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Abstract. We investigate the phase diagram of a spin-1 ferromagnetic XY model in the presence of a
longitudinal easy-axis crystal field assuming bilinear (J) and biquadratic (I) exchange interactions between
nearest neighbors spins and using the two-time Green Functions framework at the level of the Devlin
strategy. Employing both analytical estimates and numerical calculations, we find that the structure of
the crystal-field-induced phase boundary changes sensibly as the ratio α = I/J increases. In particular,
when α overcomes a characteristic value α∗, two quantum critical points appear which are connected by a
dome-shaped critical line. Due to the paradigmatic nature of the anisotropic spin model here considered,
we believe that our findings may provide useful insights into the physical origin of recent experimental
results found for some innovative materials which exhibit two quantum critical points and dome-shaped
phase diagrams induced by non-thermal control parameters driving a non-conventional quantum criticality.

1 Introduction

Quantum anisotropic spin models, in several situations
where strong quantum fluctuations and anisotropic
parameters compete, are candidates to exhibit new
quantum phases of different nature and hence pos-
sible quantum phase transitions (QPTs) driven by
variation of appropriate non-thermal parameters [1–7].
Here, quantum fluctuations are generally introduced by
the non-commutativity of quantum spin operators and
their competitions with non-thermal parameters arise
from different interactions in the Hamiltonian, as fer-
romagnetic bilinear and biquadratic exchange (BQE)
couplings, external magnetic fields and crystal-field
anisotropies [8–11].

The recent discovery of spin-1 magnetic compounds
[12,13] has led to a lot of experimental and theoretical
studies involving also the effects of single-ion anisotropy
(SIA). This feature has produced a strong interest in
the study of quantum criticality in spin-1 models with
easy-plane and easy-axis SIA (see, for instance, refs.
[14] and [15]). Up to now, extensive studies have been
devoted to the conventional situations where a single
QCP takes place [16–24].

However, recent experiments on innovative materi-
als have suggested the existence of two distinct QCPs
driven, at T = 0, by variation of some non-standard
control parameters [25–39]. Nevertheless, the nature of
quantum criticality between and beyond the two QCPs
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in these materials remains at present rather obscure
and require further investigations. As a useful guide in
this context, there is the evidence that also magnetic
materials of this innovative class exhibit some aspects
typical of spin-1 anisotropic magnetic models with XY
symmetry [16,40–43].

This relevant feature suggests that it may be very
interesting to study analytically and numerically the
thermodynamic of appropriate spin-1 models to provide
insights into the basic physics for systems showing two
QCPs. Bearing this in mind, in the present paper, we
focus on a spin-1 ferromagnetic XY model described
by the Hamiltonian

H = −1

2

N∑

<i,j>=1

[
Jij(S

x
i Sx

j + Sy
i Sy

j ) + Iij

(
Sx

i Sx
j + Sy

i Sy
j

)2]

−D
N∑

i=1

(Sz
i )2 − h

N∑

i

Sz
i , (1.1)

where
∑

<i,j> denotes a sum over nearest neighbor
lattice sites, J and I are the ferromagnetic bilinear
and biquadratic exchange interactions between near-
est neighbor spins, h is the longitudinal magnetic field
and D measures the intensity of a longitudinal crystal
field that gives rise to an easy-axis (D > 0) or easy-
plane (D < 0) SIA in the z-direction. In Eq. (1.1)
�Si ≡ (Sx

i , Sy
i , Sz

i ) is the spin operator at site i with
Sz

i taking the eigenvalues −1, 0, 1.
To our knowledge, the thermodynamic properties

of the Hamiltonian (1.1) have not been yet exam-
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ined in their full aspects by variation of all the
competing parameters (J, I, h,D). Several investiga-
tions have been performed only for particular values
of the interaction parameters providing partial infor-
mation about its thermodynamics. The simplest case
with I = 0 in the absence of SIA, i.e., the conven-
tional transverse XY model [16,18,43] has been exten-
sively analyzed in the context of magnetic-field-induced
quantum criticality, where QPTs or QCPs are driven
by the longitudinal magnetic field h, which activates
quantum fluctuations in the low-temperature regime.
In the last decade, a lot of interest has been attracted
by the regimes with h ≥ 0 and different signs of the SIA
parameter D. In this situation, it is found [15,44,45]
that the nature of SIA has a significant effect on the
h-induced phase diagram and quantum criticality in
the (h, T )-plane. Specifically, in the easy-plane case
the quantum critical lines have the conventional shape
merging into a QCP (hc(D), T = 0) for appropriate
values of D with a standard quantum critical thermo-
dynamics. The situation appears quite different when
easy-axis SIA is present. The easy-plane case (D < 0)
is not so surprising, except for the existence of a h-
induced QCP in a limited range of the SIA parame-
ter, producing a quantum critical scenario qualitatively
similar to that found in the absence of the crystal field
anisotropy (of course, the non-universal critical quanti-
ties depend on the control parameter D). The easy-axis
regime is certainly more interesting due to the emergent
reentrant critical lines merging into a QCP for selected
values of the SIA parameter [16–18]. The peculiar reen-
trant behavior in the phase diagram has been observed
for superconducting vortices [46,47], liquid crystals [48],
polymeric materials [49], ferromagnetism in semicon-
ductors [50], solid hydrogen [51], denaturation of DNA
[52] and has stimulated several theoretical investiga-
tions [15–17,20,44,53–59]. Therefore, a complete study
of the paradigmatic model (1.1) with all competing
interactions may be very interesting not only from a
theoretical perspective.

