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Abstract. In the previous studies, the author proposes the payoff-difference-based probabilistic peer-
punishment that the probability of punishing a defector increases as the difference of payoff between a
player and a defector increases and shows that the proposed peer-punishment effectively increases the
number of cooperators and the average payoff of all players. On the other hand, reward as well as punish-
ment is considered to be a mechanism promoting cooperation, and many studies have discussed the effect
of reward in the public goods game, a multiplayer version of the prisoner’s dilemma game. Based on the
discussion of those existing studies, this study introduces the payoff-difference-based probabilistic reward
that the probability of rewarding a cooperator increases as the difference of payoff between a player and
a cooperator increases. The author utilizes the framework of the spatial prisoner’s dilemma game of the
previous study and shows that the reward of this study realizes the evolution of cooperation except some
cases.

1 Introduction

In the previous studies, the author proposes the payoff-
difference-based probabilistic peer-punishment [1,2] with
the characteristic that the greater difference in pay-
off induces the more punishment on the opponent.
The proposed peer-punishment effectively increases the
number of cooperators and the average payoff of all
players in various ranges of parameters. The mecha-
nism of the proposed peer-punishment prevents antiso-
cial punishment like retaliation of a defector on a coop-
erator. In addition, when introducing the coevolution-
ary mechanism that not only the strategy of players but
also the connection between players changes according
to the preference of players, such mechanism further
improves the promotive effect of the proposed peer-
punishment on the evolution of cooperation [3]. As a rel-
evant study of the payoff-difference-based probabilistic
peer-punishment [1,2], Chaudhuri [4] shows that con-
ditional cooperators whose contributions to the public
good are positively correlated with their beliefs regard-
ing the average group contribution are often able to
sustain high contributions to the public good through
costly monetary punishment of free-riders.

We can find other punishment-related studies as fol-
lows. Perc and Szolnoki [5] propose adaptive punish-
ment that a player is able to change his/her degree
to punish another player in relation to the degree of
success of cooperation and show that such punishment
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facilitates the reciprocity based on spatial connections
between players and as a result enhances cooperation.
Szolnoki and Perc [6] consider the conditional punish-
ment that is proportional to the number of other con-
ditional and unconditional punishers within the group.
Perc and Szolnoki [7] introduce the implicated punish-
ment that has a fixed working probability p (0 < p <
1) and includes the peer-punishment on defectors with
a fixed probability q (0 < q < 1). Szolnoki et al. [8]
study the impact of pool-punishment in the spatial pub-
lic goods game with cooperators, defectors and pool-
punishers as the three competing strategies. Chen et al.
[9] introduce static class-specific probabilities of pun-
ishment that is based on the fixed number of classes.
Szolnoki and Perc [10] show that antisocial punishment
does not deter public cooperation when the synergis-
tic effects are high, while such punishment is viable
when the synergistic effects are low, but only if the
cost-to-fine ratio is low. Chen and Szolnoki [11] con-
sider the common resource as a dynamically renewable
system that is also influenced by a co-evolutionary sys-
tem where both strategy and resource are subject to
change.

In contrast to the preceding argument, as described
in the discussion of the previous study [3], reward as
well as punishment is considered to be a mechanism
promoting cooperation. Many studies have discussed
the effect of reward in the public goods game, a mul-
tiplayer version of the prisoner’s dilemma game. There
is still room for argument regarding whether reward
or punishment is superior in promoting the evolution
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of cooperation. The seminal study of punishment and
reward by Sigmund et al. [12] and the review of pun-
ishment and reward by Sigmund [13] show that pun-
ishment is more effective than reward. On the other
hand, studies related to antisocial punishment [14,15]
and reward [16] show that the effect of punishment on
the increase of cooperators and social utility is ques-
tionable. In addition, some studies describe that reward
is as effective as punishment in maintaining coopera-
tion and realizes higher payoff than punishment with-
out the loss in reputation [17] and the fear of retalia-
tion [18]. Szolnoki and Perc [19] introduce the reward-
ing cooperators in addition to the traditional coopera-
tors and defectors and show that the reward can pro-
mote cooperation, especially if the synergistic effects of
cooperation are low. They also mention that moder-
ate reward may promote cooperation better than high
reward, which is due to the spontaneous emergence of
cyclic dominance between the three strategies.

