(vi, vj))
2/2 +

∑

vi∈v̄

(v̄i − vi)
2/2,

(A.3)

with Qij(vi, vj) = aijsgn(vi − vj)(vi − vj)
0.5 from Eq. A.1.

One can verify that the global minima correspond to sets of
pressures such that C(v) = 0 and such that the equations
are satisfied. Using Eq. 2 to turn the minimization into a
probability distribution gives a distribution of the form of
Eq. 1, with a factor of type Hi for each vertex. The factors
of type {Hij} are absent in this case, but can be included
by simply setting the Hij equal to a constant. Thus, we can
apply our clustering procedure to let BP effectively calculate
the solutions of these equations.

In a direct application of BP, the numerical computation
of the message update Eqs. 4–7 is, however, complicated
by the non-linearity of the flow equation. This means that
the cost function (Eq. A.3) is non-quadratic. Consequently
the corresponding distribution is not Gaussian, and the mes-
sages do not maintain a Gaussian shape. This would require
a more sophisticated method to represent the messages and
to perform calculations with such messages (as discussed in
Sect. 2.2).

The difficulty in handling non-linearities is of course not
restricted to BP. Methods such as Newton’s method can
then be used to make successive approximations of the cost
function, eventually converging to a minimum of Eq. A.3.
If each approximation gives a quadratic cost function, the
quadratic minimization can be solved efficiently with BP
using only Gaussian messages, thus allowing for a simpler
implementation of BP. For a quadratic cost function it is
the mean of the associated distribution (Eq. 2) that gives
the minimum of the cost function. The mean is furthermore
independent of T , so we can conveniently set T = 1 rather
than taking the limit.

Methods that can implement BP in this way are, for
example, apart from Newton’s method, the Gauss-Newton
(GN-)method (employed in [33] to solve the AC state esti-
mation problem and in [13] for water network state esti-
mation), or the fully parallelized BP procedure proposed in
[16]. To give an explicitly worked out example, here we use
a modified Gauss–Newton method, combined with BP to
perform the calculations at each iteration of Gauss–Newton.
The procedure is as follows:

1. Set an initial guess for the flows, {Q∗
ij}, obtained from

the flow-only-approximation (ignoring the vi variables).
See Appendix D for details on the implementation.

2. At each iteration:

– Generate a guess {vi
∗} from the guess {Q∗

ij}, the
known values {v̄i} and the flow equation
Qij = aijsgn(vi − vj)|vi − vj |0.5. This can be done in
a straightforward way with time complexity linear in
the system size (see the supplementary material).

– Linearize the flow equation around this guess {vi
∗}

by expanding Qij(vi, vj) to first order in (vi − vj).
– Using this linearization, the cost function (Eq. A.3)

becomes quadratic in {vi}. These equations can then
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be solved efficiently by Gaussian BP with our clus-
tering method to generate a new guess {Q∗

ij} (see
Appendix D for details on the implementation).

3. If the guesses {Q∗
ij} and {vi

∗} have converged to a fixed
value, then the non-linear equations have been solved.
Stop the iteration if a desired tolerance threshold is
reached.

The unmodified GN-algorithm would follow the same steps,
but omit the intermediate flow guesses {Q∗

ij}. Newton’s
method would omit the linearization altogether, and instead
expand C(v) directly to second order in v around a guess
v∗. Newton’s method does not allow an efficient calcula-
tion of the BP-messages given in Appendix D, and requires
instead a large number of matrix inversions.

The modification of the GN-algorithm we use here instead
takes advantage of the linearity of flow conservation. Com-
paring it to the unmodified GN algorithm we found that it
strongly improves the convergence. On tree networks, the
modified GN-algorithm gives the exact result in a single
iteration (which is true for neither the unmodified GN-
algorithm nor for Newton’s method). For the GasLib-134
network (see the next section), instead we restrict ourselves
artificially and use only a single v̄i (instead of all v̄) when
generating a guess {v∗

i } from {Q∗
(ij)}, to allow a comparison

of Fc and Fv in an iterative setting.

