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Abstract. We study numerically the maximum z-matching problems on ensembles of bipartite random
graphs. The z-matching problems describes the matching between two types of nodes, users and servers,
where each server may serve up to z users at the same time. Using a mapping to standard maximum-
cardinality matching, and because for the latter there exists a polynomial-time exact algorithm, we can
study large system sizes of up to 106 nodes. We measure the capacity and the energy of the resulting
optimum matchings. First, we confirm previous analytical results for bipartite regular graphs. Next, we
study the finite-size behaviour of the matching capacity and find the same scaling behaviour as before for
standard matching, which indicates the universality of the problem. Finally, we investigate for bipartite
Erdős–Rényi random graphs the saturability as a function of the average degree, i.e. whether the network
allows as many customers as possible to be served, i.e. exploiting the servers in an optimal way. We find
phase transitions between unsaturable and saturable phases. These coincide with a strong change of the
running time of the exact matching algorithm, as well with the point where a minimum-degree heuristic
algorithm starts to fail.

1 Introduction

Phase transitions in combinatorial optimisation or in
constraint-satisfaction problems [1–4] have been an
active area of research at the interface of statisti-
cal mechanics and computer science since more than
2 decades. Usually, non-deterministically polynomial
(NP) complete [5] or NP-hard problems are studied,
i.e. problems for which so far no algorithm is known
which runs in the worst case in polynomial time as a
function of the system size. Thus, so far only worst-
case exponential-time algorithms are available, i.e. the
problems are hard. One the other hand, problems run-
ning in polynomial (P) time are often termed easy. But
since it is not known, i.e. proven, whether P forms a
proper subclass of NP, or whether maybe P=NP, one
has been interested since almost the beginning of com-
puter science in finding out what makes a problem hard.
Among many other approaches, also numerical experi-
ments and statistical-mechanics calculations have been
performed. For this purpose, ensembles of random prob-
lems have been considered, which are hard in the worst
case but for some regions in parameter space typically
require only a polynomial running time, meaning they
are typically easy there. Here in particular phase transi-
tions [1,6], e.g. with respect to the solvability have been
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observed when varying suitable ensemble parameters.
These phase transitions often coincide with changes of
the typical complexity from easy to hard. Thus, the
structure of problems from such ensembles, in partic-
ular near phase transitions, may teach us about the
source of computational hardness. Such phase transi-
tions have been studied, e.g. for constraint-satisfaction
problems such as satisfiability (SAT) [7,8] or colouring
[9]. In addition, optimisation problems such as the trav-
elling salesperson [10–13], vertex cover [14–17] or num-
ber partitioning [18,19] have been investigated. Beyond
delivering insight into the structure of problems, this
research performed at the interface of physics and com-
puter science has also led to algorithmic advances like
the development of efficient message-passing algorithms
as Belief Propagation or Survey Propagation [20].

Nevertheless, not only hard optimisation or constr-
aint-satisfaction problems may exhibit changes of prob-
lem space structure and corresponding changes of the
computational complexity. In addition, ensembles of
polynomially solvable problems such as shortest paths,
maximum flows or graph matching may be of interest
and show corresponding phase transitions. Usually, in
physics, such algorithms are used to investigate mod-
els like random magnets [21,22]. Here, we want to per-
form a fundamental study of such a phase transitions
for a generalisation of the graph matching problem. As
we will see here, we observe changes of the algorith-
mic behaviour related to this phase transition. This
shows that such a coincidence of the change of a suit-
ably defined solvability and of algorithmic complexity
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exists also for a polynomially solvable problem and can,
therefore, easier be studied numerically.

