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Abstract. We consider a one-dimensional system of interacting particles (which can be atoms, molecules,
ions, etc.), in which particles are subjected to a bistable potential the double-well shape of which is tunable
via a shape deformability parameter. Our objective is to examine the impact of shape deformability on
the order of transition in quantum tunneling in the bistable system, and on the possible existence of exact
solutions to the transfer-integral operator associated with the partition function of the system. The bistable
potential is represented by a class composed of three families of parametrized double-well potentials, whose
minima and barrier height can be tuned distinctly. It is found that the extra degree of freedom, introduced
by the shape deformability parameter, favors a first-order transition in quantum tunneling, in addition to
the second-order transition predicted with the φ4 model. This first-order transition in quantum tunneling,
which is consistent with Chudnovsky’s conjecture of the influence of the shape of the potential barrier on the
order of thermally assisted transitions in bistable systems, is shown to occur at a critical value of the shape-
deformability parameter which is the same for the three families of parametrized double-well potentials.
Concerning the statistical mechanics of the system, the associate partition function is mapped onto a
spectral problem by means of the transfer-integral formalism. The condition that the partition function
can be exactly integrable, is determined by a criterion enabling exact eigenvalues and eigenfunctions for
the transfer-integral operator. Analytical expressions of some of these exact eigenvalues and eigenfunctions
are given, and the corresponding ground-state wavefunctions are used to compute the probability density
which is relevant for calculations of thermodynamic quantities such as the correlation functions and the
correlation lengths.

1 Introduction

In low-dimensional systems, structural phase transi-
tions are triggered by symmetry breakings that induce
phase instabilities under specific conditions [1–8]. In
general these instabilities are governed by changes in
equilibrium properties of the systems, and in the dis-
placive regime [3–6] they can be accompanied by defects
in their topological structures including disclinations,
discommensurations, domain walls, large-amplitude
charge-density waves (phasons) and instantons to name
these few ones. Characteristic properties of these struc-
tural defects, which are usually referred to as solitons
or solitary waves [9,10], have attracted a great deal of
attention over the past years given their widespread
applications in a broad range of physical contexts [9,10].
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In the specific context of condensed matter Physics,
the role of instantons in tunneling processes observed
in some of these systems at low temperatures is now
well established [11–14]. As a matter of fact, in multi-
state systems, the transitions between two states sep-
arated by an energy barrier usually occur either in
the classical regime, where they are driven by thermal
activations, or in the quantum regime driven by tun-
neling processes. At high temperatures, classical ther-
mal activations govern the transition which occurs as a
hopping over the barrier. However, as the temperature
approaches zero, quantum fluctuations gain in impor-
tance and the transition is driven by quantum tunnel-
ings through the barrier. However in the later case, the
system dynamics can be described by classical config-
urations which are either instantons or vacuum, that
dominate the thermal rate [11–15]. As the temperature
increases, thermally-induced crossovers become more
and more relevant and at some critical temperature a
phase transition in quantum tunneling can take place
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[13–15]. The phenomenon of phase transition in quan-
tum tunneling has been extensively investigated over
the past years [13–15]; thus, it is known that some phys-
ical systems can exhibit not only a smooth second-order
transition in quantum tunneling at a critical tempera-
ture T

(2)
0 , but a transition of the first order can also

occur [13,16–21]. Instructively, this first-order transi-
tion in quantum tunneling is closely related to the vari-
ation of the instanton action with respect to the instan-
ton energy [13,16–21].

Another relevant issue in the study of phase tran-
sitions in the presence of topological defects (i.e.,
kink solitons), is the statistical mechanics in the rel-
evant temperature regions where phase transitions
are expected. Addressing this issue [22–26] a phe-
nomenological theory was introduced, that rests on
the functional-integral operator formalism and assumes
that at low temperature, the statistical mechanics of
one-dimensional systems with kinks and phonons can
be mapped onto an eigenvalue problem associated with
the transfer-integral operator. For classic models such
as the sine-Gordon and φ4 models, the eigenvalue prob-
lem of the transfer-integral operator does not admit
exact solutions [23,24], nevertheless their lowest eigen-
states, obtained via approximate methods such as the
WKB approximation, can permit to construct accept-
able statistical mechanical quantities [23]. Since in the
theory of critical phenomena phase instabilities are
predicted to occur at temperatures where the free
energy, and/or its derivatives representing thermody-
namic functions, are nonanalytic, an appropriate for-
mulation of the partition function for a given system
therefore represents a key prerequisite for an accurate
description of phase instabilities that might take place
in the system.

While theoretical approaches used in the studies of
phase transitions in quantum tunneling, and of the sta-
tistical mechanics of one-dimensional systems, are usu-
ally well accepted, the mathematical models describ-
ing these physical systems are sometimes weak. For
instance the sine-Gordon model was introduced to
describe the formation of solitons in one-dimensional
systems with periodic energy landscapes, and to inves-
tigate soliton contributions to the statistical mechan-
ics of these specific systems [9,23]. However, due to its
rigid profile characterized by fixed barrier height and
extrema positions as well as a constant period of the
substrate potential, the sine-Gordon model could not
be exploited for contexts where shape profiles of the
periodic substrate could vary in response to processes
intrinsic to the systems [9]. To overcome the weakness
related to its rigid shape profile, a parametrized version
of the sine-Gordon model was proposed, i.e., the so-
called Remoissenet–Peyrard potential [27–29]. On the
other hand the φ4 model was introduced by Landau in
his mean-field theory of second-order phase transitions
[25,26]. Like the sine-Gordon model, the rigid shape of
this double-well model (fixed barrier height and minima
positions) restricts its scope to a very limited number
of real bistable systems. This limitation motivated the

proposal of bistable models with deformable double-
well (DW) shapes.