Appendix A.2: results for GasLib networks as
benchmarks

Here we compare BP on the different factor graphs Fv

and Fc. Since Ff ignores constraints imposed by the ver-
tex variables (pressures), the flow-only approximation is
under-determined and cannot give a valid solution (in con-
trast to the state estimation problem studied in Appendix
A, where the system is over-determined). The flow-only
approximation is, however, still useful as an initial guess for
the GN-procedure (simply setting undetermined variables
to 0), which we have used here.

The GasLib-134 has 134 vertices, 133 links and no loops,
while GasLib-40 has 40 vertices, 45 links and 6 loops. We
presume that for GasLib-40 the pressure at one vertex is
known (Appendix C), while the injection at all other ver-
tices are known. For GasLib-134, we presume that the pres-
sure at three vertices is known (Appendix C), while the
injection at all other vertices are known to mimic a realistic
situation. This fully determines the system, such that the
flows Q(ij) can be calculated. For a guess Qx

(ij), given by a
method x ∈ {v, c}, we compare the guess to the actual flows
Q(ij) (obtained by a least-squares procedure) by defining the
average square error:

Δ ≡ 1

N

∑

(ij)

(Qx
(ij) − Q(ij))

2, (A.4)

where N is the number of links of the network used. We use
the GN-procedure, where for each step BP is either run on
Fv or on Fc. Thus, the difference results only from the way
of how each step of the GN-procedure is calculated. The
results are given in Fig. 7, where the average square error Δ
(Eq. A.4) is shown as a function of the total amount of GN-
steps and BP-iterations. Very few GN-steps are needed for
the convergence to the correct solution; the main difference

is in the amount of BP-iterations that is needed to complete
a single GN-step.

For each GN-step for the GasLib-40 network, we iterate
BP until convergence. (Specifically, the stopping criterion
is as follows: We take an amount of iterations T such that
the square difference between the estimate at T and the esti-
mate at T/2 is smaller than 10−10/40 (more lenient stopping
criteria may decrease the amount of iterations needed by a
factor ∼ 3).) Figure 7 shows that this takes about 1500
iterations per GN step for BP on Fc, compared to 50000
iterations for each BP step on Fv. On top of this, each BP
iteration on Fv takes about three times as much CPU time
as an iteration on Fc, such that in terms of speed Fc out-
performs Fv by a factor ∼ 100.

For the network GasLib-134 the contrast is even stronger,
here BP on Fc and Fv perform according to two extremes:
This network is a tree network, in which the longest path
has a length of 55. Consequently, the associated factor graph
Fc is also a tree graph, and within each GN-step BP on Fc

converges to the exact result after 55 iterations (Fig. 7). This
is not true for Fv, which has many loops despite GasLib-
134 being a tree network. We find that BP on Fv shows
oscillatory behaviour and does not appear to converge at all
(even after millions of iterations).

Appendix B: Outlook to further applications
to fluid flow

Typical calculations for fluid flow are similar to those stud-
ied for natural gas in Appendix A, where the aim is to calcu-
late the pressures and flows throughout the network, given
that we know the injections and pressures at some selected
nodes (such that the system is fully determined). Such calcu-
lations are required for water or gas infrastructure in urban
environments, or for long-distance transmission [5,37–39].
Other calculations in the context of such infrastructure net-
works refer to optimization [36] and state estimation [40].
The effect of fluctuating inputs or link damage on the fluctu-
ations of pressure and flow ( [41]) can be similarly effectively
studied with the BP framework constructed in Sect. 2. For

Fig. 7 Total BP-iterations needed for convergence on the
factor graphs Fv and Fc for GasLib-40 and Fc for GasLib-
134, as measured by the average square error Δ (Eq. A.4).
Each marker indicates a single GN-step. Non-zero Δ after
convergence is due to numerical round-off and finite toler-
ance. Results for Fv on GasLib-134 are not displayed as here
BP does not converge at all
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explicit expressions of the relevant equations for fluid flow,
three regimes can be distinguished:

– Pressurized gases, which we studied with a modified GN-
method combined with BP in Appendix A. Relations
between flow and pressure are partly theoretically and
partly phenomenologically motivated [5,38,39]. They
are typically of the form Qij ∝∼ |p2

i − p2
j + bij |0.5−0.55,

as we used for our gas-flow analysis in Appendix A.
Here the constant bij describes the effect of gravity
in case of height differences between the ends of the
pipe, and the proportionality constant describes friction
effects [5,38,39].