The aim of the present paper is to investigate the
structure of the phase diagram of the model (1.1) taking
into account the competing effects of the crystal field
and the BQE interaction by using the two-time Green
functions framework according to the Devlin scheme
[60] which is a reliable approach to treat the effects of
SIA.

The paper is organized as follows. In Sect. 2, we
present the basic equations obtained following the
Devlin strategy for the spin-1 model (1.1) in the absence
of the longitudinal magnetic field. Section 3 presents
the stability conditions starting from the transverse
susceptibility for paramagnetic phase. Analytical esti-
mates for dimensionalities d ≥ 3 allow us to select two
regimes of the BQE ratio α = I/J , where one or two
D-induced QCPs occur in the (D,T )-plane. In the two-
QCPs regime, low-temperature predictions suggest the
possible occurrence of a dome-shaped phase diagram.
Numerical results are reported in Section 4 which sup-
port the expected existence of two D-induced QCPs
and related dome-shaped phase diagrams increasing the

ratio α above a well defined crossover value α∗ ≈ 1.8
for cubic lattices. Section 5 closes the paper with con-
cluding remarks.

2 Two-time Green functions framework

Although no ordering occurs in the z-axis, the Devlin
scheme can be conveniently applied for a non conven-
tional description of the magnetic properties of the
model (1.1) in terms of the ensemble average of the
operator (Sz

i )2 even in the absence of the longitudinal
magnetic field. To this aim, we put h = 0 in what fol-
lows and introduce the retarded Green functions (GFs)

〈〈S+
i (t);S−

j 〉〉 = −iθ(t)〈[S+
i (t), S−

j ]〉, (2.1)

〈〈A+
i (t);S−

j 〉〉 = −iθ(t)〈[A+
i (t), S−

j ]〉, (2.2)

where S±
i = Sx

i ± iSy
i are the spin raising and lowering

operators, θ(x) is the step function, 〈X(t)〉 stands for
the equilibrium average at temperature T for a generic
operator X, i.e.,

〈X(t)〉 =
Tr[X(t)e−H/T ]

Tre−H/T
(2.3)

with the Boltzman constant assumed equal to unity,
and

A±
i ≡ Sz

i S±
i + S±

i Sz
i . (2.4)

Following standard procedure, we obtain the equa-
tions of motion (EMs) for the time Fourier transform
Gij(ω) =

∫∞
−∞ dt e−iωt〈〈S+

i (t);S−
j 〉〉 ≡ 〈〈S+

i |S−
j 〉〉ω and

Γij(ω) =
∫∞

−∞ dt e−iωt〈〈A+
i (t);S−

j 〉〉 ≡ 〈〈S+
i |S−

j 〉〉ω:

ωGij(ω) = DΓij(ω) −
∑

h

{
Jih〈〈Sz

i S+
h ;S−

j 〉〉ω

+
1
2

Iih

[〈〈(S+
h )2A−

i ;S−
j 〉〉ω + 2Γij(ω)

−〈〈(Sz
h)2A+

i ;S−
j 〉〉ω + 〈〈Sz

hS+
i ;S−

j 〉〉ω

]}
,

(2.5)

and

ωΓij(ω)

= 2qδij −
∑

h

{Jih〈〈qz
i S+

h ; S−
j 〉〉ω +

1

2
Iih[〈〈Sz

hA+
i ; S−

j 〉〉ω +

−〈〈(Sz
h)2S+

i ; S−
j 〉〉ω + 2Gij(ω)]} + DGij(ω). (2.6)

Here A−
i is defined in equation (2.4), q = 〈qz

i 〉 is
the longitudinal quadrupolar parameter, where qz

i =
3(Sz

i )2 − 2. It is evident that the exact two coupled
EMs (2.5) and (2.6) do not constitute a closed system
of equations in the required GFs Gij(ω) and Γij(ω) due
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to the appearance of higher order exchange and crystal-
field anisotropy-like GFs. Thus, one is forced to intro-
duce appropriate decoupling schemes. Here, we follow
the Devlin idea [60] using Random Phase Approxima-
tion (RPA)-like decouplings for the exchange GFs and
treating exactly the crystal-field-like ones. Specifically,
we adopt the following RPA scheme [10,11]

〈〈Sz
hS+

k |S−
j 〉〉ω � 〈Sz

h〉〈〈S+
k |S−

j 〉〉ω = 0,

〈〈(S+
h )2A−

i ;S−
j 〉〉ω � 〈(S+

h )2〉〈〈A−
i ;S−

j 〉〉ω = 0,

〈〈(Sz
h)2A+

i ;S−
j 〉〉ω � 〈(Sz

h)2〉〈〈A+
i ;S−

j 〉〉ω = 〈(Sz
h)2〉Γij(ω),

〈〈qz
i S+

h ;S−
j 〉〉ω = q〈〈S+

h ;S−
j 〉〉ω = qGhj(ω), (2.7)

which neglects the correlations between the transverse
and longitudinal spin components at different lattice
sites. In contrast the SIA-like terms will be treated
exactly. Then, with the further Fourier transforms in
space Xij(ω) = (1/N)