Besides the famous double-Morse model [30], intro-
duced in the study of hydrogen-bonded systems such
as organic ferroelectrics [31] or DNA conformational
transitions [32], some bistable models with parametric
DW potentials are found in the literature [30,33,33–
37]. In a series of papers [38–40], three different fam-
ilies of parametrized DW potentials were proposed by
Dikandé and Kofané (hereafter referred to as DK poten-
tials) that had in common the φ4 model as a specific
limit. The three models differ in their respective distinct
parametrization, and thus offer three possible different
deformable features for the DW energy profile: in one
family the barrier height is constant but positions of
the potential minima can be varied [38], in the second
family the parametrization favors continuous variation
of the barrier height without changing the two degen-
erate minima [39], and in the third family both the
barrier height and minima of the DW potential can be
tuned simultaneously [40]. Given that the three families
tend to the φ4 model when their common deformabil-
ity parameter tends to zero, investigating phase transi-
tions in quantum tunneling and the classical statistical
mechanics of the three families of models, is a relevant
exercise susceptible to unveil phenomena that the φ4

model cannot account for. For instance, the φ4 model
predicts the transition in quantum tunneling to be only
of second order [15], and we mentioned the fact that the
statistical mechanics of this model is non exact within
the framework of the transfer-integral formalism [22].

Concerning the possibility of a first-order transition
in quantum tunneling in bistable systems, this issue was
addressed in a relevant work by Chudnovsky [18], who
postulated that in general this would depend on the
shape of the potential barrier. Exploiting Chudnovsky’s
conjecture, Zhou et al [15] examined the problem by
considering a parametrized double-well potential with
a variable barrier height but fixed positions of poten-
tial minima [39]. They concluded that the increase of
the barrier height with the deformability parameter μ,
is actually the main factor favoring a first-order transi-
tion in quantum tunneling in this particular model of
bistable system. However in a recent work [41], we car-
ried out a study on the same problem using a version of
the parametrized double-well potential with fixed bar-
rier height and fixed potential minima, but with vari-
able shape of the barrier top. We obtained that despite
the fixed barrier height and fixed minima positions, a
first-order transition in quantum tunneling could still
be observed in this other model of bistable system.

Motivated by the two recent studies [39,41], we have
undertaken to investigate conditions for the occurrence
of a first-order transition in quantum tunneling for the
three distinct members of the so-called Dikandé–Kofané
(DK) potentials [38–40]. The present work will address
this issue. We shall also investigate values of the shape
deformability parameter, for which exact wavefunctions
and eigenvalues of the transfer-integral operator asso-
ciated with the three distinct parametrized DK poten-
tials, can be found as done recently with the new mem-
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ber of this family introduced in ref. [41], characterized
by a fixed barrier height and fixed minima positions,
but a tunable flatness of the barrier top.

2 Three families of parametric double-well
potentials

One-dimensional bistable systems can be represented
as a linear chain of particles (atoms, molecules or ions)
interacting via two-body forces, with the individual par-
ticles lying in one-body potentials with a DW profile. In
some physical contexts, shapes of the DW potential can
be tuned. For instance particles in the chain can interact
with their neighbors via bonds whose lengths are con-
stantly varying (e.g., bond stretching or compression
processes), due to variations of pressure, isotopic sub-
stitutions or chemical reactions that inevitably affect
equilibrium properties of particles along the chain.

In the present study we are interested in three spe-
cific families of DW potentials with deformable shape
profiles [38–40], which can be expressed most generally
as [40]:

V (u, μ) = a(μ)
(

sinh2(α(μ)u)
μ2

− 1
)2

, μ �= 0, (1)

where a(μ) > 0 and α(μ) are real functions of the shape
deformability parameter μ. V (u, μ) is a class of para-
metric DW potentials whose shapes can be tuned differ-
ently, but which admit the φ4 potential [23] as a com-
mon asymptotic limit. The first family of parametrized
DW potentials associated with V (u, μ), has the follow-
ing parameters:

α(μ) = μ, a(μ) = a0, (2)

a0 = constant. This first model represents a DW poten-
tial for which positions of the two degenerate minima
can be varied, leaving unchanged the barrier height [38].
Some shape profiles of this first family of DW potentials
are sketched in Fig. 1a. An increase of μ maintains the
potential barrier fixed at a0, whereas positions of the
two potential minima;

u(1,2) = ± sinh−1(μ)
μ

, (3)

are continuously shifted near to each other as μ is var-
ied. As the figure shows this shift induces a narrow-
ing of potential wells, and as a sequel a reduction of
the barrier width. A narrowing of potential wells will
enhance confinement of particles inside the wells, thus
favoring tunneling processes given that the stiffness of
the two walls culminating at the barrier top is expected
to increase with the confinement.

For the second family, characteristic parameters are
given by:

α(μ) = sinh−1(μ), a(μ) =
a0 μ2[

α(μ)
√

1 + μ2
]2 . (4)

This second model corresponds to a DW potential with
fixed degenerate minima, but a tunable barrier height
[39]. Figure 1b illustrates profiles of the second model
of DW potential, for some values of the deformability
parameter μ. The two minima are indeed always fixed
at u = ± 1, but when μ is increased the barrier height
continuously decreases with the barrier top gradually
flattened.

The third model has the following parameter values:

α(μ) =
sinh−1(μ)√

1 + μ2
, a(μ) =

a0 μ2

[sinh−1(μ)]2
. (5)
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Fig. 1 Sketch of the three families of parametrized DW potentials: a fixed barrier height but variable minima positions,
b variable barrier height but fixed minima, and c simultaneously varying barrier height and positions of generate minima.
Values of the deformability parameter μ are: μ → 0 (solid line, corresponding to the φ4 potential), μ = 0.5 (dashed line),
μ = 1.0 (dot-dashed line), μ = 2.0 (dotted line)
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This third model mimics a DW potential whose degen-
erate minima and barrier height can be simultaneously
varied [40]. In Fig. 1c it is seen that an increase of μ
causes the increase of the barrier height, as well as a
shift away of positions of the two potential minima.
This third model is clearly most prone to tunneling
processes when μ is large, given that by increasing the
deformability parameter the barrier height is increased
while the distance from the equilibrium positions of a
particle inside the wells to the position of the potential
barrier, is relatively large. Therefore it will require more
and more energy for a particle to move from inside the
wells to the barrier top, to hope from one well to the
other unless it proceeds via tunneling.

