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Abstract. We study the dynamics of a quantum two-state system driven through an avoided crossing
under the influence of a super-Ohmic environment. We determine the Landau–Zener probability employing
the numerical exact quasi-adiabatic path integral and a Markovian weak coupling approach. Increasing
the driving time in the numerical protocol, we find converged results which shows that super-Ohmic
environments only influence the Landau Zener probability within a finite crossing time window. This
crossing time is qualitatively determined by the environmental cut-off energy. At weak coupling, we show
that the Markovian weak coupling approach provides an accurate description. Since pure dephasing of a
super-Ohmic bath is non-Markovian, this highlights that pure dephasing hardly influences the Landau–
Zener probability. The finite crossing time window, thus, results from the suppression of relaxation once
the energy splitting exceeds the environmental cut-off energy.

1 Introduction

The transition dynamics of a driven quantum system in
the vicinity of avoided crossings of its energy levels [1–4]
is at the heart of various very different physical prob-
lems. Examples are the dynamics of chemical reactions
[5], the spin reversal dynamics in molecular nanomag-
nets [6], the non-equilibrium dynamics of glasses at low
temperatures [7–10], the dynamics of solid state artifi-
cial atoms [11,12], and transfer of information between
distant electron spin qubits [13–19]. Typically, quantum
systems are also influenced by their environments which
exert fluctuating forces on them resulting in decoher-
ence and relaxation [20,21]. The according relaxation
or dephasing times then compete with the time scale
of driving and significantly influence the Landau–Zener
switching dynamics [22,23].

Dissipative quantum dynamics at an avoided crossing
is widely studied [22–34] in the simplified Landau–Zener
model, i.e., for a quantum two-state system (TSS) lin-
early driven through an avoided crossing [1–4]. Typ-
ically, the Landau–Zener probability PLZ to end up
in the ground state when the system started there
or, alternatively, the excited-state survival probabil-
ity PES to end up in the excited state when the sys-
tem started from the excited state is studied. While
for non-adiabatic driving, an environment hardly influ-
ences the Landau–Zener dynamics, for adiabatic driv-
ing, a crossover is observed where at finite tempera-
ture relaxation strongly influences the Landau–Zener
dynamics [22,23,30].
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The driving protocol of the Landau–Zener model
runs for an infinite time, but the tunnel coupling
between the two states influences the dynamics only,
while it exceeds their energy splitting restricting the
dynamics to a Landau–Zener crossing time window
during which the avoided crossing takes place. This
finally allows to employ the theoretical results from the
simplified Landau–Zener model for the description of
real systems where driving is always finite. Relaxation
results from energy exchange between system and envi-
ronment. Thus, with increasing energy splitting away
from the avoided crossing relaxation should influence
the dynamics until the energy splitting exceeds roughly
the maximal excitation energy of the environment.
Surprisingly, a longitudinal Ohmic bath influences the
Landau–Zener probability only within a time window
similar to the Landau–Zener crossing time [22,23], i.e.,
as long as the tunnel coupling exceeds the energy split-
ting. A transversal Ohmic bath, in contrast, influences
the dynamics in the much wider time window around
the avoided crossing [30] determined roughly by the
regime where the energy splitting does not exceed the
maximal excitation energy of the environment. Both
cases can be understood within a Markovian weak cou-
pling approach [35,36] where time-dependent effective
relaxation rates can be determined. These relaxation
rates are strongly suppressed outside the time win-
dows in which the environment influences the dynamics
[23,30]. In contrast, pure dephasing rates for the lon-
gitudinal Ohmic environment are not suppressed, but
nevertheless seem not to affect the studied Landau–
Zener probability PLZ nor the excited-state survival
probability PES.
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The crossing time window, in which dissipation is
relevant, strongly depends on the environment. We,
therefore, extend the studies to a super-Ohmic envi-
ronment. The influence of a super-Ohmic environment
on the Landau–Zener dynamics has not been studied
in detail yet. Whitney et al. [31] studied super-Ohmic
influence on the coherent oscillations in the dynamics
after the avoided crossing. The questions to answer are
whether the influence of a super-Ohmic environment
is also restricted to a crossing time window and, if so,
what determines this crossing time window. While a
Markovian weak coupling approach allows to determine
the effective relaxation rates, pure dephasing in a super-
Ohmic environment is non-Markovian [20] and, thus,
cannot be described. Thus, it is also unclear whether
the Markovian weak coupling approach [35,36] is able
to describe the Landau–Zener probability PLZ and the
excited-state survival probability PES under the influ-
ence of a super-Ohmic environment.