∑
�k ei�k·(�ri−�rj)X(�k, ω), (X =

G,Γ) and Y (�k) =
∑

�r ei�k·�rY (|�r|) (Y = J, I), the wave-
vector �k ranging in the first Brillouin zone (1BZ), the
problem reduces to a simple closed set of two algebraic
equations for G(�k, ω) and Γ(�k, ω) with solutions

G(�k, ω) =
2qD

ω2 − ω2(�k)
, (2.8)

Γ(�k, ω) =
2qω

ω2 − ω2(�k)
, (2.9)

where

ω(�k) =| D |
(

1 − qJ(�k)
D

)1/2

(2.10)

defines the dispersion relation of the spin excitations.
In these equations, one must have (1 − qJ(�k)

D ) ≥ 0 for
assuring the reality of ω(�k) and to simplify the notation
we have defined

D ≡ D − I(0)
6

(4 − q). (2.11)

Finally, the spectral theorem [10,11] for two generic
operators A and B

〈BA(t)〉

= lim
ε→0+

i

∫ +∞

−∞

dω

2π

[〈〈A; B〉〉ω+iε − 〈〈A; B〉〉ω−iε]e
−iωt

eω/T − 1

allows to obtain the correlation functions 〈S−
j S+

i (t)〉
and 〈S−

j A+
i (t)〉.

With standard algebra one has, for instance,

〈S−
j S+

i (t)〉 = qD 1
N

∑

�k

ei�k·(�ri−�rj )

ω(�k)

[
e−iω(�k)t

eω(�k)/T − 1
− eiω(�k)t

e−ω(�k)/T − 1

]

. (2.12)

In particular in the static case at the same site, one has

〈S−
i S+

i 〉 = qD 1
N

∑

�k

1

ω(�k)
coth

ω(�k)
2T

. (2.13)

From previous equations, it is evident that the
unknown thermodynamic quantity q = 〈qz〉, as a func-
tion of the intensive parameters (T,D), plays a key role.
Indeed, all the thermodynamic properties can be deter-
mined if q = q(T,D) is known, in analogy with the role
played by the longitudinal magnetization m = 〈Sz〉 in
models where it is non-zero. A self-consistent equation
for q can be derived combining the kinematic identity
valid for spin S = 1

S−
i S+

i = 2 − Sz
i − (Sz

i )2 (2.14)

and the spectral theorem. The result is the self-
consistent equation

4
3

− q

3
= qD 1

N

∑

�k

1

ω(�k)
coth

ω(�k)
2T

, (2.15)

in which q must satisfy the boundary condition −2 ≤
q ≤ 1. If in this equation we express ω(�k) and D in
terms of q (see (2.10) and (2.11)) we obtain the required
self-consistent “Devlin equation”

4 − q

3
= q(signD)

1
N

∑

�k

1
(
1 − Qγ(�k)

)1/2
coth

[ | D |
2T

(
1 − Qγ(�k)

)1/2
]

, (2.16)

where 1 ≤ 4−q
3 ≤ 2, q(signD) ≥ 0, γ(�k) =

J(�k)/J(0) is the “structure factor” and, for short nota-
tion,

Q ≡ qJ(0)

D − I(0)
6 (4 − q)

=
qJ(0)

D . (2.17)

At zero temperature Eq. (2.16) reduces to

4 − q

3
= q(signD)

1
N

∑

�k

1
(
1 − Qγ(�k)

)1/2
, (2.18)

since the dispersion relation ω(�k) is always a non-
negative quantity.

123



76 Page 4 of 11 Eur. Phys. J. B (2022) 95 :76

3 Transverse susceptibility, stability
condition and crystal-field-induced
quantum critical points

In our scheme, the physical solution q of the Devlin
equation and the magnetic properties of the model can
be obtained through the transverse susceptibility χ⊥ =
−G(�k = 0, ω = 0) which is given by

χ⊥ =
2qD
ω2(0)

=
2

J(0)
Q

1 − Q
, (3.1)

where

ω(0) = |D|
(

1 − q
J(0)
D
)1/2

(3.2)

provides the energy gap of the spin excitations. By
inspection of Eq. (3.1), it is evident that the thermo-
dynamic stability condition χ−1

⊥ ≥ 0 is assured by the
simple requirement 0 < Q ≤ 1. From this condition the
following basic features emerge:

i) being Q a definite positive quantity, q and D must
have always the same sign;

ii) the reality condition for the energy spectrum is
automatically satisfied through the stability condi-
tion, since γ(�k) ≤ 1;

iii) the equation Q = 1 defines the phase boundary
where χ⊥ → +∞ and the energy gap ω(0) =
|D|(1 − Q)1/2 vanishes. Thus, this criticality condi-
tion locates possible critical points for appropriate
space dimensionalities.

It is important to emphasize that, in contrast to q
and D, the physical SIA parameters D and q do not
have always the same sign and one can have a negative
q even in the easy axis regime (0 < D < I(0)

6 (4 − q)).
Exploiting the above feature (iii), the physical solu-

tion of the Devlin equation (2.16) at the criticality
is determined setting Q = 1, thus yielding the self-
consistent equation

4 − q

3
= q(signD)

1
N

∑

�k

1
(
1 − γ(�k)

)1/2
coth

[ | D |
2T

(
1 − γ(�k)

)1/2
]

, (3.3)

that, at T = 0, reduces to

4 − q

3
= q(signD)F

(

−1
2

)

. (3.4)

Here F (−1/2) = 1
N

∑
�k 1/(1 − γ(�k))1/2 is the partic-

ular case n = −1/2 of the so called “structure sums”

F (n) = 1
N

∑
�k(1 − γ(�k))n. In the limit of infinite lat-

tice (for N → ∞) this sum reduce to an integral
which converges for any space-dimensionality d > 1.
For three-dimensional lattice: in the simple cubic (sc),
F (−1/2)) = 1.11536, in the body-centered cubic (bcc)
it is F (−1/2)) = 1.08731 and in the face-centered cubic
(fcc), F (−1/2)) = 1.07341.