– Laminar flow (low-velocity flow, thin pipes): A relation
between the flow rate through a pipe and the pressure
at either end can be calculated directly from the Navier-
Stokes equation [42], giving the linear relationship Qij =
aij(Pi − Pj). Here Qij is the flow rate from point i to
point j, Pi and Pj are the respective pressures at point
i and point j, and aij is a constant determined by the
dimensions of the pipe and the viscosity of the fluid. BP
is directly applicable in this case.

– Incompressible fluids (such as liquids or low-pressure
gases). Fluids that can be treated as incompressible
comprise gas flow in municipal distribution networks,
water flow in water works, air flow in ventilation sys-
tems in buildings or district heating, or cooling systems.
Incompressible fluid means that the pressure drop is neg-
ligible and the density remains approximately constant.
In common to fluid networks, when the resistance in
the pipe depends on the flow, the problem is nonlinear
[37,43,44]. As in Appendix A, one can use an iterative
procedure combined with our BP algorithm to calculate
the distribution of fluid flow through the pipes.

Fig. 8 A section of the IEEE-300 network (the network
is based on the power grid of the Midwestern USA), from
[45]. In our work, we only distinguish between the buses
(vertices), here represented as bars to which links connect,
and the links between the buses. The full IEEE-300 network
has 300 vertices and 411 links

(a)

(b)

Fig. 9 a Topology of the GasLib-134 network, a tree
network representing the gas pipeline connection between
Greece and Bulgaria. b Topology of the Gaslib-40 network.
Both figures are from [36]

Appendix C: Benchmark networks

Here we discuss the IEEE and Gaslib benchmark networks,
which we have used to compare the efficiency of BP on the
different factor graphs. As the benchmark networks repre-
sent real networks, their structure and parameters are highly
heterogenous and suitable for testing the applicability of
algorithms to practical computations.

The IEEE-300 network. The IEEE benchmark sys-
tems are a set of networks that were designed to resemble
simplified versions of realistic power networks [45]. These are
commonly used in the power systems engineering literature
to test the applicability of algorithms related to power flow.
Systems of varying sizes are available on [45]. Here we used
the IEEE-300 network, ’developed by the IEEE Test Sys-
tems Task Force under the direction of Mike Adibi in 1993’
[45]. The network consist of 300 buses (vertices) and 411
links, and contains 112 loops. The IEEE-grids are realistic
(they are based on the power system in Midwestern USA)
and therefore highly heterogenous both in the topology and
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in the parameters; a section of the IEEE-300 network is
shown in Fig. 8.

In principle, different power devices such as transformers
are contained in the network; for simplicity we only con-
sider buses and links. The data contain impedances and
resistances of each transmission line, as well as the phase
angles at each bus, which together fully specify the network
in the DC approximation.

The GasLib networks. The GasLib networks [36] were
developed to provide researchers with large and realistic
gas benchmark networks, as part of a project funded by
the German Federal Ministry of Economics and Technol-
ogy. The GasLib-134 network is based on the gas-pipeline
network connecting Greece and Bulgaria (shown in Fig. 9),
albeit somewhat distorted to protect sensitive data. GasLib-
134 contains 134 vertices, 133 links and no loops. GasLib-
40 contains 40 vertices, 45 links and 6 loops. For simpli-
fication we do not consider any devices contained in the
network, and only distinguish the vertices and links. The
GasLib data contain the network topology and the gas injec-
tions. For GasLib-134 we have used the scenario data from
2011-11-01. Computation of the coefficients in Eq. A.1 is
less straightforward, and here we simply set the coefficients
of all pipes to the same value (50 for GasLib-134, 500 for
GasLib-40), determined such that pressures maintain real-
istic values (between 40 and 60 bar). Coefficients with a
small random component give similar results. To get results
for the steady-state analysis in Appendix A, the vertices
with known pressure values are the ’source_1’ for GasLib-
40 and ’node_1’, ’node_20’ and ’node_80’ for GasLib-134.
Combined with the injection at all other vertices, the sys-
tems are then fully determined.