For a given graph, the maximum-cardinality match-
ing problem, also just called matching, considers sub-
sets of edges, such that each node is incident to at
most one edge in the subset and such that the cardi-
nality of matching is maximum. This problem is widely
studied in computer science usually from the algorith-
mic point of view [23] with the aim to find efficient
algorithms. But also in the field of statistical mechan-
ics it has already played its role, as it was among the
first optimisation problems studied, and therefore, it
has inspired the field a lot. First, the model was solved
analytically using a replica-symmetric approach [24,25]
on bipartite random graphs with random edge weights,
i.e. for the maximum-weight matching instead of the
maximum-cardinality matching. This suitability of a
replica-symmetric calculation means that the thermo-
dynamic behaviour of matching for this ensemble is not
very complex, similar to a ferromagnet. Later, the solu-
tion was extended to arbitrary graphs and the finite-size
behaviour of the matching capacity, i.e. the sum of the
weights of the edges in the matching, was obtained [26].
In addition, studied were Euclidean variants [27–29].
The case where more than two nodes are connected per
matching element was also considered with a statistical
mechanics approach [30]. Furthermore, so called dimer
coverings, i.e. perfect matchings involving all nodes, on
d-dimensional lattices without edge weights were stud-
ied [31]. Since no energy is involved, the number of
matchings, i.e. the entropy, was mainly studied [32–
34]. Such studies of entropies of dimer coverings were
extended also to include energy for the edges [35], or to
mixtures of dimers and single atoms [36]. In addition,
entropies of the matchings [37] or dimer coverings [38]
were considered for various more general random graph
structures.

In this work, we study a phase transition of the
satisfiable–unsatisfiable type for the z-matching prob-
lem, which is a generalisation of the standard match-
ing. The model describes a set of N users and a set of S
servers, possible user-server connections are described
by a bipartite graph. Each user shall be served by one
server, while each server may serve up to z users at the
same time. The system is characterised by its capacity,
i.e. the number of users which can be served simultane-
ously . An example for the application of z-matching are
wireless communication networks [39,40]. Our study is
motivated by a previous work of Kreačıć and Bianconi
[41], who have studied, to our knowledge for the first
time in statistical mechanics, the z-matching problem
analytically with the approximate cavity approach and
numerically with a message-passing algorithm. They
have obtained the capacity of the system for two ensem-
bles, namely for fixed degree and Poissonian bipartite
graphs. They showed that for both cases, parameter
combinations exists, where the capacity converges to its
maximum possible value, i.e. a saturable phase, when
increasing the average node degree.

Here, we expand on this work using an exact numer-
ical matching algorithm. Since this algorithm allows

for calculating exact optimum matchings in polynomial
time, we are able to solve exactly very large graphs of
up to N = 500000 users. To start, we confirm with our
exact numerical approach the previously obtained ana-
lytical results from Ref. [41]. In addition, we find the
same finite-size scaling behaviour of the capacity as for
standard matching [26]. In the main part of our work,
for the case of the Poissonian random graphs with aver-
age user degree k, we investigate the model with respect
to the phase transition between saturability and unsat-
urability for some typical parameter combinations of
z and the ratio N/S. We determine with high preci-
sion the phase-transition point kc using finite-size scal-
ing techniques. In addition, we obtain the critical expo-
nent ν characterising the phase transition. By analysing
the run time of the exact algorithm and furthermore
studying an approximation algorithm, we are able to
show that the phase transition coincides with remark-
able changes of the algorithmic performance.

The remainder of the paper is organised as follows:
next, we define the z-matching problem and the mea-
surable quantities we have evaluated, together with the
ensemble of random graphs we have studied. In the
third section, we present the methods we have applied.
In the main section, we present our results, and finally,
we summarise our work and outline further research
directions.