Equation (3.4) can be simply solved yielding the
global representation

q =
4

3F (−1/2)(signD) + 1
(3.5)

from which we see that q depends on the SIA parameter
D and on the BQE interaction I(0) only through signD.
The solution corresponding to signD = +1 is

qc1 =
4

3F (−1/2) + 1
> 0 (3.6)

that is a positive solution giving rise to the transverse
autocorrelation function

〈(Sz)2〉 =
q + 2

3
= 2

F (−1/2) + 1
3F (−1/2) + 1

, (3.7)

which measures the out-plane quantum spin fluctua-
tions. Correspondingly, the T = 0 critical value of D
is

Dc1 =
4J(0)

3F (−1/2) + 1

[
1
2
αF

(

−1
2

)

+ 1
]

, (3.8)

having defined α ≡ I
J as the relative intensity of the

BQE parameter. The other solution for q, correspond-
ing to signD = −1, is

qc2 = − 4
3F (−1/2) − 1

< 0, (3.9)

the out-plane quantum spin fluctuation now is

〈(Sz)2〉 = 2
F (−1/2) − 1
3F (−1/2) − 1

(3.10)

and the related quantum D-coordinate is

Dc2 =
4J(0)

3F (−1/2) − 1

[
1
2
αF

(

−1
2

)

− 1
]

. (3.11)

Notice that Dc2 can be positive or negative depending
on whether α is greater or less than α∗ ≡ 2F−1(−1/2),
respectively.

Previous T = 0 analysis suggests that, for α <
2F−1(−1/2), our spin model exhibits a D-induced QCP
(Dc1) located in the easy-axis region Dc1 > 0 and
another QCP (Dc2) located in the easy plane region
Dc2 < 0. On the contrary, if α > 2F−1(−1/2) both crit-
ical points are present in the easy axis region. Observe
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that Dc2 < Dc1 for all the allowed values of α and at
the crossover point α∗ one has Dc2 = 0 and Dc1 =

8J(0)
3F (−1/2)+1 .

The structure of the phase diagram of the model (1.1)
at our level of approximation can be deduced inserting
the low temperature solution q(T ) of the Devlin equa-
tion (2.16) in the critical condition Q = 1 obtaining in
this way the locus of critical points ending in Dc1 and
Dc2. We find in this way a combination of two temper-
ature depending branches, one driven by q(T ) > 0 and
the other by q(T ) < 0, which merge at q = 0, corre-
sponding to D = 2

3I(0) for Tc/J(0) = (2/3)F (−1).
A conventional critical scenario is expected to occur

for BQE ratio α < 2F−1(−1/2), when a single QCP
exists in the D,T - plane. In this low-BQE regime, the
solution q = q(T ) close to the QCP (Dc1, T = 0), with
qc1 and Dc1 given by Eqs. (3.6) and (3.8), can be deter-
mined setting signD = +1 in Eq. (3.3). At low temper-
ature, by iteration with initial point qc1 > 0, we get

q 
 qc1

{

1 − 3
2
qc1

∫

1BZ

ddk

(2π)d

1

(1 − γ(�k))1/2

[
e

J(0)qc1
2T (1−γ(�k))1/2 − 1

]−1
}

, (3.12)

where the integral can be estimated in a standard way
for d > 2 assuming in the integrand a small-�k expan-
sion depending on the coordination number z of the
lattice γ(�k) 
 1 − 1

z k2, so the longitudinal quadrupolar
parameter can be expressed as follows

q 
 qc1

{

1 − 3
2
qc1KdΓ(d − 1)ζ(d − 1)zd/2

(
T

J(0)qc1

)d−1
}

> 0, (3.13)

where Kd = 21−dπ−d/2/Γ(d/2) and Γ(x) and ζ(x)
denote the Euler gamma and the Riemann zeta func-
tions, respectively. With this ingredients, it is immedi-
ate to obtain the required asymptotic equation of the
critical line using the criticality condition. We get

Dc1(T ) 
 Dc1

{

1 − 3
2

qc1

Dc1

(

Dc1 − 2
3
I(0)

)

KdΓ(d − 1)ζ(d − 1)zd/2

(
T

J(0)qc1

)d−1
}

(3.14)

with Dc1 − 2
3I(0) > 0.