Remark that When μ tends to zero, the three families
of parametrized DW models reduce to the standard φ4

model, i.e., [23]:

V (u) = a0

(
u2 − 1

)2
. (6)

In the next section, we investigate phase transitions in
quantum tunneling mediated by periodic instantons, for
the three families of parametrized DW models. We shall
sometimes refer to the three families of parametrized
DW potentials as DK potentials [38–40].

3 Periodons and transitions in quantum
tunneling

Consider the following Euclidean action for one-
dimensional quantum models (in dimensionless unity)
[13–15]:

S =
∫

dτ

(
1
2

(
du

dτ

)2

+ V (u, μ)

)
, (7)

where u represents a scalar field in one time and zero
space dimension. The variable τ = it is the imaginary
time, and V (u, μ) is a nonlinear potential energy of the
general form Eq. (1). The integral in Eq. (7) is taken
over the period τp of the trajectory in Euclidean space.
In statistical mechanics, the period τp is related to tem-
perature T through τp = �/(kBT ), where kB is the
Boltzmann constant. For simplicity and without loss of
generality, in this section we shall assume (�, kB) ≡ 1.

To an exponential accuracy, the decay rate in the
semiclassical limit is given by:

Γ ∼ exp(−Smin), (8)

where Smin is the minimum effective Euclidean action
obtained by minimizing Eq. (7), along a trajectory
uc(τ) of the classical pseudoparticle. This trajectory
satisfies the equation:

(
duc

dτ

)2

= 2 (V (uc, μ) − E) , (9)

where the integration constant E ≥ 0 can be regarded
as the energy of the pseudoparticle of mass unity. When
E = 0, The trajectory uc(τ) is a regular vacuum instan-
ton described by the single-kink soliton:

uc(τ) =
1

α(μ)
tanh−1

[
μ√

1 + μ2
tanh

τ√
2d(μ)

]
, (10)

where:
d(μ) =

μ

[a(μ)α2(μ)(1 + μ2)]1/2
(11)

is the kink width. However when E > 0, using periodic
boundary conditions and identifying τp as the period of
motion, we find that the instanton solution to Eq. (9)
should now read:

uc(τ) =
1

α(μ)
tanh−1 [C1 · sn (C2 τ, κ)] . (12)

In this later expression, the quantity sn(τ, κ) is one of
Jacobi elliptic functions [43], its modulus κ is given by:

κ =

√√√√√
(
1 − √

E/a(μ)
) [

1 + μ2
(
1 +

√
E/a(μ)

)]
(
1 +

√
E/a(μ)

) [
1 + μ2

(
1 − √

E/a(μ)
)] .

(13)
The two parameters C1 and C2 in the instanton solution
Eq. (12) are defined as:

C1 =

√
√
√
√
√

μ2
(

1−
√

E/a(μ)
)

1 + μ2
(

1−
√

E/a(μ)
) ,

C2 =
α(μ)

μ

√
√
√
√2a(μ)

(

1 +

√

E

a(μ)

) [

1 + μ2

(

1−
√

E

a(μ)

)]

.

The instanton trajectory (12) possesses real periods
4mK(κ), with m an integer and K(κ) the quarter
period defined in terms of the complete elliptic integral
of the first kind [43]. Hence, the trajectory Eq. (12) is
a periodic instanton, with a period τp corresponding to
m = 1 and given by:

τp = 4K(κ)/C2. (14)

We refer to the periodic instanton Eq. (12) as a peri-
odon. From Eq. (12) we can see that the periodon exists
only in the range 0 ≤ E ≤ a(μ), and that the expres-
sion of the vacuum instanton, i.e., the single-kink soli-
ton Eq. (10), will be recovered when E = 0 (i.e., κ = 1
[43]). Using the energy-integral equation (9), the clas-
sical action Sp of the periodon can be computed and is
found to be:

Sp(E) = 2
∫ τ/4

τ/4

dτ

(
1
2

(
du

dτ

)2

+ V (u, μ)

)
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= τpE + W,

where;

W =
2C2

(α(μ)C1)2
[
(C4

1 − κ2)Π(C1, κ) + κ2K(κ)
]

+
2C2

(α(μ))2
(K(κ) − E(κ)). (15)

In this formula E(κ) and Π(C1, κ) are complete ellip-
tic integrals of the second and third kinds, respectively.
We note that when E = a(μ) the trajectory reduces to
a trivial configuration uc(τ) = 0, which is periodic with
an arbitrary period. This configuration, which we shall
call sphaleron [44], has an action coinciding with the
thermodynamic action S0 given by [44]:

S0 = a(μ)τ. (16)

For the sphaleron configuration, the escape rate is the
Boltzmann formula representing a pure thermal activa-
tion, i.e.:

Γc ∼ exp (−a(μ)τp) = exp (−a(μ)/T ) . (17)

From the above discussions, we can conclude that
a periodon (i.e., the periodic instanton) interpolates
between the sphaleron and the vacuum instanton (i.e.,
the single-kink instanton). Therefore the actual escape
rate should be of the form of Eq. (8), where the mini-
mum action Smin(E) is given by:

Smin(E) = min {S0, Sp(E)} . (18)

When dealing with periodic problems in classical sta-
tistical mechanics, it is known that the derivative of
the action with respect to the energy is equivalent to
the oscillation time τ at this energy, where τ is propor-
tional to the inverse temperature T . Hence, with the
action corresponding to the motion in the potentials
we find:

τp(E) =
1
T

=
dSp(E)

dE
,

dS0

dτp
= a(μ). (19)

Taking Eq. (19) together with Eqs. (14) and (15), we
can determine the influence of the shape deformabil-
ity parameter on the temperature dependence of Smin,
using the dependence of the period of periodon on the
energy E. In the following analysis these equations will
enable us to point out the existence of a critical value
of the shape deformability parameter, for which a first-
order transition from quantum to thermal regimes can
occur for the three families of DKDW models.