2 Model

2.1 z-matching

We consider bipartite graphs G = (V,E) with vertices
i ∈ V = A∪B consisting of N = |A| users and S = |B|
servers. We denote the ratio of number of users and
servers by

η = N/S . (1)

Since the graph is bipartite, each edge connects a user
and a server. This means that the average degree k of
the users and the average degree q of the severs are
related by

Nk = Sq. (2)

When inserting Equation 1, it follows that q = ηk.
A z-matching Mz is a subset of E in with each user is

adjacent to at most one server and each server is adja-
cent to at most z users. For each edge in Mz we say that
the adjacent user and server are matched. Thus, one
server can be matched to at most z users. The capac-
ity C of the matching is defined as the number |Mz| of
edges in the matching, i.e. its cardinality. In accordance
with previous work [41], the energy H is defined as

H = zS + N − 2C. (3)

Hence, H is equal to the number of unmatched users
plus the number of users that all servers can still host. A
low value of the energy means that the given resources
are well used, such that many, or all users are served
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and at the same time not too many, possibly no, servers
exhibit unused serving capacities.

For the maximum z-matching problem one wants to
find a z-matching Mz which maximises the capacity C.
This will usually depend on the edges in the graph. For
any graph, the capacity C is bounded by a theoretical
capacity which is obtained, when all users are matched
to servers or when all servers are matched to z users.
This leads to the maximum theoretical capacity

Cmax = min (N, zS) = min{1, z/η}N. (4)

Note that Cmax does not at all depend on the edges, i.e.
the actual topology of the graphs. But it depends on the
given graph G whether this maximum can actually be
reached. Naturally, the more edges exist, the more likely
it is that a given graph reaches Cmax. For numerical
reasons, we do not require that Cmax is 100% reached.
Instead, we call a graph saturated if the actual capacity
reaches γCmax with γ ≤ 1 being a suitable threshold.
Correspondingly, when studying an ensemble of random
graphs, the saturation probability is defined as

psat = Prob (C ≥ γ Cmax) . (5)

We use psat as an order parameter. If psat is close to
zero, few graphs reach the capacity γCmax. We call this
the unsaturated phase. But if psat is close to one, almost
all graphs have a high capacity. This describes the sat-
urated phase. As our results will show below, we are
indeed able to observe phase transitions between these
two phases.

In principle, one could use γ = 1, but for large ran-
dom graphs, for most ensembles, it can be anticipated
that it is exponentially unlikely that all demands can
be matched exactly to all resources. We confirmed this
in our numerical experiments. Thus, we used a value of
γ close to 1, i.e. γ = 0.9, hence we call a network sat-
urated if there is an almost complete balance between
demand and resources. We also verified by tests that
our results did not change significantly when we used
other values such as γ = 0.95 or γ = 0.85.

Note that the variance of psat is given simply by σ2
psat

= psat (1 − psat). We used it to calculate our error bars
and to obtain more conveniently the positions of the
phase transitions; see Sect. 4.3.

2.2 Random graphs

We consider the same two different networks ensembles
as previously studied [41]. The first networks ensem-
ble consist of (k, q)-regular graphs were all users have
the same fixed integer degree k and all servers have
integer degree q, satisfying Eq. 2. To generate such ran-
dom graphs for the numerical studies, the configuration
model [42,43] can be used. In our case for (k, q)-regular
graphs, we did the following: k stubs are assigned to
each user and q stubs to each server. Then, iteratively
one stub from a user and one stub from a server are
drawn randomly (with uniform distribution from the

list of free stubs), respectively. If there is so far no edge
between the two nodes where the stubs belong to, the
edge connecting them is created and the used stubs
get removed. If this edge already exists, two new stubs
are drawn. This procedure is repeated until no stub is
left. According to [44], redrawing two stubs if the edge
already exists creates a bias in the generation of the
random graphs. This bias can be removed, after the
initial graph construction has finished, by repeatedly
swapping the edges of the generated graph [45]. For a
swap, two edges are chosen randomly. Then, the users,
but not the servers to with the edges are connected are
swapped. Repeating this ‘shuffle’ enough times will lead
to unbiased graphs. We tested the influences of edge
swaps and in our case, they had no measurable effect
on the final data. This might be because we consider
bipartite graphs. Thus, to save computation time, we
did not perform such swaps.

The second network ensemble we considered, which
is in the centre of our study, consist of bipartite Erdős–
Rényi graphs [46]. This means, each possible edge
between a user and a server is drawn with a proba-
bility p, with p = k/S for any desired average num-
ber k of neighbouring servers for the users. Thus, the
degree distributions of users and servers are Poissonian,
respectively.