Let us consider now the high-BQE regime α >
2F−1(−1/2) where two quantum critical points exist.
Their (T = 0)-coordinates Dc1 and Dc2 are given by
Eqs. (3.8) and (3.11) with correlated q values (3.6) and
(3.9), respectively. For the branch of the critical line
ending in the first QCP (Dc1, T = 0), we obtain the

expression (3.14), as in the previous regime. Similar to
this case, for the second QCP, the low-T longitudinal
quadrupolar parameter reads

q 
 qc2

{

1 − 3
2

|qc2 | KdΓ(d − 1)

× ζ(d − 1)zd/2

(
T

J(0)|qc2|
)d−1

}

. (3.15)

Then, the critical line equation close to the QCP
(Dc2, T = 0) is

Dc2(T ) = Dc2

{

1 +
3
2

|qc2|
Dc2

|Dc2 − 2
3
I(0)|

KdΓ(d − 1)ζ(d − 1)zd/2

(
T

J(0)|qc2|
)d−1

}

,

(3.16)

with Dc2 − 2
3I(0) < 0. We observe that both the crit-

ical lines are characterized by the same shift exponent
ψ = d−1 typical of the continuous O(2)-vector TIM-like
models [4,5,61] with dynamical critical exponent z = 1
as for the easy-plane and easy-axis SIA cases when
α < 2F−1(−1/2). More interestingly, they exhibit a dif-
ferent orientation of the curvature in the (D,T )-plane
(on the right for Dc2(T ), on the left for Dc1(T )). Previ-
ous estimates provide preliminary indications towards
a peculiar phase diagram of the model when α > α∗.

To have additional information about the structure
of the phase diagram we provide below analytical esti-
mates of the critical temperature Tc as function of D
for different values of the BQE coupling in some asymp-
totical regimes. As a first step, we solve by iteration the
Devlin equation at criticality for D = 0 and therefore
we must assume in (3.3) signD = −1, hence q(T ) < 0.
So the equation to solve reads

4+ | q |
3

= | q |

⎧
⎪⎨

⎪⎩
F

(

−1
2

)

+ 2
1
N

∑

�k

1
(
1 − γ(�k)

)1/2

1

e
J(0)|q|

2T (1−γ(�k))1/2 − 1

⎫
⎪⎬

⎪⎭
.

(3.17)

Focusing on the low-T regime a low-wave-vector expan-
sion in the integrand of (3.17) yields

4+ | q |
3

=| q |
{

F

(
−1

2

)
+ 2KdΓ(d − 1)

× ζ(d − 1)zd/2

(
T

J(0)|q|
)d−1

}
(3.18)
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except for an exponentially small term in T/J(0). By
iteration with initial point q0 = − 4

3F (−1/2)+1 ≤ 0 to
leading order in (T/J(0))d−1 we have the asymptotic
solution

q(T ) = q0

{

1 − 3
2
KdΓ(d − 1)

× ζ(d − 1)zd/2 | q0|1−d

(
T

J(0)

)d−1
}

.

(3.19)

Then, the related equation of the critical line follows
from the critical condition

q(T ) = − (2/3)α
1 − α/6

. (3.20)

Incidentally, we observe that, since it must be q(T ) <
0 for internal consistency, this equation requires that
α/6 < 1 at our level of approximation. Finally, the low-
T estimate of the critical temperature as function of the
biquadratic parameter is

Tc(α)
J



[

2zd/2 − 1
3KdΓ(d − 1)ζ(d − 1) | q0|2−d

] 1
d−1

(
1 − α/α∗

1 − α/6

) 1
d−1

. (3.21)

Notice that this is a decreasing function that goes to
zero as α → α∗, with α∗ the crossover value between
the two BQE regimes. It is possible to estimate Tc(α)
also at finite temperature by applying to Eq. (3.3) the
Laurent expansion

coth(x) =
1
x

+
∞∑

n=1

2nB2n

(2n)!
x2n−1, 0 <| x |< π

(3.22)

in terms of the Bernoulli numbers B2n. Bearing in mind
the previous iterative procedure with starting point
Tc0/J(0) = 2

3F−1(−1) and involving (3.20) the result
for Tc(α) is

Tc(α)
T0c

≈ 1
1 − α/6

{

1 +
∞∑

n=1

an

(
α

1 − α/6

)2n
}−1

,

(3.23)

where an = B2n
(2n)!F (n − 1)F (−1)2n−1.

In particular to second order in α, we have

Tc(α)
T0c

≈
{

1 +
α

6
− [2F (−1) − 1]

(α

6

)2
+ ...

}

,

(3.24)

i.e., Tc first increases with α (from α = 0) and then
decreases. The behavior is confirmed by exact numerical
calculations (see next section). Since Tc(α) is the initial
critical temperature of any critical line in the (D,T )-
plane, its behavior with α will play an important role
to determine the structure of the phase diagram.

Finally, in this section, we obtain an estimate of the
finite temperature Tc(D) when a single QCP exists. One
first solves approximatively the Devlin equation (3.3) to
obtain q(T ) then, using the critical condition on q(T ),
a conventional iterative procedure leads to

Tc(D)
T0c


 1 − D/(4J(0))
1 − α/6

{

1 +
∞∑

n=1

an

(
α − 3

2
D

J(0)

1 − α/6

)2n
⎫
⎬

⎭

−1

, (3.25)

with 0 ≤ D/J(0) < 4. Notice that at D = 0 this equa-
tion reproduces Tc(α), i.e., the starting critical points
in the absence of SIA. Previous analytical estimates do
predict a structure of a phase diagram appearing as a
sequence of “dome shaped” critical lines increasing α
and this is confirmed by numerical calculation.