We observe that a longitudinal super-Ohmic bath
shows a crossing time window similar to a transver-
sal Ohmic bath. A transverse super Ohmic bath, how-
ever, exhibits again a much wider crossing time win-
dow which renders a numerical exact simulation even
at very small system-bath couplings’ challenging. We
determine the Landau–Zener and the excited-state sur-
vival probabilities numerically exact employing the
quasi-adiabatic path integral (QUAPI) [22,37,38,40].
We show that at weak coupling, the adiabatic Marko-
vian non-equilibrium Bloch equations (NEQBs) [35,36]
indeed can reliably simulate both.

In the next three sections, we introduce our model,
our observables, and the used methods. In Sect. 5, we
determine the Landau–Zener and the excited-state sur-
vival probability as function of drive parameters for var-
ious temperatures and system-bath couplings. Compar-
ing numerically exact and a Markovian weak coupling
approach, we establish in which parameter regime the
weak coupling approach indeed describes the dynam-
ics. This allows then to conclude that pure dephasing is
not relevant and to discuss the crossing time windows
in which relaxation actively influences the dynamics.
Finally, we end with a conclusion.

2 Model

A quantum two-level system (TSS) driven through an
avoided crossing is modelled by an Hamiltonian

HS(t) =
Δ
2

σx +
ε(t)
2

σz (1)

with Pauli matrices σi, driving field ε(t) and tunnel
coupling Δ between the two eigenstates of the system
at t = ±∞. We discuss a linear driving protocol, i.e.,
ε(t) = vt with sweep or drive speed v and the avoided
crossing at t = 0.

We model environmental noise acting on the TSS in
a system-bath approach [20,21] by coupling a bath of

harmonic oscillators, i.e. HB =
∑

k ωkb†
kbk, bilinearly

to the TSS resulting in a total Hamiltonian [20,21]

H(t) = HS(t) − σz cos Θ + σx sin Θ
2

B̂ + HB (2)

and B̂ =
∑

k λk(bk + b†
k) with bosonic annihilation bk

and creation b†
k operators. The system-bath coupling is

denoted as longitudinal for Θ = 0 and transversal for
Θ = π/2. The bath influence is captured by a spectral
function

G(ω) =
∑

k

λ2
kδ(ω − ωk) =

γΔ1−s

π
ωs exp(−ω/ωc) (3)

with cut-off frequency ωc, the coupling strength γ, and
the spectral exponent s. For s = 1 the bath is termed
Ohmic and for s > 1 super-Ohmic. In the following, we
focus on s = 3 which reflects, for example, phonons in
a 3D system coupled to an acoustic dipole [9,41–43].

3 Observables

In the Landau–Zener protocol, we drive the TSS with
ε(t) = vt starting at t = −∞ and ending at t = ∞.
We determine the Landau–Zener probability PLZ to end
up in the ground state when the system started in the
ground state, that is

PLZ = Tr{ĝρ(t = ∞)} (4)

with ĝ = 1
2 (1l−σz) and ρ(t = ∞) the statistical operator

at the end of the driving protocol when ρ(t = −∞) = ĝ.
We also calculate the excited-state survival probability
PES to end up in the excited state when the system
started from the excited state, that is

PES = Tr{êρ(t = ∞)} (5)

with ê = 1
2 (1l+σz) and ρ(t = ∞) the statistical operator

at the end of the driving protocol when ρ(t = −∞) = ê.
Without environment (indicated by the superscript

(0)), these probabilities are

P
(0)
LZ = P

(0)
ES = 1 − e− πΔ2

2v (6)

with adiabatic behaviour for v � Δ2, diabatic
behaviour for v � Δ2, and a mixed regime for v � Δ2

[1–4].

4 Methods

Including now the coupling to the bath, closed forms
for PLZ and PES are not available and we are forced
to determine the time-dependent dynamics, i.e., the
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reduced density ρ(t) of the TSS, numerically. The
Landau–Zener driving protocol runs from the infinite
past to the avoided crossing at t = 0 to the infi-
nite future. Numerical investigation relies on the fact
that the dynamics is determined in the proximity of
the avoided crossing. Accordingly, converged results are
quickly obtained for protocols running from −tmax/2 to
tmax/2 when increasing tmax. An extended time window
in which relaxation is finite, renders the Landau–Zener
dynamics substantially more difficult to study numeri-
cally, since with increasing investigation time tmax, the
numerically accumulated errors increase.