Appendix D: Algorithmic details

Appendix D.1: State estimation

In the state estimation problem of Sect. 3, we have avail-
able the topology of the power grid, a set of measurements
{zgi}, {zfij} and {zθi}, and their associated variances {σ2

gi},

{σ2
fij} and {σ2

θi
}. Here the index i denotes the vertices of

the power grid, and (ij) denotes the links of the power grid.
In our case we have generated the measurements ourselves
according to the procedure in Sect. 3. We furthermore have
access to the set of susceptances {Bij}, such that the flows
are related to the phase angles as fij = Bij(θi − θj). Our
goal is then to accurately determine the flows, based on the
Bayes’ theorem (Eq. 11). Let us define for all links (ij) the
constants cfij|i = Bij , cfij|j = −Bij and cgi|j = −Bij , and
for all vertices i the constants cgi|i =

∑
j∈N(i) Bij . For a

given set of measurements Bayes’ theorem gives a probabil-
ity P (θ) that the phase angles have values θ (the posterior
distribution P (θ|z) from Eq. 11) as

P (θ|z) ≡ P (θ) =
∏

i

Hi(θi, θj : j ∈ N(i))

×
∏

(ij)

H(ij)(θi, θj) (D.5)

H(ij)(θi, θj) ∝ exp
(

− (zfij − cfij|iθi

−cfij|jθj)
2/2σ2

fij

)
, (D.6)

Hi(θi, θj : j ∈ N(i)) ∝ exp
(

− (zθi − θi)
2/2σ2

θi

)

× exp
(

− (zgi − cgi|iθi

−
∑

j∈N(i)

cgi|jθj)
2/2σ2

gi

)
.

(D.7)

This distribution is of the form of Eq. 1, and hence we can
use Belief Propagation on the different factor graphs Fv and
Fc. To use the message passing equations (Eqs. 4–7), we
need the set of variable nodes xI , the set of factor nodes a
and the associated factor functions Wa(xa). Summarizing
the main text, these are given in Table 1. For the flow-only
approximation, which ignores Kirchhoff’s second law and
the phase angle measurements, the posterior distribution
described by Bayes’ theorem is

Pf (f |z) ≡ Pf (f ) =
[ ∏

i

Hi(
∑

j∈N(i)

fij)
]

×
[ ∏

(i,j)

Hij(fij)
]
,

(D.8)

Hi(
∑

j∈N(i)

fij) ∝ exp
(

− (zgi −
∑

j∈N(i)

fij)
2/2σ2

gi

)
,

(D.9)

Hij(fij) ∝ exp
(

− (zfij − fij)
2/2σ2

fij

)
. (D.10)

This distribution is of the form of Eq. 9. Following the main
text, the factor graph Ff is given in Table 2.

Using these factor graphs, we can use the BP Eqs. 4–7
to calculate the marginals we are interested in. We focus
on estimating the flows fij = Bij(θi − θj), so for Fv this is
{bHij(θi, θj)} where the index Hij denotes the factor node
at the link (ij). For Fc this is calculated from the copies as
b(ij)(θi, θj) = b(ij)(θ

c
ij , θ

c
ji), where the index (ij) denotes the

variable node at the link (ij). For Ff the relevant marginals
are {b(ij)(fij)}, where (ij) is again the variable node at the
link (ij). Due to the fact that all Hi and Hij are Gaussian,
all of the messages remain Gaussian, such that we can sum-
marize them by their mean and covariance as mI→a(xI) =
N(μI→a, KI→a) and ma→I(xI) = N(μa→I , Ka→I) for all
variable nodes I and factor nodes a connected on the fac-
tor graph (that is, for which xI ∈ xa). Together with the
topology of the factor graph and the expressions for the
functions Wa(xa) from Tables 1 and 2, we can plug this
into the BP Eqs. 4–6 to obtain the algorithm in terms of
products and integrals over Gaussians, therefore, requiring
only linear algebra for the means and (co-)variances of the
messages. It turns out that for Hi and Hij of the form of
Eqs. D.6–D.7 and Eqs. D.9–D.10 the updates can be calcu-
lated particularly efficiently (that is, not requiring explicit
inversion of any matrices larger than 2x2). The pseudocode
for the resulting algorithms is given in the supplementary
material.