4 Numerical data and dome-shaped
structure of phase diagram

This section reports numerical data regarding the phase
diagram of the spin-1 XY model with BQE interactions
and easy-axis SIA obtained by means of the solution
of the Devlin equation at criticality for the out-plane
quadrupolar parameter q. Our primary interest is to
derive a reliable numerical scenario about the structure
of the phase boundary in the (D,T )-plane by variation
of the reduced parameters D/J and α = I/J . In partic-
ular, we will focus on the appearance of partial and full
dome-shaped critical lines increasing the BQE param-
eter α, as suggested by previous analytical estimates.

With this plan in mind, the starting step is to solve
numerically the general Devlin equation (2.16) under
the stability condition 0 < Q = J(0)q/[D − I(0)(4 −
q)/6] ≤ 1 which is the basic ingredient to explore the
thermodynamics of our spin model in the disordered
phase.

In Fig. 1, we have plotted the parameter q as a func-
tion of reduced temperature T/J by variation of D/J
for α = 0.5 (panel a) and α = 2 (panel b), which are
two representative values in the BQE regimes α < α∗
and α > α∗, where a single QCP and two QCPs are
expected to occur, respectively. In this context, we have
estimated analytically α∗ = 2F−1(−1/2) = 1.793143
for the simple cubic (sc) lattice. In both panels, the
black solid line provides the parameter q evaluated on
the phase boundary (where Q = 1(χ−1 = 0)), which
allows to analyze numerically the phase diagram of the
system. From this figure it is evident that, consistently
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Fig. 1 Longitudinal quadrupolar parameter q as a function of reduced temperature T/J for several values of the crystal
field D/J for α = 0.5 (panel a) and α = 2 (panel b). The black solid line, which encloses the shaded-gray ordered region,
provides the phase boundary

Fig. 2 Evolution of the phase boundary in the (D/J ; T/J)-plane upon variation of the biquadratic exchange coupling for
a sc lattice. When α > α∗ ≈ 1.8 two quantum critical points occur with the related full dome-shaped critical lines and
the amplitude of the domes decreases increasing α. It is worth emphasizing that the reduction of Tc(α) increasing α ≥ 0 is
crucially involved in determining the structure of the phase diagram

with the analytical estimates, the out-plane quadrupo-
lar parameter q at the criticality depends only on tem-
perature with negative values for D < I(0)(4 − q)/6,
positive ones for D > I(0)(4 − q)/6) and q = 0 at
the crossover value D = I(0)(4 − q)/6) = 2I(0)/3.
At our level of approximation in the criticality regime,
these conditions become D/J(0) < (2/3)α∗, D/J(0) >
(2/3)α∗ and D/J(0) = (2/3)α∗ (= D∗/J(0)), respec-
tively. Notice that the single value (panel a) and the two
values (panel b) of q at zero temperature correspond to
the QCPs in the (D,T )-plane.

Figure 2 presents the critical lines in the (D,T )-plane
by variation of the BQE ratio α for simple cubic lattice.
Here it is shown that, increasing α, a different structure

of the phase boundaries takes place. For 0 ≤ α ≤ α∗ (α∗
depends on the coordination number) each critical line
terminates in a single D-induced QCP with a incom-
plete dome-shaped behavior (see, for instance, panels
a–d). Further increasing α, a non-conventional regime
occurs with dome-shaped critical lines bounded by two
QCPs (panels e–f). More specifically, for the BQE ratio
in the interval 0 ≤ α ≤ 1, usually studied in literature in
the absence of SIA [23,62–64], the cubic lattice exhibits
a single QCP with conventional critical lines. However,
our analysis indicates that this feature persists also for
1 ≤ α ≤ α∗. The situation gradually changes in the
BQE regime with α ≥ α∗ displaying dome-structure
critical lines bounded by two QCPs (panel f). It is also
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observed that the dome-amplitude of different critical
lines decreases for increasing values of the BQE ratio α.

It is worth emphasizing that the reduction of Tc(α)
for increasing α ≥ 0 is crucially involved in determining
the structure of the phase diagram. In Fig. 3, we have
plotted Tc as a function of α for a sc lattice, for four
values of the SIA parameter D. Here it is shown that,
for D = 0, Tc(α) vanishes exactly at α = α∗, which
marks the crossover between the regimes with presence
of one and two QCPs.

A scenario quite similar to the phase diagram found
before for a sc lattice takes place also for bcc (z=8) and
fcc (z=12) lattices.

To analyze the physical mechanism producing the
dome-shaped phase diagram scenario in our anisotropic
XY model beyond the Devlin-like framework is a
prohibitive issue especially in the absence of reliable
information about its ground state. However, at our
level of approximation, the emerging dome-shaped phe-
nomenon can be qualitatively traced back to the con-
flicting competition between the easy-plane BQE cou-
pling and the transverse (out-plane) easy-axis SIA,
where the latter tends to inhibit the in-plane order-
ing. Hence, some qualitative insights can be obtained
analyzing the effects of the aforementioned competi-
tion. Increasing the crystal field, the z-component of the
spins is enhanced implying a reduction of the in-plane
order and hence a lowering of the transition tempera-
ture to disordered phase. The physical situation is dras-
tically different from the case of an easy-plane crystal
field which favors the in-plane order [18,43,44]. Here,
the z-component of the spins decreases as the crystal
field is enhanced implying a stronger ordering in the
XY-plane and hence a higher transition temperature
to disorder. Previous mechanism may provide a sim-
ple explanation of the appearance of disordered regions
which are not present in the conventional phase dia-
grams in the absence of SIA [42,65–67].