3 Methods

To solve the maximum z-matching problem, which we
call also just z-matching in the following, numerically
on a given graph, we map the problem to the origi-
nal 1-to-1-matching problem on bipartite graphs. To
achieve this, each server node is cloned z − 1 times.
This means that z − 1 new nodes will be inserted in
the graph for every server node. Then, for each user in
the neighbourhood of the server, an edge to each of the
new z − 1 nodes is created. Thus, in the graph with
cloned nodes, each clone has the same neighbours as
the original server node. Next, a matching is calculated
for the graph with the cloned nodes. Here, each node
is matched at most once. This means, with respect to
the original graph, each user node will be matched at
most once and each server node will be matched at most
z times. Therefore, a standard 1-to-1-matching on the
graph with cloned nodes corresponds to a z-matching
on the original graph. This procedure is shown in
Fig. 1.

To find a maximum matching, we used Edmonds’
Blossom Shrinking algorithm [47], implemented in the
LEMON-library [48].

4 Results

We have performed simulations [49] using exact numer-
ical matching calculations for the two graph ensem-
bles, for various values of the parameters, for various
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(a)

u1 u2 u3

s1

u1 u2 u3

s1 ŝ1

(b)

u1 u2 u3

s1

u1 u2 u3

s1 ŝ1

Fig. 1 a Cloning the server s1 for the case z = 2 to create
ŝ1 having the same neighbours as s1. b A matching on the
graph with cloned servers corresponds to a z-matching on
the original graph. Edges in the matching are marked bold,
non-matched edges are marked dashed

graph sizes of up to N = 500000 user nodes and up
to S = 250000 server nodes. We performed for all
results an average over up to several thousands of dif-
ferent graph realisations. Details are stated below. We
first compare our numerical results with the previously
obtained analytical results [41]. Next, we investigate the
finite-size scaling behaviour of the capacity and com-
pare with scaling form previously found [26] for stan-
dard matchings. In the main part, we show the results
concerning the saturable–unsaturable phase transition
and compare with the algorithmic behaviour.

4.1 Comparison with previous results

We studied the (k, q)-regular graphs, i.e. for integer
values of k. We considered a rather large graph size
N = 40000 and η = 4, thus S = 10000. We have con-
sidered k = 3, thus q = ηk = 12. In Fig. 2, the average
capacity per user node 〈C/N〉 and the average energy
per user node 〈H/N〉 are shown as a function of z. The
results are averaged over 100 realisations for each value
of z. But due to the simple structure of the graphs,
although being random, there are no statistical fluctu-
ation on the results.

One can observe three cases, dependent on the value
of z:

– For z < η, or equivalently zk < q, the capacity is
always C = zS = Cmax and the energy is H =
N − zS > 0. All servers are matched to z users, but
there are more users than all servers together can
handle.

– At z = η, i.e. zk = q, the capacity is C = N =
Cmax and the energy is H = 0. This is an optimal
situation since all users are matched to servers and
no server has unused resources.

– For z > η, i.e. zk > q, the capacity is C = N = Cmax

and the energy is H = −N + zS > 0. All users are
matched, but there are more servers than needed.

0.0
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z = η>zη<z η

η = 4
k = 3
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〈H
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Fig. 2 Capacity density C/N and energy density H/N of
the z-matching as a function of z for (k, q)-regular graphs
with N = 40000 user nodes. The circles denote the results
of the simulation and the line represents the analytical pre-
dictions from [41]. The lines are actually guide to the eyes
which connect the predictions which are available only for
integer values of z as well. The dashed vertical line marks
z = η. There are no error bars because the results are always
identical

Thus, in all networks, the full capacity is reached, but
there is only one point of optimal balance between user
demands and provided resources, where the energy is
zero. It is interesting, that such a point of balance is
possible. Note that here with k = 3, the graphs exhibit
a rather large number of edges much larger than the
number of edges in the matching. On the other hand
for the smallest meaningful degree k = 1, at z = η,
all users will be connected to exactly one server, and,
because of q = ηk = z, each server will be connected
to z distinct nodes. Thus, trivially the full edge set is
a z-matching and again all user demands are satisfied.
Anyway, these results confirm those recently obtained
analytically [41] for this network ensemble.