Chudnovsky [18] postulated two criteria for the
occurrence of transitions in quantum tunneling. The
first states that the transition is of first order if τp(E)
decreases to a minimum and then rises again, when
E increases from the potential bottom (i.e., minima)

Table 1 Critical values of E1 for model 1 (fixed barrier
height but variable minima)

μ2 Energy E1 at E0 = a0

minimum of τp(E) (barrier height)

9 0.150 0.5
4 0.228 0.5
2 0.382 0.5
1.6 0.469 0.5
1.501 0.499 0.5

Table 2 Critical values of E1 for model 2 (fixed minima
but variable barrier height)

μ2 Energy E1 at E0 = a0μ
2
[

α(μ)
√

1 + μ2
]−2

minimum of τp(E) (barrier height)

9 0.041 0.136
4 0.087 0.192
2 0.194 0.254
1.6 0.258 0.275
1.501 0.281 0.282

Table 3 Critical values of E1 for model 3 (variable barrier
height and minima)

μ2 Energy E1 at E0 = a0μ
2
[

sinh−1μ
]−2

minimum of τp(E) (barrier height)

9 0.409 1.361
4 0.437 0.960
2 0.581 0.761
1.6 0.672 0.716
1.501 0.704 0.705

to the barrier top. On the other hand, if the instan-
ton period τp(E) is monotonically decreasing when E
increases, the transition is of second order. The sec-
ond criterion states that if at some critical temperature
the first derivative of Smin(T ) is discontinuous, and an
abrupt change is observed in the temperature depen-
dence of the action, then the transition in quantum
tunneling is a first-order transition in temperature.

Chudnovsky’s first criterion is equivalent to solving
the equation dτp(E)/dE = 0, which is tractable when
seeking nontrivial solutions and considering the tem-
perature dependence of the period given by (14). In
a numerical procedure we have chosen a0 = 1/2, and
computed the energy E1 of the minimum τp(E) by vary-
ing the deformability parameter μ from the value μ = 3
downwards. Results for the three models are listed in
Tables 1, 2 and 3.

The emerging trend from the three tables is E1 tend-
ing to the maximum energy E0 of the pseudoparticle
energy, when μ approaches

√
3/2. Hence μc =

√
3/2

is a critical value of the shape deformability parame-
ter, values of μ smaller than μc will correspond to for-
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Fig. 2 Plot of the instanton period τp as a function of the energy E, for model 1. a μ = 1, and b μ = 3. Here a0 = 0.5
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Fig. 3 Plot of the instanton period τp as a function of the energy E, for model 2. a μ = 1, and b μ = 3. Here a0 = 0.5

bidden energy configurations (i.e., nonanalytical values
of E). In Chudnovsky picture, a first-order quantum-
to-classical transition will occur when μ > μc. When
μ ≈ μc we obtain E1 ≈ E0. Moreover E1 → 0 as
μ is increased above μc, so [42] increasing the shape
deformability parameter above the critical value μc

results in a sharper first-order transition in quantum
tunneling.

Figures 2, 3 and 4 show the energy dependence of the
period τp of the periodon for the three models, consid-
ering two values of the shape deformability parameter
μ, respectively, below and above the critical value μc.

For the three models the figures suggest a monotonic
decrease of the period with increasing energy for μ = 1
(a value lower than μc). However, for μ = 3, we notice
an increase of the period after a critical value of the
energy E. This increase reflects favorable conditions for
a first-order transition in quantum tunneling.

Characteristic features emerging from Figs. 2, 3 and
4 are also reflected in the corresponding plots of the
thermodynamic action and the periodon action, shown
in Figs. 5, 6 and 7 still for μ = 1 and μ = 3. Here
too the three models display similar behaviors, indeed a
smooth change from Sp to S0 is observed when the tem-
perature increases for μ = 1 as we can see in Figs. 5a,
6a and 7a. Clearly such change is, from the standpoint
of Chudnovsky criteria, the signature of a second-order
transition. Figures 5b, 6b and 7b are characterized by
an abrupt change in the temperature dependence of the
minimum action, so they satisfy Chudnovsky’s second
criterion [18] for a first-order transition from quantum
to thermal regimes.
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Fig. 4 Plot of the instanton period τp as a function of the energy E, for model 3. a μ = 1, and b μ = 3. Here a0 = 0.5
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Fig. 5 The action versus temperature for model 1, the dashed line corresponds to the thermodynamic action and the
solid line to the periodon action. a μ = 1: signature of second-order transition from quantum to thermal regimes, b μ = 3:
signature of first-order transition from quantum to thermal regimes. Here a0 = 0.5

To provide an analytical proof of a possible finite
critical value of μ for a first-order transition in quantum
tunneling, we follow Ref. [45]. We postulate that if the
period τp(E → a(μ)) of the periodon close to the barrier
top can be found, then the relation τp(E → a(μ))−τs <
0 (or ω2−ω2

s > 0) is a sufficient condition for the system
to exhibit a first-order transition. Note that τs denotes
the period of small oscillations around the sphaleron,
ωs is the corresponding oscillation frequencies and ω is
the frequency of oscillations around the energy barrier
of height a(μ). For the three models, this relation yields
[45]:

V ′′′′(usph, μ) − 5 [V ′′′(usph, μ)]2

3V ′′(usph, μ)
< 0, (20)

where usph = 0 corresponds to the position of the
sphaleron solution. Since all the three families of
DKDW potentials are symmetric we should have V ′′′(0,
μ) = 0, and the above criterion (i.e., Eq. (20)) reduces
to V ′′′′(0, μ) < 0. Using the general expression of
V (u, μ) given by formula (1) we finally obtain:

4
(

3
μ2

− 2
)

α(μ)4a(μ)
μ2

< 0. (21)
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signature of first-order transition from quantum to thermal regimes. a0 = 0.5
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solid line to the periodon action. a μ = 1: signature of second-order transition from quantum to thermal regimes, b μ = 3:
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The last inequality reduces to μ2 > 3/2, valid for the
three families of DKDW potentials.