Bearing all this in mind, some insights can be pro-
vided on the possible physical origin of the domes in
the phase diagram by observing the evolution in Fig. 2
from panel (a) to panel (f). Panel (a) depicts a typical
critical line in the absence of BQE interaction (α = 0),
which merges into a QCP arising from the quantum
fluctuations produced by the presence of SIA. The BQE
coupling starts to play a sensible role increasing the
ratio α as shown through the panels (b–e). As expected
from the analytical estimates, for fixed α < α∗ ≈ 1.8
the critical lines exhibit a single D-induced QCP and a
partial dome-shaped behavior which becomes more and
more marked for small D from the panel (b) to panel
(e). We argue that this feature is imputed to the more
stabilized in-plane ordering produced by the increased
BQE ratio up to the crossover value α∗ = 1.8 between
the one-QCP regime and the two-QCPs one (panel e).
When α = α∗, with Tc(D = 0, α∗) = 0, the system is in
a state with an incipient QCP (Dc2 = 0) and an effec-
tive one (Dc1 �= 0). In the panel (f), we present a full
dome-shaped critical line typical of the regime α > α∗,
where two D-induced QCPs occur. Here, the critical
line shows a peculiar behavior which can be interpreted

Fig. 3 Critical temperature as a function of the
biquadratic–bilinear exchanges ratio α = I/J for a sc lat-
tice and for four different values of the single-ion-anisotropy
parameter D

as follows. Since the easy-axis crystal field fluctuations
tend to inhibit the in-plane ordering, it is reasonable to
conjecture that for Dc2 < D < D∗ (q < 0 ) the BQE
coupling dominates and the in-plane ordering becomes
active producing an increased critical temperature up
to the a maximum T ∗

c (D = D∗, q = 0) signaling the
balance of the two effects. For D∗ < D < Dc1(q < 0)
quantum SIA fluctuations start to produce a sensible
reduction of the XY order and increasing D the crit-
ical temperature decreases and vanishes at D = Dc1.
Finally, no critical singularity occurs for D > Dc1.

We conclude this section showing some numeri-
cal data for thermodynamics of paramagnetic phase
obtained using the solution of the general Devlin-like
equation under stability condition 0 < Q < 1. In this
context, the basic quantity is the transverse suscepti-
bility χ⊥(T,D;α).

In Fig. 4, we have plotted the inverse susceptibil-
ity in the paramagnetic phase as a function of the
easy-axis SIA parameter D for different isotherms and
three distinct values of the BQE ratio α. These fig-
ures show that, when two D-induced QCPs are present
(see Fig. 4c) the transverse susceptibility has a non-
standard behavior: at fixed temperature T it increases
with D < Dc2(T ) by approaching the low-D branch
of the critical line and diverges as D → D−

c2(T ) while
along the high-D branch it diverges as D → D+

c1(T ) and
is a decreasing function of D for D > Dc1(T ). Besides,
along the D-axis it intercepts in two distinct critical
values of D for T < T ∗

c , similarly to a typical reentrant
phase diagram [15–17,44]. Additional information can
be extracted from Fig. 5, where the transverse suscepti-
bility is plotted as a function of T at fixed D for selected
values of α in the paramagnetic phase around a typical
critical line. It is evident that its behavior, as compared
to the corresponding one in Fig. 4, appears more com-
plex (panels b–c) especially in the regime where two
QCPs are present (panel c). Notice that, in all cases
(panels a–c), the susceptibility tends to zero increasing
T and diverges at the QCP as T−1, as expected. Previ-
ous numerical data suggest also that, in all the regimes
χ⊥ decreases increasing the temperature at fixed D.
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Fig. 4 Inverse susceptibility χ−1 as a function of the single-ion-anisotropy parameter D for different isotherms at fixed
values of the biquadratic ratio α. In a, we have α = 0, showing a conventional situation; in b, it is α < α∗, so we are in a
regime with one-QCP, but the inverse susceptibility have a non-monotonic behavior; in c, we have α > α∗; hence, there is
a characteristic dome-shaped critical line with two-QCPs

Fig. 5 Transverse susceptibility as a function of T at fixed D for three different values of the biquadratic exchange ratio
α = I/J

At this stage, using the general solution of the Devlin-
like equation (2.16) and the numerical results for trans-
verse susceptibility it is possible to derive information
about other thermodynamic quantities in the param-
agnetic phase (as internal energy, specific heat, and so
on) by employing the basic formalism of the powerful
two-time GF method and, in particular, the spectral
theorem.

5 Concluding remarks

In this paper we have studied analytically and numeri-
cally the phase diagram of the spin-1 ferromagnetic XY
model with BQE coupling (I) and longitudinal easy-
axis crystal field (D) on cubic lattice. Following the
Devlin strategy [60], in the EMs we have employed RPA
decouplings for exchange higher-order GFs and treated
exactly the crystal-field anisotropy terms. The main
results are as follow: (i) for BQE ratio α = I/J below
a certain crossover value α∗ a single D-induced QCP
exists in the (D,T )-plane with a conventional phase
diagram quite similar to that found in the absence
of biquadratic interactions; (ii) increasing the BQE
parameter the phase diagram is sensibly modified, with
the appearance of critical lines showing a partial dome-
like structure with a single QCP. Remarkably, with
a further increase of the BQE ratio, above a thresh-

old α∗, two D-induced QCPs appear delimiting a full
dome-shaped critical line. Notice that, although explicit
numerical results were obtained for simple cubic lattices
(z = 6), a similar scenario can be easily derived for bcc
(z = 8) and fcc (z = 12) lattices. To our knowledge, no
theoretical studies have been performed in the past for
investigating the non-conventional conflicting competi-
tion which may occur in simple anisotropic XY model
between BQE and the quantum fluctuations induced by
an easy-axis longitudinal SIA. At this stage, one can
object that the above emerging non-conventional two-
QCPs scenario is simply a product of the Devlin-like
framework adopting the simple decoupling RPA scheme
used in the EMs for the exchange higher-order GFs.