4.1 Non-equilibrium Bloch equations

For weak system-bath coupling, a Markovian Red-
field type approach is known to describe the Landau–
Zener dynamics correctly [35,36,44–47] for an Ohmic
bath. It leads to relaxation and dephasing rates with
time dependence governed by the time dependence
of the driving field. We employ the non-equilibrium
Bloch equations (NEBQs) [36]. Transforming the sys-
tem [Eq.(1)] to H̃S(t) = R†(t)HS(t)R(t) = E(t)τx/2
by R(t) = exp[iφ(t)σy/2] with φ(t) = arctan(ε(t)/Δ)
and Pauli matrices τi and E(t) =

√
Δ2 + ε2(t) results

in an effective Hamiltonian H̃S(t) + φ′(t)τy/2 govern-
ing the dynamics (besides the coupling to the bath).
Introducing the reduced density operator for the sys-
tem ρS(t) = 1

2 (1l − riτi) and employing the Markovian
Redfield type approach leads to NEQBs

∂trx(t) = +φ′(t)rz(t) − Γ1(t)[rx(t) − rst
x (t)]

∂try(t) = −Γ2(t)ry(t) − E(t)rz(t)
∂trz(t) = +E(t)ry(t) − Γ2(t)rz(t) − φ′(t)rx(t)

(7)

with r
(st)
x (t) = tanh(βE(t)/2) and

Γ1[s,Θ](t) = A2
Θ(t)

π

2
G(E(t)) coth

(
βE(t)

2

)

(8)

with

AΘ(t) = u(t) cos Θ − v(t) sin Θ

u(t) = cos ϕ(t) =
Δ

E(t)

v(t) = sin ϕ(t) =
ε(t)
E(t)

.

and

Γ2[s,Θ](t) =
1
2
Γ1[s,Θ](t) + Γd[s,Θ](t) (9)

with

Γd[s,Θ] = B2
Θ(t)

π

2
lim
ω→0

[
G(ω) coth(βω/2)

]

=
{

B2
Θ(t)γkBT : s = 1

0 : s > 1 with

BΘ(t) = v(t) cos Θ + u(t) sin Θ. (10)

The pure dephasing rate Γd(t) has only for an Ohmic
environment a finite Markovian contribution. However,
for an asymmetric TSS (which exhibits a finite BΘ) in
a super-Ohmic bath, the Markovian approximation is
not reliable for describing pure dephasing [20].

4.2 QUAPI

The quasi-adiabatic path integral (QUAPI) [22,37–40]
was used to obtain numerical exact results for the dis-
sipative Landau Zener dynamics. QUAPI is based on
a symmetric Trotter splitting of the short-time prop-
agator K(tk+1, tk) (describing time evolution over a
time slice δt) for the full Hamiltonian H. The split-
ting is by construction exact in the limit δt → 0, but
introduces a finite Trotter error for a finite time incre-
ment, which has to be eliminated by choosing δt small.
The QUAPI scheme further employs an approximated
Feynman–Vernon influence functional which includes
only non-local time correlations between observables
in a time window τmem = kmaxδt. To obtain a repre-
sentation for the Feynman-Vernon influence function, a
static system basis is chosen for which the system part
of the system-bath coupling operator is diagonal. Time-
dependence of the system Hamiltonian is fully captured
by the system’s short-time propagator [39]. Generally,
valid results are achieved by finding convergence while
increasing τmem but at the same time decreasing δt to
minimize the Trotter error. For a detailed discussion on
how to achieve convergence regarding these two param-
eters, see [38,40]. We focus here the investigation on
convergence with respect to the key quantities of the
paper: PLZ and PES which reflect additionally the long
time limit of the driven dynamics. As discussed below
in detail, we observe rather extended crossing time win-
dows in which the bath influences the system dynamic,
specifically for the transversal super-Ohmic bath. Then,
the challenge to achieve converged PLZ and PES results
from numerical accuracy due to the needed very large
tmax. In the following, only converged results are pre-
sented and discussed.