More variations in the results are obtained for the
other network ensemble we have studied, the bipartite
Erdős–Rényi graphs, since for this ensemble the nodes
exhibit fluctuations of the degrees. In Fig. 3, the aver-
age capacity 〈C/N〉 per user node is shown as a func-
tion of the average user degree k for server capacity
z = 2 and N = 500000 users. The results are aver-
aged over 500 realisations for each value of k. Two
cases for the user to server ratio are considered, η = 2
and η = 4. These values correspond to average server
degrees q = 2k and q = 4k, respectively, and server
numbers S = N/η = 250000, and S = 125000, respec-
tively. When approaching large degrees k, in both cases
the limiting capacities are reached which are according
to Eq. 4 Cmax/N = 1 for η = 2 and Cmax/N = 0.5
for η = 4. Our results from using the exact algorithm
agree well with the previous results [41] obtained by a
message-passing algorithm. Note that we obtained data
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Fig. 3 Average capacity density 〈C/N〉 as a function of
the mean user degree k for bipartite Erdős–Rényi graphs,
N = 500000, z = 2, for two cases η = 2 and η = 4. The
error bars are smaller than the point size

for all values of q down to zero, while in the previ-
ous work only the range q > z, i.e. k > z/η was con-
sidered. Anyway, this success of the message-passing
approach in the previous work is interesting, because
it is known that for other problems, like the NP-hard
vertex-cover problem, message-passing fails in the range
of high degrees because for such models there exist
replica-symmetry breaking [14,15,17]. The reason for
the success with respect to z-matching could be that in
the range of large values of k, the problem is easy to
solve since there are enough options for each user and
each server, which do not block each other too much.
This corresponds to a simple, i.e. “dense” organisation
of the solution space and makes a quick convergence of
the message-passing iterations possible. On the other
hand for NP-hard problems, each assignment of a prob-
lem variable has typically a strong impact on the avail-
ability of suitable assignments for other variables.

4.2 Finite-size behaviour

Since there are basically no finite-size effects for the
(k, q)-regular graphs, we studied the finite-size scal-
ing behaviour for bipartite Erdős–Rényi graphs. For
N ≤ 1000, we averaged over 5000 different realisations
and for larger values of N , a number of 500 realisations
turned out to be sufficient.

In Fig. 4, the average capacity density 〈C/N〉 is
shown as a function of the system size for the case
k = 2, η = 2 and z = 2. Motivated by the results
[26] for standard matching, we fitted the data to the
function

〈C/N〉 = c∞ + α1
1
N

(6)

and found a good agreement. The resulting parameters,
also for the other cases we have studied, are shown in
Table 1. For η = 4, z = 2 and k = 3, the fit does not
converge since most graphs reached Cmax, and there-
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0.85

0.86

0.87

0.000 0.025 0.050

k = 2
z = η = 2

〈C
/N

〉

N

1/N

Fig. 4 The average capacity density 〈C/N〉 as a function
of the number of users N for bipartite Erdős–Rényi graphs.
The line represents the fit according to Eq. 6. Inset shows
〈C/N〉 as function of 1/N for the same data to confirm the
1/N -behaviour

Table 1 Maximum capacity Cmax and fit parameters for
the scaling behaviour Eq. 6 for different values of the param-
eters η, z and k

η z k Cmax/N c∞ α1

2 2 1 1 0.60089 (2) 0.32 (1)
2 1 0.84902 (2) 0.43 (1)
3 1 0.947900 (9) 0.388 (6)