In addition to those studies, Szolnoki and Perc [20]
compare the reward for successful cooperation (adap-
tive rewarding) with the punishment for successful
cooperation (adaptive punishment) and show that the
adaptive rewarding can solve the second-order free-rider
problem whereas such rewarding hinders network reci-
procity. Szolnoki and Perc [21] consider the players of
four types, i.e. a defector (D), a cooperator who pun-
ishes a defector (P), a cooperator who rewards a cooper-
ator (R), and a cooperator who punishes a defector and
rewards a cooperator (B), and show that the combina-
tion of reward and punishment does not exceed either
reward or punishment alone in the range of realistic
parameters. They also show that punishment is basi-
cally more effective than reward, however, when reward
is given only to those who give reward rather than all
cooperators, reward is more effective than punishment.
On the other hand, studies introducing the mechanism
of switching from reward to punishment based on the
evolution of cooperation [22,23] show that such combi-
nation leads to better results. Hilbe and Sigmund [22]
regard the reputation of the player that consists of the
past history of his/her behaviour as credit, and when
every player first gives reward and then switches to pun-
ishment depending on the reputation, he/she creates a
cooperative society. Chen et al. [23] also describe that
the switching mechanism from first reward to punish-
ment realizes the complete cooperation and the recov-
ery to that state at a lower cost than either reward or
punishment alone regarding both the well-mixed pop-
ulation where n players are randomly selected to form
a group and the spatial population of the N × N 2D
lattice of periodic boundary conditions.

Regarding probabilistic and conditional rewarding
mechanisms, Han and Tran-Thanh [24] have analysed
cost-efficient institutional rewarding in the context of
finite population setting, and for one-shot prisoner’s
dilemma. Han et al. [25] also study cost-efficient insti-
tutional rewarding strategies in square-lattice networks,
showing that local properties in neighbourhood play an
important role to achieve cost-efficient incentivisation.
In addition, Cimpeanu et al. [26] study cost-efficient

rewarding strategies in the context of heterogenous net-
works, showing interference in these types of networks
is much more difficult than in homogenous networks.
Chen et al. [27] show how the cost of peer-punishment
can be shared in a probabilistic way to improve coopera-
tion. Moreover, Han and Lenaerts [28] study probabilis-
tic peer-incentive different from this study, i.e. incentive
or punishment is not performed alone and is combined
with the so-called commitment mechanism, which com-
plements punishment.

In addition to those studies regarding punishment
and reward, we can consider network reciprocity (spa-
tially structured population) [29–38] as another rule for
the evolution of cooperation [39]. For example, Fort and
Sicardi [36] show that even if utilizing simple Markovian
or one step conditional strategies (like TFT or Pavlov),
a system with network reciprocity can escape from Nash
equilibrium. Perc and Szolnoki [37] review studies of
evolutionary game introducing coevolutionary rules and
describe that such rules facilitate the effects of spa-
tial structure or heterogeneity on cooperation. Szabó
and Fáth [38] study three prominent classes of game on
graphs, i.e. the prisoner’s dilemma, rock–scissors–paper
game, and competing associations, and give detailed
description of each dynamics from the aspect of non-
equilibrium statistical physics.

Based on the discussion of those existing studies,
this study newly introduces the payoff-difference-based
probabilistic reward. Although the probability of pun-
ishing a defector in the proposed peer-punishment [1–
3] increases as the difference of payoff between a player
and a defector becomes large, the probability of reward-
ing a cooperator in the reward of this study increases as
the difference of payoff between a player and a coopera-
tor increases. This study employs the framework of the
spatial prisoner’s dilemma game of the previous studies
[1,2] and shows that the reward of this study realizes
the evolution of cooperation except some cases.

2 Model

As mentioned in the introduction, the framework of
the spatial prisoner’s dilemma game of this study is
basically the same as the previous study [1,2] except
the mechanism of punishment. This study employs the
three types of topology of connections between play-
ers: (a) regular [40], (b) random [40], and (c) scale-
free (Barabási-Albert model [41]). Each topology is
defined by a one-dimensional lattice of periodic bound-
ary conditions, and each vertex represents each player.
The number of players N equals 1000, the degree of
player i (the number of connections) is k(i), and the
average value of k(i) (〈k〉) is represented by 〈k〉 =
1
N

∑
1 ≤i≤N k (i). Methods of the previous study [1]

detail how to build each topology. Figure 1 illustrates
the three types of topology of connections regarding the
case of 〈k〉 = 4. Note that N is not 1000 but 20 to make
each topology easy to understand in Fig. 1.

123



Eur. Phys. J. B (2021) 94 :232 Page 3 of 8 232

Fig. 1 Three panels a, b, and c represent the three types of topology of connections in the case of 〈k〉 = 4: a regular, b
random, and c scale-free. Each topology is defined by a one-dimensional lattice of periodic boundary conditions, and each
vertex represents each player. Defectors are shown in red, and cooperators are shown in blue. Note that the number of
players (N) is not 1000 but 20 to make each topology easy to understand

The strategy of player i (s(i)) is expressed by (0 1)
for a defector and (1 0) for a cooperator utilizing a
unit vector. Player i plays the prisoner’s dilemma games
with other connected players and gains the total payoff
P (i) for all games. When N is the number of players,
the opposing player of player i is player j (i �= j, 1 ≤ i,
j ≤ N), and the strategy and the payoff of player j are
s(j) and P (j), respectively, P (i) is expressed by the
following Eq. (1) utilizing the payoff matrix A. O(i) is
a set of the opposing players that are connected with
player i. The payoff matrix of this study follows the
one introduced by Nowak and May [29]. In this study,
cooperation is difficult to evolve because the temptation
of defect (b) equals 1.5, and the payoff of every player is
not normalized by him/her number of connections, i.e.
a player with many connections will have large payoff.