5 Landau–Zener dynamics

5.1 Longitudinal super-Ohmic bath Θ = 0

Figure 1 presents results for PLZ versus sweep speed
for various temperatures for a system-bath coupling
strength γ = 5 · 10−4 to a longitudinal super-Ohmic
bath. Figure 2, respectively, plots PES. QUAPI results
are given as symbols and lines are NEQB results.
Numerical uncertainties are roughly given by the sym-
bol size. QUAPI and NEQB results agree well, thus,
justifying the weak coupling NEQB approach. The
Landau–Zener probability is not influenced by dissipa-
tion at low temperatures kBT � Δ nor for fast drives
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Fig. 1 The Landau–Zener probability PLZ versus sweep
speed for various temperatures at ωc = 5Δ, γ = 5 · 10−4,
and Θ = 0. QUAPI results are given as symbols and lines
are NEQB results

0.1 1 10

v / Δ2

0

0.2

0.4

0.6

0.8

1

P E
S

T = 0.2Δ
T = 0.4Δ
T = 0.8Δ
T = 1.6Δ
T = 3.2Δ
T = 6.4Δ
T = 12.8Δ
T = 25.6Δ

k
max

 = 10, δt = 0.1Δ

γ = 5*10
-4

, Θ = 0

ω
c
 = 5Δs=3

Fig. 2 The excited-state-survival probability PES versus
sweep speed for various temperatures at ωc = 5Δ, γ =
5 · 10−4, and Θ = 0. QUAPI results are given as symbols
and lines are NEQB results

v � Δ2. For kBT > Δ and v < Δ2, the Landau–
Zener probability evolves a minimum which deepens
with increasing temperature. We observe roughly that
the drive speed vmin at the minimum is determined by a
condition that the time within the crossing time window
equals the (averaged) relaxation time itself similar as
for an Ohmic bath [23] but now with extended crossing
time window (as discussed below). The picture is that
too slow relaxation does not influence the dynamics but
too fast relaxation would only bring the system back
to the ground state of the TSS whose energy splitting
increases continuously after the crossing. The excited-
state-survival probability PES is as well only influenced
by dissipation in the adiabatic regime, i.e., v � Δ2 but
for all temperatures, since spontaneous emission allows
decay of the excited state for any temperature. Decreas-
ing drive speed v gives the system more time close to the
avoided crossing and, thus, decreasing PES. For increas-
ing temperature at a fixed v the excited-state-survival
probability, PES decreases for vcross < v � Δ2, but
increases for v < vcross (best observed in Fig. 4 for
larger system-bath coupling γ = 5 · 10−3). The drive
speed vcross slightly changes with temperature. Similar
qualitative and quantitative results have been obtained
for a transversal Ohmic bath [30] at the same system-
bath coupling strength and for a longitudinal Ohmic
bath with γ an order of magnitude larger.
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Fig. 3 The Landau–Zener probability PLZ versus sweep
speed for various temperatures at ωc = 5Δ, γ = 5 · 10−3

and Θ = 0. QUAPI results are given as symbols and lines
are NEQB results
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Fig. 4 The excited-state-survival probability PES versus
sweep speed for various temperatures at ωc = 5Δ, γ =
5 · 10−3, and Θ = 0. QUAPI results are given as symbols
and lines are NEQB results

For a stronger system-bath coupling γ = 5 · 10−3

(see Fig. 3 and 4), QUAPI and NEQB results agree
well in the adiabatic regime. For v � Δ2 at higher
temperatures, T � 3Δ/kB NEQB starts overestimating
the probabilities PLZ and PES. With increasing system-
bath coupling, the sweep speed of the minimum vmin is
shifted to larger v.

For even larger system-bath coupling, QUAPI con-
vergence is hard to achieve within reasonable numerical
effort and QUAPI and NEQB differ in the whole range
of v values studied. Besides QUAPI convergence with
its parameters kmax and δt, we must ensure convergence
of the driving protocol, i.e., in regard to the time win-
dow parameter tmax for the simulation running from
−tmax/2 to tmax/2. Roughly, in the presented data,
tmax varies between 50Δ−1 for v � Δ2 to 1500Δ−1

for v � Δ2 depending also weakly on temperature.
Generally, PES needs larger tmax compared to PLZ.