4 2 1 0.5 0.466631 (9) 0.118 (8)
2 0.5 0.499142 (1) 0.0141 (6)
3 0.5 − −

4 4 1 1 0.62561 (2) 0.70 (2)
2 1 0.86292 (2) 1.09 (1)
3 1 0.950115 (9) 0.794 (6)

fore, a finite-size dependence is hardly to observe. For
all other cases, we observe a good agreement with the
1/N scaling. Only the prefactor of this term seems to
be non-universal. In addition, it should be noted that
not only the finite-size capacities but also the limiting
values of the capacity density are usually well below
Cmax/N , due to typically too small average degrees.
This corresponds also to the behaviour seen in Fig. 3.

4.3 Phase transition

Finally, we study the saturation probability psat. Due
to the simple structure of (k, q)-regular graphs, we only
focus on the Erdős–Rényi graphs and investigate them
while varying the average degrees k and q = ηk. All
results are obtained over 500 difference realisations for
each value of k and each system size N,S = N/η.

Figure 5 shows psat(k) for different number N of
users. psat increases from 0 to 1 with growing degree
k, such that the curves become steeper when increas-
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Fig. 5 Saturation probability psat (top) and its variance
σ2
psat (bottom) as a function of k for different number N of

users. For the largest number of users, there is an almost
step-wise transition from psat = 0 to psat = 1 at some value
of k = kc

ing N . This is an indication for a transition from an
unsaturated phase to a saturated phase. Note that this
transition becomes almost step-wise for a really large
number of users. We are able to observe the phase
transition in such a clear way, because we could study
huge system sizes due to the polynomial nature of the
problem. This is in contrast to previously studied phase
transitions for NP-hard optimisation problems, where
only exponential-time exact algorithms are known, and
therefore, only rather small system sizes could be stud-
ied exactly.

To study the observed phase transition in more
detail, we use finite-size scaling analysis [50]. Hence,
we assume that for continuous transitions the satura-
tion probability follows the standard finite-size scaling
relation

psat(k,N) = p̃sat((k − kc)N1/ν) , (7)

with infinite-size critical point kc and ν being the expo-
nent describing the divergence of the correlation length.
We obtained the best-fitting scaling parameters using
the tool autoScale.py [51]. The results are obtained
over 9 different system sizes N , ranging from 500 to
500000. Figure 6 shows the resulting data collapse for
η = 2, z = 2. Apparently, the collapse works very good
for this case. The best found values for kc and ν for all
studied cases can be found in Table 2. The quality S is
the average deviation of the data points from the col-
lapse curve, measured in terms of error bars [52]. Since
S is close to one for all cases we have considered, the
quality of the data collapse is always very good.

The statistical errors of the scaling parameters are
determined as how much a parameter has to be changed
to increase the quality S of the fit by one to S + 1. We
also systematically changed the intervals over which the
data collapse is performed. However, these differences
turned out to be smaller than the statistical errors, so

0.0
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Fig. 6 Finite-size scaling for the saturation probability.
Within the statistical fluctuations, the values for different
N overlap. For visualisation, only four system sizes N are
shown, but the results were obtained including all measured
sizes N

Table 2 Results for the finite-size scaling parameters kc,
ν and the quality S of the fit, for the considered cases of η
and z

η z kc ν S
2 2 2.3863 (9) 2.04 (8) 0.90
4 2 0.8852 (4) 2.0 (1) 0.84
4 4 2.312 (1) 2.0 (1) 1.48

we state only those. Interestingly, within error bars,
the value for ν is compatible with a value of ν = 2 in
all studied cases. This indicates that the behaviour of
the saturable–unsaturable phase transition is universal
with respect to network parameters.