4 Exact statistical mechanics

The aim of the transfer-integral formalism [22–24] is
to express the partition function associated with the
statistical mechanics of low-dimensional systems, into
a spectral problem whose solutions lead to thermody-
namic quantities such as the free energy, the internal
energy, the entropy, correlation functions, the correla-
tion length and so on [23]. This eigenvalue problem

is represented by a linear Schrödinger-like equation,
which in some contexts do not admit exact solutions
but nevertheless can be treated within the framework
of approximation methods such as the WKB method
[23]. The φ4 is a typical non-integrable model, for which
the WKB approximation has made it possible to obtain
almost exact low-lying eigenmodes [23]. Using the φ4

as generic model a generalized potential of the form
V (x) = [(η +ξ)x2 − (η−ξ)]2, for which the Schrödinger
equation can admit exact solutions for specific values
of the characteristic parameters η and ε, was proposed
[46]. Quite remarkably this generalized model can be
connected to some existing double sinh-Gordon mod-
els [47,48], that turns out to be quasi-exactly solv-
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able (QES) under appropriate conditions. Note that by
quasi-exact solvability we mean the possibility to carry
out exact partial diagonalization of the partition func-
tion.

Consider a one-dimensional chain of N interacting
atoms of identical mass m (which we set to unity),
placed in the field of a substrate potential V (u, μ),
where u stands for the displacement field of atoms to
which we associate a conjugate π. The (dimensionless)
Hamiltonian of such system can be written:

H =
∫

dx

[
1
2
π2 +

1
2
(∂xu)2 + V (u, μ)

]
, (22)

where V (u, μ) is given by Eq. (1). As found in the pre-
vious section, the Hamiltonian (22) admits single and
periodic-kink soliton solutions given by (10) and (12),
which we called, respectively, vacuum instanton and
periodon. Here we focus on the thermodynamics of the
DKDW models in the presence of vacuum instanton.
Proceeding, our main concern is the calculation of the
partition function which can be factorized as:

Z = ZuZπ. (23)

In this factor the kinetic part is [23]:

Zπ = (2π/βh2)N/2, (24)

with β = (kBT )−1. The configurational part can be
written [23]:

Zu =
∑

n

exp(−βNεj), (25)

where εj are eigenvalues of the transfer-integral opera-
tor, involving the strain (i.e., interatomic) and on-site
potential (i.e., one-body) energy terms in the Hamilto-
nian (22). In the displacive regime [22,23,49] the eigen-
values εj are those of the Schrödinger-like equation:

− 1
2β2

∂2

∂u2
ψj + a(μ)

(
sinh2(α(μ)u)

μ2
− 1

)2

ψj = εjψj .

(26)

Let us adopt the variable change z = α(μ)u and intro-
duce the new parameters:

ξ = (1 + 2μ2)−1, Ej =
4μ4ξ2

a(μ)
εj . (27)

With these new quantities Eq. (26) becomes:

1
2β2

∂2

∂z2
ψj +

a(μ)
4μ4(α(μ)ξ)2

[
Ej − (ξ cosh(2z) − 1)2

]
ψj

= 0. (28)

In Ref. [36], solving the eigenvalue problem for a
quantum-mechanical system with a hyperbolic poten-
tial closely similar to Eq. (28), Konwent established
that provided specific constraints are imposed between
characteristic parameters of the spectral equation,
exact eigen solutions could exist. Following the same
consideration let us introduce a constraint between
the temperature T and the deformability parameter μ,
through:

β2 =
2μ4(α(μ)ξ)2

a(μ)
q2, (29)

where q is assumed to be a positive integer. Substituting
Eq. (29) into Eq. (28), we obtain [36]:

∂2

∂z2
ψj + q2

[
Ej − (ξ cosh(2z) − 1)2

]
ψj = 0. (30)

Equation (30) describes a QES system for which eigen
solutions can be obtained for q = 1, 2, 3, 4, etc., each
value of q defining a particular set of temperatures.
Instructively when q = 1, Eq. (30) reduces to the spec-
tral problem considered by Razavy [33] and for which
he proposed exact solutions.

For arbitrary integer values of q, solutions of Eq. (30)
vanish asymptotically as z → ±∞. Therefore we can
represent these solutions as:

ψ(z) = r(z) exp [−z0 cosh(2z)] , (31)

in this representation the function r(z) should be a
polynomial and should be a linear combination of either
cosh mpz or sinhmpz, where z0 and mp ( p = 0, 1, 2, ...)
are constants to be determined. Expressions for the
(unnormalized) ground states and the associated eigen
energies, for the first four values of q, are obtained as:

q = 1:

ψ0(u) = exp
[
−cosh(2α(μ)u)

2(1 + 2μ2)

]
, (32)

ε0(μ) =
a0

4μ4

[
1 + (1 + 2μ2)2

]
. (33)

q = 2:

ψ0(u) = cosh(α(μ)u) exp
[
−cosh(2α(μ)u)

1 + 2μ2

]
, (34)

ε0(μ) =
a0

16μ4

[
3(1 + 2μ2)2 − 8μ2

]
. (35)

q = 3:

ψ0(u) =
6

1 + 2μ2
exp

[
−3 cosh(2α(μ)u)

2(1 + 2μ2)

]

+

(
1 +

√
1 +

36
(1 + 2μ2)2

)
cosh(2α(μ)u)

× exp
[
−3 cosh(2α(μ)u)

2(1 + 2μ2)

]
, (36)
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Fig. 8 Plot of the ratio of the temperature and barrier energy versus the shape deformability parameter taking q = 1
(solid line), q = 2 (dashed line), q = 3 (dash-dotted line), q = 4 (dotted line) in a model 1, b model 2, c model 3. Here,
a0 = 1 and the horizontal line mark the region where the temperatures coincide the symmetry breaking temperature

ε0(μ) =
a0

36μ4

[
9 − 2(1 + 2μ2)

√
(1 + 2μ2)2 + 36

]

+
7a0

36μ4
(1 + 2μ2)2. (37)

q = 4:

ψ0(u) =
12 cosh(α(μ)u)

1 + 2μ2
exp

[
−2 cosh(2α(μ)u)

1 + 2μ2

]

+2
(
2μ2 − 1 +

√
12 − 8μ2 + (1 + 2μ2)2

)

×cosh(3α(μ)u)
1 + 2μ2

exp
[
−2 cosh(2α(μ)u)

1 + 2μ2

]
,

(38)

ε0(μ) =
a0

16μ4
(2 − 4μ2)

− a0

16μ4
(1 + 2μ2)

√
(1 + 2μ2)2 − 8μ2 + 12

+
11a0

64μ4
(1 + 2μ2)2. (39)

Solutions corresponding to eigenstates above the
ground state, are given in the Appendix for the same
four selected values of q.

Equation (29) actually represents the condition for
quasi-exact solvability of the system, and can be
exploited to analyze the ratio a(μ)/β−1 of the energy
barrier to the thermodynamic energy β−1. In Fig. 8 we
plotted the ratio a(μ)/β−1 as a function of μ, for four
different values of q. One sees that for the three fami-
lies of DKDW models, the solvability requires β−1 → ∞
in the limit μ → 0. This is in agreement with known
results of the transfer-integral formalism for the φ4

model, i.e., the spectral problem for this model does
not admits exact solutions at finite temperatures [23].
For small values of μ, the solvability condition sug-
gests that kBT >> a(μ) for the three models. As μ
increases, temperatures obtained from the lowest to the

largest values of q steadily decrease. But while going
far below the energy barrier in the first model as it
is noticeable in Fig. 8a, in Fig. 8b, c we observe that
the temperatures in model 2 and model 3 instead tend
to a particular limit. We found analytically that this
limit is coincidentally the same for both models and
a(μ)/β−1 → q/

√
2 as μ → ∞. Therefore the solvabil-

ity condition will hold at four temperatures below the
symmetry breaking temperature in model 1, whereas
only three temperatures below the energy barrier will
meet the condition in both model 2 and model 3 given
that the temperature at q = 1, in these two last mod-
els, is always greater than the energy barrier despite its
decrease with an increase of μ.

According to the transfer-integral formalism, the free
energy is intimately related to the ground-state energy
ε0 [23,49]. The influence of the shape deformability
parameter μ on the ground-state energies is represented
in Fig. 9. The three models are expected to display
infinitely high ground-state energies in the limit μ → 0,
in agreement with the non-integrability of the φ4 model
within the framework of the transfer-integral formalism.
As μ is increased, the ground-state energies in model 1
and model 2 drastically decrease to a critical limit as
seen in Fig. 9a, b, respectively. As for model 3, Fig. 9c
shows that the ground-state energies corresponding to
different q decrease to a minimum, then steadily rise
back to infinity.

Let us also examine the influence of μ on the compe-
tition between the ground-state energy and the barrier
height a(μ), taking into consideration the variation of
q and hence of temperature. In Fig. 10 we plot ε0/a(μ)
as a function of μ, for four different values of q.

The motivation for studying this ratio resides in the
important fact that it does actually not depends on the
choice of a(μ) and α(μ), so the observations done on
the relative position of the energy levels will be valid
for the three models. In Fig. 10 we observe that the
ground-state energy is infinitely higher than the bar-
rier height for μ → 0, and drops with an increase of μ
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Fig. 9 Ground-state energy ε0 versus the shape deformability parameter μ, for four different values of q namely: q = 1
(solid line), q = 2 (dashed line), q = 3 (dash-dotted line), q = 4 (dotted line). Graph a is for model 1, graph b is for model
2, graph c is for model 3. a0 = 1
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Fig. 10 Plot of the ratio of the ground-state energy ε0
to the barrier height a(μ), versus the shape deformability
parameter μ for q = 1 (solid line), q = 2 (dashed line),
q = 3 (dash-dotted line), q = 4 (dotted line). Here a0 = 1,
and the horizontal line marks the region where the ground-
state energy is located exactly on top of the barrier

irrespective of the temperature. Moreover, increasing q
for a fixed value of μ will yield a lower energy level. This
means that the choice of q, combined with an increase
of μ, has a great impact on the position of the ground-
state energy level with respect to the energy barrier. For
instance, by choosing q = 1, the energy level critically
drops but will always be located above the energy bar-
rier. A similar drop is observed when choosing higher
values of q. However, when μ grows higher than a
critical value namely μs =

√
3/2, μs =

√
3/4 and

μs ≈ 0.717 for q = 2, q = 3 and q = 4, respectively, the
energy level falls below the energy barrier and tends to
a finite value and the ratio (ε0/a(μ))(μ → ∞) = (3/4)
for q = 2, (ε0/a(μ))(μ → ∞) = (5/9) for q = 3 and
(ε0/a(μ))(μ → ∞) = (7/16) for q = 4.