5.2 Transversal bath Θ = π/2

In case of a transversal super-Ohmic bath influenc-
ing the Landau Zener system, we are only able to
achieve convergence for a very small system-bath cou-
pling strength of γ = 5 · 10−6. Figure 5 presents results
for PLZ and PES versus sweep speed for various tem-
peratures. QUAPI results are given as symbols and
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Fig. 5 The Landau–Zener probability PLZ and the
excited-state-survival probability PES versus sweep speed
for various temperatures at ωc = 5Δ, γ = 5 · 10−6 and
Θ = π/2. QUAPI results are given as symbols and lines are
NEQB results

lines are NEQB results. Both agree well, thus, justify-
ing a weak coupling NEQB approach. Roughly, similar
dynamics is observed for a longitudinal bath for cou-
pling strength two orders of magnitude larger.

Converged results for very small sweep speeds v or
larger system bath couplings could not be achieved
within reasonable numerical effort. In Fig. 5, the min-
imum in PLZ is not resolved, but will be found at
smaller sweep speeds according to the easily obtained
NEQB results. Since a minimum at smaller sweep speed
v reflects a smaller relaxation rate [22,23], this points
towards a situation where convergence is not hindered
by long time memory due to strong system-bath cou-
pling but due to very long needed simulation times to
capture all bath effects. This hints at a very extended
crossing time window for the transversal super-Ohmic
environment and is backed by the observation that con-
vergence needs larger tmax compared to the case of a
longitudinal super-Ohmic bath.

We also simulated the time evolution of the driven
TSS, i.e., Tr{ĝρ(t)} and Tr{êρ(t)} for smaller tmax and
find very good agreement between NEBQ and QUAPI
results. The final Tr{ĝρ(tmax)} and Tr{ĝρ(tmax)}; how-
ever, depend strongly on tmax and, thus, this does not
allow to determine PLZ and PES. When increasing tmax,
the accumulated numerical error in QUAPI deteriorates
the according simulation. This numerical error due to
very long simulation times is easily avoided in NEBQ
and, thus, we believe the NEBQ results to be reliable.

5.3 Mixed bath −π/2 < Θ ≤ π/2

To complete our investigation of the Landau Zener
dynamics in a super-Ohmic environment, we have addi-
tionally studied mixed bath cases, i.e., a single bath
which exhibits both longitudinal and transversal cou-
pling with −π/2 < Θ ≤ π/2. For an Ohmic bath, it
was observed that small transversal contributions to a
mainly longitudinal bath shift the minimum in PLZ, i.e.,
vLZ, depending on the sign of the angle Θ. Arising from
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Fig. 6 The Landau–Zener probability PLZ (upper figure)
and the excited-state survival probability PES (lower figure)
versus sweep speed for various mixing angles −π/2 < Θ ≤
π/2 at fixed temperature T = 6.4Δ/kB and ωc = 5Δ and
γ = 5 · 10−4. Only NEQB results are shown. Symbols are
used to differentiate curves

this asymmetry, an environmental rocking ratchet can
be designed which allows rectification in energy trans-
port through an according system [48].

Figure 6 presents the Landau Zener probability
(upper figure) and the excited-state survival probabil-
ity (lower figure) versus drive speed v for various mix-
ing angles Θ, at fixed temperature T = 6.4Δ/kB and a
system-bath coupling γ = 5 · 10−4. Only NEBQ results
are shown, since due to the transversal super-Ohmic
bath contribution converged QUAPI results could not
be achieved. As pointed out above, NEBQ results are
believed to be fully reliable at the studied couplings.
For the Landau Zener probability, we observe strong
differences depending on the sign of Θ. The effect is
limited to a small range of angles, i.e. |Θ| � π/10,
but is quantitatively substantial; for example, PLZ(Θ =
2.2 · 10−2π) − PLZ(Θ = −2.2 · 10−2π) � 0.2. Slightly
smaller differences are found in the same limited angle
range for the excited-state survival probability. These
differences are present generally at smaller sweep speeds
compared to the Landau–Zener probability.

6 Crossing time window

Finding converged numerical results for the Landau–
Zener dynamics (as presented in the previous section)
shows two important points. First, convergence regard-
ing the protocol simulation time tmax highlights that
environmental influence acts only in a finite time win-
dow around the avoided crossing at t = 0. Second,
we determine system-bath coupling strength regimes
where the NEQB accurately describe the dynamics.
This allows us to rationalize the crossing time window
by the time (driving)-dependent relaxation rate of the
NEQB. Importantly, it also shows that pure dephasing
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of the super-Ohmic environment seems to have no sig-
nificant influence on the studied Landau–Zener dynam-
ics.