Note that the phase transition can also be studied
and analysed by obtaining the variance σ2

psat
as a func-

tion of k. Although σ2
psat

does not contain any addi-
tional information, it is easy to analyse, because it
peaks at the apparent transition for each system size,
which can be seen in the bottom of Fig. 5. To con-
firm the results obtained from psat, we also analysed
the phase transition by a finite-size analysis of the vari-
ance. In the thermodynamic limit, the variance should
be maximal at the critical point. On finite systems,
the position of maximal variance, denoted as kmax, will
approach kc as the system size grows. To determined
kmax more accurately than given by the resolution of the
considered values of k, we performed Gaussian fits to
σ2

psat
(k) in small intervals near the maxima. An exam-

ple is shown in the inset of Fig. 7. To extrapolate kmax

the fit,

kmax(N) = kc + β1 N−1/ν
(
1 + β2 N−1/ν

)
(8)
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Fig. 7 Position of maximal variance kmax as a function of
the number of users N . The line represents the fit. The inset
shows an example for the Gaussian fit around the peaks of
the variance σ2

psat of the saturation probability. Note that
the peak position shifts to the right for larger values of N

Table 3 Parameters kc, β1 and β2 obtained from the fit
of the position of maximum variance kmax(N) according to
Eq. 8

η z kc β1 β2

2 2 2.38566 (3) –0.07 (1) 137 (21)
4 2 0.88487 (2) 0.076 (6) –68 (5)
4 4 2.31068 (4) –0.04 (1) 404 (118)

is used. Note that we had to use here a correction term
to the scaling behaviour, taking care of the very small
system sizes. But we did not need to add a correction
exponent to achieve a good fit and used exponent 2/ν
instead. In addition, based on the above results of the
finite-size scaling, we fixed ν = 2. Figure 7 shows the
fit for the case η = z = 2. The results of the obtained
fit parameter for all three cases are shown in Table 3.
Within error bars, one or two sigma, the values for kc

agree with the above results which we obtained from
the data collapse.

To summarise, our results speak in favour of a phase
transition from a unsaturable to a saturable phase at a
critical average degree kc which depends on the graph
structure. The scaling of the phase transition seems to
be governed by a universal exponent ν ≈ 2, which is
very different from the usual mean-field exponent ν =
1/2.

4.4 Algorithm running time

We next analyse the running time of the matching algo-
rithm when varying the average user degrees, to see
whether the phase transition is reflected for this quan-
tity. Unfortunately, the package we used, the fastest
open-source matching algorithm implementation to our

knowledge, does not provide a machine-independent
measure of the running time. Therefore, we had to limit
our self to measure the CPU time. For this purpose, we
used always the same machine under the same condi-
tions. Figure 8 shows the median of the CPU time for
Erdős–Rényi graphs as the average degree increases.
Interestingly, the CPU time increases rapidly around
the critical point, a typical behaviour observed so far
for a phase transitions in NP-hard optimisation prob-
lems.

Note that there appears to be a small non-monoto-
nicity at k = 2. Interestingly, the LEMON implementa-
tion of the matching algorithm changes the behaviour
at average degree 4. For graphs with less number of
neighbours, first a greedy heuristics to create an initial
matching is applied, followed by the standard Edmonds’
algorithm. For denser graphs, no greedy initialisation is
performed but a special variant of Edmonds’ algorithm,
postponing so called “shrinks”, is used. Here, for k = 2,
each user has on average two servers available in the
original graph. Since the case z = 2 is considered, it
means that, through the duplication of the server nodes,
for the cloned graph each user has degree zk = 4. The
degree of the server nodes is q = ηk = 4 as well. Thus,
at k = 2, the overall degree is 4 for the graph actually
supplied to the matching code, which leads to a change
of the algorithmic details and explains the jump in the
running time.

Beyond this direct effect, there are other cases of
matching problems, where certain degree values play a
crucial role for the properties of matchings in networks.
For example, the control problem of a dynamical sys-
tem can be mapped to a maximum-matching problem
[53]. Here, it was found that sudden changes of the frac-
tion of matched nodes, which are those to control in the
original problem, take place when the fraction of nodes
exhibiting small degrees 0,1,2 reach certain thresholds
[54]. This will likely also lead to strong changes of the
performance of various matching algorithms as function
of the degrees.