Theoretical improvements for testing this criticism
can be obtained using Callen-like decouplings [68] for
the exchange terms [21,22,24] providing an estimate
of the correlation effects between spins in different
sites. However, as suggested by previous general frame-
works, this higher-order level of approximation, espe-
cially when in-plane BQE interaction and longitudi-
nal easy-axis crystal field are simultaneously taken into
account in the EMs, should complicate sensibly the
mathematical treatment without a substantial change
of the predictions arising from the simplest and con-
trollable RPA scheme used through the present paper.
So, we speculate that our approach is able to cap-
ture, at least qualitatively, the basic physics which gov-
erns the two-QCPs scenario with the related dome-
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shaped phase diagrams. In any case, the study of the
competition between the contrasting BQE interaction
and the longitudinal easy-axis SIA in our paradigmatic
anisotropic spin-1 XY model (1.1) in h = 0 becomes,
of course, a subject of experimental interest and may
stimulate further theoretical, numerical and experimen-
tal researches.
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Studi di Salerno within the CRUI-CARE Agreement.

Data Availability Statement This manuscript has no
associated data or the data will not be deposited. [Authors’
comment: Most of the results are analytical. Data related to
the numerical results are shown in the figures. These data
are available from the corresponding author upon request.]

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to
the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this arti-
cle are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statu-
tory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. S. Sachdev, Quantum Phase Transitions (Cambridge
University Press, Cambridge, 2011). ((and references
therein))

2. S.L. Sondhi, S.M. Girvin, J.P. Carini, D. Sharar, Rev.
Mod. Phys. 69, 315 (1997)

3. M.T. Mercaldo, L. De Cesare, I. Rabuffo, A. Caramico
D’Auria, Phys. Rev. B 75, 014105 (2007)

4. L. De Cesare, A. Caramico D’Auria, I. Rabuffo, M.T.
Mercaldo, Eur. Phys. J. B 73, 327 (2010)

5. A. Caramico D’Auria, L. De Cesare, M.T. Mercaldo, I.
Rabuffo, Eur. Phys. J. B 77, 429 (2010)

6. M.T. Mercaldo, I. Rabuffo, A. Naddeo, A. Caramico
D’Auria, L. De Cesare, Eur. Phys. J. B 84, 372 (2011)

7. M. Brando, D. Belitz, F.M. Grosche, T.R. Kirkpatrick,
Rev. Mod. Phys. 88, 025006 (2016)

8. H.H. Chen, P. Levy, Phys. Rev. B 7, 4284 (1973)

9. G.S. Chaddha, A. Sharma, J. Magn. Magn. Mater. 191,
373 (1999). (and references therein)

10. S.V. Tyablikov, Methods in the Quantum Theory of
Magnetism (Plenum Press, New York, 1967)

11. W. Nolting, A. Ramakanth, Quantum Theory of Mag-
netism (Springer, Berlin, 2009)

12. H.H. Chen et al., Phys. Rev. Lett. 107, 197204 (2011)
13. S. Bieri et al., Phys. Rev. B 86(224409), 224409 (2013)
14. Z. Zhang, K.K. Wierschem, I. Yap, Y. Kato, C.D.

Batista, P. Sengupta, Phys. Rev. B 87, 174405 (2013).
(and references therein)

15. I. Rabuffo, L. De Cesare, A. Caramico D’Auria, M.T.
Mercaldo, Eur. Phys. J. B 92, 154 (2019)

16. M.T. Mercaldo, I. Rabuffo, L. De Cesare, A. Caramico
D’Auria, J. Magn. Magn. Mater. 439, 333 (2017)

17. M.T. Mercaldo, I. Rabuffo, L. De Cesare, A. Caramico
D’Auria, J. Magn. Magn. Mater. 364, 85 (2014)

18. M.T. Mercaldo, I. Rabuffo, L. De Cesare, A. Caramico
D’Auria, Eur. Phys. J. B 86, 340 (2013)

19. M.T. Mercaldo, I. Rabuffo, L. De Cesare, A. Caramico
D’Auria, J. Magn. Magn. Mater. 403, 68 (2016)

20. I. Rabuffo, L. De Cesare, A. Caramico D’Auria, M.T.
Mercaldo, Physica B 536, 422 (2018)

21. V. Kumar, K.C. Sharma, Prog. Theor. Phys. 56, 801
(1976)

22. G.S. Chaddha, G.S. Kalsi, Phys. Stat. Sol. (b) 151, 283
(1989)

23. G.S. Chaddha, S.M. Zheng, J. Magn. Magn. Mater. 152,
152 (1996)

24. Z. Siming, J. Phys. Chem. Solids 47, 255 (1986)
25. KYu. Poparov, A. Mannig, G. Perren, J.S. Möller,
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