Figure7 plots the relaxation rate Γ1[s,Θ](t) [see Eq.
(8)] for longitudinal (star and triangle symbols) and
transversal (cross and square symbols) Ohmic (square
and triangle symbols) as well as super-Ohmic (cross
and star symbols) baths. For a longitudinal Ohmic bath
(magenta triangles), the relaxation rate is maximal at
the avoided crossing t = 0 and decreases strongly on
both sides of the crossing with ∝ exp(−E(t)/ωc)/E(t).
For a transversal Ohmic bath, the relaxation rate van-
ishes at t = 0, but quickly increases away from the
crossing due to ∝ (vt)2 exp(−E(t)/ωc)/E(t). Finally,
the cut-off frequency of the environment strongly sup-
presses relaxation further away from the crossing. A
longitudinal super-Ohmic bath exhibits a similar relax-
ation rate ∝ E(t) exp(−E(t)/ωc) away from the cross-
ing (where E(t) � (vt)), but in contrast does not van-
ish at the crossing. A transversal super-Ohmic bath
leads to a vanishing relaxation rate at t = 0, but
increases even stronger away from the crossing, i.e., ∝
(vt)2E(t) exp(−E(t)/ωc). Despite the large differences
of the time-dependent relaxation rate in these four bath
cases, convergence in all cases is finally ensured by the
cut-off frequency of the bath. Generally, for a bath with
spectral exponent s, the relaxation rate (see Eq. (8) )
is ∝ (E(t))s−2 exp(−E(t)/ωc) for a longitudinal and
∝ (vt)2(E(t))s−2 exp(−E(t)/ωc) for a transversal bath.
With increasing s > 0 for a transversal bath and s > 2
for a longitudinal bath two peaks symmetric around
t = 0 are present whose heights and widths increase
with s. For a longitudinal bath with 0 < s < 2, a single
peak centered at t = 0 is present whose widths increase
with s. The crossing time window increases accordingly
with increasing s.

The quantitative differences for the various bath
cases and, accordingly, the relevant time windows
in which relaxation will influence the Landau–Zener
dynamics dominantly, can be estimated from Fig.7.
In all cases, the time window is centered around the
avoided crossing, but only for a longitudinal Ohmic
bath, it actually peaks at the crossing. The relaxation
rate in the other three cases has its peak when the
energy splitting of the TSS equals for s = 1 with
Θ = π/2 and s = 3 with Θ = 0 roughly five times
and for s = 3 with Θ = π/2 15 times the bath cut-off
energy. To compare the overall influence of relaxation
in the four cases, we determine

Ξ[s,Θ] =
∫ ∞

−∞
dtΓ1[s,Θ](t),

and find Ξ[1, 0] = 3.5Δ2/(vγ) for longitudinal Ohmic
relaxation, Ξ[1, π/2] = 47.8Δ2/(vγ) for transversal
Ohmic relaxation, Ξ[3, 0] = 51.3Δ2/(vγ) for lon-
gitudinal super-Ohmic relaxation and Ξ[3, π/2] =
7475Δ2/(vγ) for transversal super-Ohmic relaxation.
The ratios of these values reflect nicely the necessary
ratios of system-bath coupling strengths to obtain sim-
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Fig. 7 The relaxation rate Γ1[s, Θ](t) (in units of γΔ) ver-
sus time at zero temperature for Ohmic and super-Ohmic
longitudinal and transversal baths
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Fig. 8 The Landau–Zener probability PLZ versus sweep
speed for two temperatures T = 6.4ΔkB and T = 25.6Δ/kB,
various bath cut-off frequencies ωc and (upper figure) a lon-
gitudinal super-Ohmic bath with γ = 5 · 10−4 and (lower
figure) a longitudinal Ohmic bath with γ = 5 · 10−3. Black
symbols are QUAPI data. All other data are NEQB results

ilar Landau–Zener dynamics (similar values for vmin)
for the different bath cases.