For the present problem, for much larger values k, the
median CPU time decreases slowly, even though there
are more edges to handle. This is the case, because the
z-matchings become more and more degenerate in this
region, i.e. the algorithm has more feasible options to
choose among.

4.5 Approximation algorithm

The result of the running time of the exact algorithm
shows that for small values of k, matchings can be
obtained quickly. This could mean that in that region
they are so simple to obtain such that even a non-exact
but even faster algorithm is feasible. Therefore, we com-
pare the exact matching algorithm with a matching
heuristics. We considered the commonly used so called
minimum-degree heuristics [56]. It finds a matching by
connecting the nodes with lowest degree first, until no
more nodes can be matched. The basic idea is that for
nodes with few neighbours, one has to find a matching
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Fig. 9 Top: the difference of the capacity densities C/N
obtained from the exact matching algorithm and from the
minimum degree (MD) heuristics on the same graphs. Bot-
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partner first, while nodes with many neighbours will
still find a partner even if many of their neighbours have
been matched already. Note that the heuristics has a
linear running time. In this context, we study pMD, i.e.
the empirical estimated probability that the minimum-
degree heuristics obtains the same capacity as the exact
matching algorithm. The top of Fig. 9 shows how far
the capacity density C/N obtained from the minimum-
degree heuristic differs from the the one calculated by
the exact matching algorithm. On the bottom, pMD(k)
is shown. Both results are obtained over 500 different
realisations for each value of k. Note that the aver-
age difference of the capacities between both algorithms

starts to grow for k ≥ kc. In particular, pMD undergoes
for large systems an almost step-wise transition from 1
to 0 near the critical point. This means that for k < kc

the heuristic finds solutions with are well comparable
to the exact solution. But for k > kc this is no longer
the case. Hence, the saturable–unsaturable phase tran-
sition coincides with a kind of easy–hard transition with
respect to a fast heuristics, although the z-matching
problem is polynomially solvable everywhere.

5 Summary and outlook

We have studied the saturable–unsaturable phase tran-
sition for the z-matching problem on bipartite Erdős–
Rényi random graphs. Since the problem can be solved
with exact algorithms in polynomial time, we could
study very large systems with good accuracy, leading
to high-precision estimates of the critical points kc and
of the critical exponent ν of the correlation length.

We have also studied the running time of the exact
algorithm and found that the phase transition point is
very close to the largest change in the running time.
In addition, for the minimum-degree heuristics, when
studied for increasing node degrees, we find that the
degree beyond which the heuristics start to fail, seems
to agree with the critical point kc. Thus, the saturable–
unsaturable transitions seems to coincide with strong
changes of the algorithmic behaviour. This was pre-
viously observed mainly for NP-hard optimisation or
constraints-satisfaction problems, not for polynomial
problems.

Thus, for future work, it could be very interesting
to study other polynomial optimisation problems in a
similar way and verify whether phase transitions in con-
nection with changes of the run time are present. This
could also apply to the investigation of other ensembles
of the z-matching problems, or other variants of match-
ing. This could lead to better understand the relation
between phase transitions and computational hardness
of optimisation or decision problems.

Finally, to understand this relation even better, one
could analyse the solution structure for the z-matching
problem. For this purpose one could extend the algo-
rithm to allow for sampling of degenerate solutions, pos-
sibly by introducing slight random changes to the ini-
tially uniform edge weights, to make so-far found solu-
tions unfavourable. This would allow to investigate the
cluster structure [57] of the solution space. Possibly one
could in this way observe changes of the solution-space
structure in connection with the saturable–unsaturable
transition, as it has been the case for NP-hard problems
[58–60].

The simulations were performed at the HPC cluster CARL,
located at the University of Oldenburg (Germany) and
funded by the DFG through its Major Research Instrumen-
tation Program (INST 184/157-1 FUGG) and the Ministry
of Science and Culture (MWK) of the Lower Saxony State.
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