Knowing the exact ground-state energies and the cor-
responding eigenfunctions, it is motivating to illustrate
their use in the evaluation of some thermodynamic

functions. In this goal, we consider a relevant quantity
that plays the key role in the calculation of correla-
tion functions [23,49], namely the probability density.
Since the wavefunctions corresponding to eigenstates of
the transfer-integral operator are all real, the probabil-
ity density associated with the classical field u will be
nothing else but the square of the normalized ground-
state wavefunction. Sketched in Fig. 11 are ground-state
wavefunctions for the three families of DKDW models,
computed for two different temperatures and consider-
ing several values of the shape deformability parame-
ter μ. To understand the physics in the curves of Fig.
11 as concerns their variations with the deformability
parameter μ, it is useful to recall that in Fig. 10 we
have seen that for small values of μ the ground-state
energies were in the high-temperature region, as they
were found to be greater than the height of the poten-
tial barrier for the three models. Consequently in this
regime a pseudoparticle will possess sufficient energy to
escape from one well to another over the barrier. Thus,
the whole configurational space becomes probable and
the full state space is covered with power-law tails, with
a maximum probability density at the barrier peak. As
μ increases, the probability density increases in ampli-
tude for the three models, but while its width decreases
for the first and second model the width of the proba-
bility density is instead increasing for the third model.
An increase of μ in the case of model 1 and model 2
causes a decrease in the width and height of the poten-
tial barrier. In the two models the shape deformability
will also strengthen the steepness of the reflective walls,
and thus restricts the attainable space to the region
covered by just the valleys and the energy barrier. In
model 3, the potential barrier increases with its width
gradually increasing as the degenerate minima move far
from each other. Increasing the deformability parame-
ter μ consequently broadens the attainable space cov-
ered by the energy barrier. The ground-state energies
being high in the three models at large μ, the energy
barrier thus remains the most probable.
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Fig. 11 Ground-state wavefunctions in position space at three temperatures, for μ = 0.5, for four different values of q
(corresponding to four different temperatures) namely: μ = 0.5 (solid line), μ = 1 (dashed line), μ = 1.5 (dash-dotted line),
μ = 2 (dotted line). From left to right: model with variable position of minima, model with variable barrier height, model
with variable barrier height and position of minima

To end this section it is relevant to stress that when
analyzing properties of the probability density in the
present specific context, it is relevant to always keep in
mind the importance of the choice of the value of q. Tak-
ing q = 1 for instance, the ground-state energy is always
above the energy barrier irrespective of μ. Indeed even if
an increase of μ lowers the temperature the probability
density will always be single picked, with the peak posi-
tion coinciding with the position of the potential barrier
(top graphs in Fig. 11). For values of q greater than one,
an increase of μ above μs lowers the ground-state level
below the energy barrier. The transitions from one well
to another thus become less probable as the temper-
ature decreases below the transition temperature. In
this latter case the pseudoparticle stays much longer
confined in the potential wells, such that the valleys
become more probable. This trend is illustrated in Fig.
11 by the probability density exhibiting a double-peak
shape, with each peak located in the vicinity of one of
the two degenerate potential minima.

5 Conclusion

The decay of metastable states over an energy barrier
is a physical process inherent to a large number of sys-
tems, and particularly those undergoing phase transi-
tions [51–53]. It is observed in the motion of atoms
trapped in the field of force of a multi-well poten-
tial [52], the motion of kinks and dislocations across
the Peierls–Nabarro barrier [54,55], the excitations of
Cooper pairs in a Josephson loop [56], the dynamics
of macromolecules in DNA strands and other molec-
ular chains across hydrogen bridges and so on. In a
pioneer study, Kramers [51] suggested that the lifetime
of a classical particle in a metastable state, separated
from a stable equilibrium state by an energy barrier,
would obey Arrhenius law. Later on, it was established
that Kramers theory is valid main at high temperatures,
where thermal activations are likely to overcome high
potential barriers. At low enough temperatures ther-
mal fluctuations are not enough to favor a jump over
the potential barrier, and only by quantum tunneling
the particle will cross the barrier. It is known [42] that
there exists a critical temperature Tc at which there is a
transition from classical to quantum decay regimes. The
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transition can be of first order with a discontinuous first
derivative of the Euclidean action, or of second-order
with only a second derivative of the action developing
a jump. This transition, also referred to as transition in
quantum tunneling, has recently been investigated for
some physical systems [13–21]. For systems described
by the φ4 model, the transition in quantum tunneling
is strictly of second order [13–15,42].

In this study, we determined conditions for the occur-
rence of first-order transitions in quantum tunneling
in bistable systems, using a class of three double-well
potential models whose shapes can be tuned by vary-
ing a deformability parameter. The first-order transi-
tion supplements the second-order transition in quan-
tum tunneling predicted with the φ4 model, which turns
out to be a specific limit of the three parametrized
double-well models. The first-order transition occurs
at a finite critical value of the shape deformability
parameter, which is the same for all three models. We
have also examined conditions for exact integrability
of the partition function associated with the statistical
mechanics of the three models, within the framework
of the transfer-integral operator formalism. In this for-
malism, the partition function is mapped onto a linear
Schrödinger equation whose eigenvalues and eigenfunc-
tions contribute to the formulation of relevant thermo-
dynamic quantities such as the free energy, the corre-
lation length and the correlation functions. We estab-
lished that when the thermodynamic temperature and
the deformability parameter are connected by a spe-
cific relation, exact solutions to this spectral problem
can exist. We derived the eigenvalues and eigenfunc-
tions of some of these exact solutions analytically, and
discussed the physical implications of their dependence
on the shape deformability parameter.