Appendix D.2: Steady-state analysis

For the steady-state analysis problem of Appendix A, we
have access to the topology of the gas network, to the known
values of the squared pressures v = {vi} at some vertices
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Table 1 The factor graphs Fv and Fc specified for the power grid state estimation problem

Factor graph Variable nodes xI Factor nodes Wa(xa)

Fv For each vertex i: θi For each vertex i: Hi(θi, θj : j ∈ N(i))
For each link (ij): H(ij)(θi, θj)

Fc For each link (ij): (θc
ij , θ

c
ji) For each vertex i:

∫
dθi

{
Hi(θi, θ

c
ji : j ∈ N(i))

∏
j∈N(i) δ(θc

ij − θi)
}

For each link (ij): H(ij)(θ
c
ij , θ

c
ji)

Table 2 The factor graph Ff specified for the power grid state estimation problem

Factor graph Variable nodes xI Factor nodes Wa(xa)

Ff For each link (ij): fij For each vertex i: Hi(
∑

j∈N(i) fij)

For each link (ij): Hij(fij)

i, the known values of injection g = {gi} at some ver-
tices i, and to the coefficients {aij} determining the flow
Qij(vi, vj) = aijsgn(vi − vj)(vi − vj)

0.5. Here the variables
vi correspond to the square of the pressure p2

i at the vertex
i. From Appendix A, at each iteration of the modified GN-
algorithm we have a distribution P (v) ∝ exp(−C(v)), with
C(v) as in Eq. A.3 (the resulting distribution is Gaussian,
implying its mean minimizes C(v)). The resulting distribu-
tion P (v) is of the same form as those for the state esti-
mation problem (Eqs. D.6–D.7), only with different coeffi-
cients. Exactly the same BP algorithm can thus be used,
only replacing {θi} with {vi} = {p2

i }, and replacing the val-
ues of the coefficients as

zgi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

gi − ∑
j∈N(i)

(
Qij(v

∗
i , v∗

j ) − ∂Qij
∂vi

∣
∣
∣
∣
v∗

i
,v∗

j

v∗
i−

∂Qij
∂vj

∣
∣
∣
∣
v∗

i
,v∗

j

v∗
j

)

if gi ∈ g ,

0 else ,

σ
2
gi =

{
1 if gi ∈ g ,

108 else ,

zvi =

{
vi if vi ∈ v ,

0 else ,

σ
2
vi =

{
1 if vi ∈ v ,

108 else ,

cgi|i =

⎧
⎪⎨

⎪⎩

∑
j∈N(i)

∂Qij
∂vi

∣
∣
∣
∣
v∗

i
,v∗

j

if gi ∈ g ,

1 else ,

zfij = 0 ,

cfij|i = −cfij|j = 1 ,

σ
2
fij = 108

.

cgi|j =

⎧
⎪⎨

⎪⎩

∂Qij
∂vj

∣
∣
∣
∣
v∗

i
,v∗

j

if gi ∈ g ,

1 else .

Here the value 108 is simply a very high number imple-
menting the absence of any knowledge of the value of the
corresponding variable (a value much lower than 108 can
lead to inaccuracies, while a much higher value can lead to
numerical over- or underflow). The linearization point v∗

can be directly obtained from a guess Q∗ (itself obtained
from the previous BP iteration), the precise algorithm is
given in the supplementary material. For the gas network
we can also use a flow-only approximation, giving a distribu-

tion of the form of Eqs. D.9–D.10, with the flow fij replaced
by Qij , and the coefficients:

zgi =

{
gi if gi ∈ g ,

0 else ,

σ2
gi =

{
1 if gi ∈ g ,

108 else ,

zfij = 0 ,

σ2
fij = 108 .
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