The vastly different crossing time windows depend
in all cases strongly on ωc except for a longitudinal
Ohmic bath. This is reflected in a strong dependence of
the Landau–Zener dynamics at ωc. Figure 8 plots the
Landau–Zener probability PLZ versus sweep speed at
two temperatures T = 6.4ΔkB and T = 25.6Δ/kB. The
upper figure represents data of a longitudinal super-
Ohmic bath with γ = 5 · 10−4 for four different cut-off
frequencies ωc. The black symbols are QUAPI data for
ωc = 10Δ. All other data are determined by NEQB.
Clearly, a very strong dependence on ωc is observed
within the adiabatic regime v � Δ2. In contrast, a lon-
gitudinal Ohmic bath (data depicted for γ = 5 · 10−3

in the lower figure of Fig. 8) shows only a very weak
dependence on ωc.

For mixed bath cases, the crossing time window is
not symmetric around t = 0 anymore. The green +-
symbols in Fig.7 plot the relaxation rate Γ1[s,Θ =
2.210−2π](t) for a super-Ohmic bath. Clearly, an asym-
metric behaviour is observed with a dominant peak for
t < 0. Changing the sign of Θ results in a curve mir-
rored at the t = 0 axis (not shown in Fig. 7). A peak
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in the relaxation rate for t < 0 results in strong relax-
ation, while the energy splitting is still getting smaller
and thermal excitations become more likely. Thus, one
expects a deeper minimum in PLZ as observed. In con-
trast, a peak at positive times reflects relaxation being
dominant, while the energy splitting is getting larger
again and thermal excitations are freezing out. Then,
the relaxation back to the ground state is more pro-
found and, thus, a shallower minimum in PLZ results.

7 Conclusion

We studied the Landau–Zener dynamics, i.e., the
Landau–Zener probability and the excited-state-
survival probability, under the influence of an super-
Ohmic environment to reveal whether its influence is
restricted to a crossing time window around the avoided
crossing and, if so, what determines this crossing time
window. Previously, for an Ohmic environment, it has
been observed that the bath influence was restricted to
such a crossing window. For a longitudinal Ohmic bath,
this crossing time window is determined by the driven
quantum system, i.e., the tunnel coupling between the
driven states and the driving speed. A transversal
Ohmic bath, in contrast, influences the dynamics in
a much wider time window around the avoided cross-
ing determined by temperature and the environmen-
tal spectrum. Specifically, the influence is limited to
the times where the bath cut-off energy (or frequency)
exceeds the energy splitting in the quantum system and,
accordingly, energy exchange between both is possible
by a single-boson process.

We have here determined the Landau–Zener and the
excited-state survival probabilities numerically exact
employing the quasi-adiabatic path integral and within
a Markovian weak coupling approach. As a first result,
we find converged results with increasing simulation
times which highlights that the Landau–Zener dynam-
ics under the influence of a super-Ohmic environment
is still focussed within a crossing time window around
the avoided crossing. A second result is that for weak
coupling, both approaches yield identical results. This
shows that pure dephasing does not significantly influ-
ence the studied dynamics, since super-Ohmic pure
dephasing is non-Markovian and, thus, not taken into
account in a Markovian weak coupling approach.

Then, we employ the Markovian weak coupling
approach, i.e., the time-dependent effective dissipation
rates, i.e., relaxation and according decoherence rates,
to rationalize and concretize the crossing time win-
dow. The relaxation rate exhibits maximal value dur-
ing the driving when the systems’ energy splitting is
roughly five times the bath cut-off energy for a lon-
gitudinal and 15 times for a transversal super-Ohmic
environment. The according time windows between the
two maximal values exhibit the crossing time windows.
We observe also that a longitudinal super-Ohmic bath
shows a crossing time window similar to a transversal
Ohmic bath.

Finite crossing time windows are essential to employ
simple qualitative results from the Landau–Zener model
to interpret according experimental results. While we
have seen that the Landau–Zener probability and the
excited-state-survival probability are both little influ-
enced by pure dephasing contributions from our studied
environments, we would expect that other observables
at an avoided crossing might be strongly influenced by
dephasing, for example, when using an avoided crossing
as a ’beam splitter’. Then, no finite crossing time win-
dow would be expected and all results might strongly
depend on the driving protocol away from the avoided
crossing.

The extended crossing time window for the super-
Ohmic spectra restricted our investigation to very
weak system-bath couplings. Intermediate-to-strong
couplings allow multiple-boson processes between sys-
tem and environment which would extend the crossing
time windows even further. While a longitudinal Ohmic
bath hardly influences the non-adiabatic regime of the
Landau–Zener dynamics, the extended crossing time
windows for super-Ohmic bath might allow a strongly
bath-influenced non-adiabatic dynamics not observed
so far.
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