Bistable processes are among the most frequent phys-
ical phenomena observed in nature [57], they usually
emerge in form of a transition between two states of
equivalent energy across an potential barrier and are
present in structural phase transitions, dynamical prop-
erties of anharmonic electromechanical oscillators dis-
playing hysteresis features [58], organized cellular struc-
tures in tissues and embryonic cells [59,60], glycol-
itic oscillations in suspensions of yeast cells in uni-
son [59,60], the assembly of pacemaker cells in the
sino-atrial node and so on [58]. Most commonly the
bistability in these systems are represented by the φ4

model, a universal model which unfortunately suffers
from a weakness due to its rigid double-well profile.
Fofr instance this model predicts that bistable systems
can undergo only a second-order transition in quan-
tum tunneling, whereas experiments have established
that several physical systems with double-well energy
landscapes could also undergo a first-order transition
in quantum tunneling. Moreover, the transfer-integral
formalism for the φ4 generates an eigenvalue problem
which is not exactly solvable. The present study empha-
sizes the need for parametrizing the standard φ4 poten-
tial, to account for several physical processes observed
experimentally but which the φ4 has not been able to
predict. We note that the influence of the double-well

shape profile of the bistable potential, on the order of
transitions in quantum tunneling in multistate systems,
has already been discussed in some previous works [42].
Our study provides a more comprehensive insight onto
this problem, given that the shapes of the three families
of double-well potentials can be tuned distinctively, and
consequently represent a very large variety of bistable
physical systems.
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Appendix

In this appendix, we give the analytical expressions of some
exact solutions of the Schrödinger equation (30), beside
those written in Eqs. (32)–(39).

q = 1:

ψ0(u) = exp

[

−cosh(2α(μ) u)

2(1 + 2μ2)

]

,

ε0(μ) =
a(μ)

4μ4

[

1 + (1 + 2μ2)2
]

(A.1)

q = 2:

ψ0(u) = cosh(α(μ) u) exp

[

−cosh(2α(μ) u)

1 + 2μ2

]

,
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ε0(μ) =
a(μ)

16μ4

[

3(1 + 2μ2)2 − 8μ2] (A.2)

ψ1(u) = sinh(α(μ) u) exp

[

−cosh(2α(μ) u)

1 + 2μ2

]

,

ε1(μ) =
a(μ)

16μ4

[

3(1 + 2μ2)2 + 8(1 + μ2)
]

. (A.3)

q = 3:

ψ0(φ) =
6

1 + 2μ2
exp

[

−3 cosh(2α(μ) u)

2(1 + 2μ2)

]

+

(

1 +

√

1 +
36

(1 + 2μ2)2

)

cosh(2α(μ) u)

× exp

[

−3 cosh(2α(μ) u)

2(1 + 2μ2)

]

, (A.4)

ε0(μ) =
a(μ)

36μ4

[

9 − 2(1 + 2μ2)
√

(1 + 2μ2)2 + 36
]

+
7a(μ)

36μ4
(1 + 2μ2)2. (A.5)

ψ1(u) = sinh(2α(μ) u) exp

[

−3 cosh(2α(μ) u)

2(1 + 2μ2)

]

,

ε1(μ) =
a(μ)

36μ4

[

9 + 5(1 + 2μ2)2
]

, (A.6)

ψ2(u) =
6

1 + 2μ2
exp

[

−3 cosh(2α(μ) u)

2(1 + 2μ2)

]

−
(√

1 +
36

(1 + 2μ2)2
− 1

)

cosh(2α(μ) u)

× exp

[

−3 cosh(2α(μ) u)

2(1 + 2μ2)

]

, (A.7)

ε2(μ) =
a(μ)

36μ4

[

9 + 2(1 + 2μ2)
√

(1 + 2μ2)2 + 36
]

+
7a(μ)

36μ4
(1 + 2μ2)2. (A.8)

q = 4

ψ0(u) =
12 cosh(α(μ) u)

1 + 2μ2
exp

[

−2 cosh(2α(μ) u)

1 + 2μ2

]

+2
(

2μ2 − 1 +
√

12 − 8μ2 + (1 + 2μ2)2
)

×cosh(3α(μ) u)

1 + 2μ2
exp

[

−2 cosh(2α(μ) u)

1 + 2μ2

]

,

(A.9)

ε0(μ) =
a(μ)

8μ4
(1 − 2μ2) +

11a(μ)

64μ4
(1 + 2μ2)2

− a(μ)

16μ4
(1 + 2μ2)

√

(1 + 2μ2)2 − 8μ2 + 12,

(A.10)

ψ1(u) =
12sinh(α(μ) u)

1 + 2μ2
exp

[

−2 cosh(2α(μ) u)

1 + 2μ2

]

+2
(

2μ2 + 3 +
√

20 + 8μ2 + (1 + 2μ2)2
)

× sinh(3α(μ) u)

1 + 2μ2
exp

[

−2 cosh(2α(μ) u)

1 + 2μ2

]

,

(A.11)

ε1(μ) =
a(μ)

8μ4
(3 + 2μ2) +

11a(μ)

64μ4
(1 + 2μ2)2

− a(μ)

16μ4
(1 + 2μ2)

√

(1 + 2μ2)2 + 8μ2 + 20,

(A.12)

and

ψ2(u) =
12 cosh(α(μ) u)

1 + 2μ2
exp

[

−2 cosh(2α(μ) u)

1 + 2μ2

]

+2
(

2μ2 − 1 −
√

12 − 8μ2 + (1 + 2μ2)2
)

×cosh(3α(μ) u)

1 + 2μ2
exp

[

−2 cosh(2α(μ) u)

1 + 2μ2

]

,

ε2(μ) =
a(μ)

8μ4
(1 − 2μ2) +

11a(μ)

64μ4
(1 + 2μ2)2

+
a(μ)

16μ4
(1 + 2μ2)

√

(1 + 2μ2)2 − 8μ2 + 12.
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38. A.M. Dikandé, T.C. Kofané, J. Phys. Condens. Matter

3, L5203 (1991)
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