P (i) =
∑

j∈O(i)

s (i)As (j)T

(i �= j, 1 ≤ i, j ≤ N)
, A =

(
1 0
b 0

)

(1 < b ≤ 2) .

(1)

Player i compares his/her payoff P (i) with the pay-
off of his/her opposing player P (j), and when the fol-
lowing conditions of s(j) = (1 0) (cooperator), P (i)(1-
tnr(i)) > 0, and P (j) < P (i) ≤2P (j) hold, player i
gives the reward tP(i) to player j at the expense of
his/her payoff by tP(i) as shown in the following Eq. (2)
with the probability ui(j) expressed by the following
Eq. (3), where t (0≤ t ≤1) is the coefficient of reward,
and nr(i) is the number of players j ∈ O(i) satisfy-
ing both conditions of P (j) < P (i) and s(j) = (1 0).
When the following conditions of s(j) = (1 0) (cooper-
ator), P (i)(1-tnr(i)) > 0, and 2P (j) < P (i) hold, ui(j)
equals 1. The decrease in the payoff of players due to
rewarding the opposing cooperators and the increase
in the payoff of cooperators due to being rewarded by
the opposing players are calculated independently for
each player, and P (i)’ and P (j)’ are never negative val-
ues because the payoff of a player is set to 0 when it
becomes negative. The reward of this study does not

function when t equals 0 and 1 because tP(i) equals 0
in the case of t = 0, and P (i)(1-tnr(i)) > 0 does not
hold in the case of t = 1.

P (i)′ = P (i) − tP (i)
P (j)′ = P (j) + tP (i)

(2)

ui (j) =
P (i) − P (j)

P (j)
, P (j) > 0. (3)

The difference of the working mechanism between the
coefficient of reward (t) and that of punishment (r) in
the previous studies [1–3] is as follows. When the coeffi-
cient of reward (t) is small, although the reward to every
player is a little, all players can reward more players
than the case of large t. Conversely, in the case of large
t, all players can reward only a few players although the
reward to every player is large. On the contrary, when
the coefficient of reward (r) is small, although the pun-
ishment to every player is weak, all players can punish
more players than the case of large r. Conversely, in the
case of large r, all players can punish only a few players
although the punishment to every player is strong.

After players reward the opposing cooperators, and
cooperators are rewarded by the opposing players, as
shown in the following Eq. (4), player i adopts the
strategy of player jmax ∈ i ∪ O(i) for his/her strat-
egy of the matches of the next generation. When there
is more than one player with the same maximum pay-
off, player i randomly chooses his/her strategy of the
matches of the next generation from the strategy of
those players. This process of adopting new strategy
takes place simultaneously for all players. This study
defines (1) all matches of the prisoner’s dilemma game,
(2) all actions of rewarding the opposing cooperators
and being rewarded by the opposing players, and (3)
adoption of new strategy by all players as one genera-
tion, and each simulation run continues until the num-
ber of generations reaches 600 to obtain stable results.
The ratio of defectors to cooperators in the initial state
is approximately 1:1, and defectors and cooperators
are randomly distributed in each simulation run. The
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results shown below are the average of 20 simulation
runs and have error bars indicating the standard devi-
ation if necessary.

s (i)
′
= s (jmax) jmax ∈ i ∪ O (i)

P (jmax)
′
= max

(
P

′ ∈ i ∪ O (i)
)
. (4)

3 Results

The author describes the results regarding the regu-
lar, random, and scale-free topology of connections of
〈k〉 = 4 (left panels of Fig. 2) and 〈k〉 = 8 (right panels
of Fig. 2). Regarding the regular topology of connec-
tions, in both cases of 〈k〉 = 4, 8, the proportion of
cooperators and the average payoff of all players stably
increase in the range of 0.05≤ t ≤ 0.95 (Fig. 2a, b). In
the case of 〈k〉 = 4, although the proportion of cooper-
ators increases when t equals 0 and 1 (i.e. the reward
of this study does not work), the proportion of coop-
erators and that of defectors vary widely as indicated
by the error ranges. On the other hand, because the
error ranges of the proportion of cooperators and that of
defectors are quite small in the range of 0.05≤ t ≤0.95
(i.e. when the reward of this study works), it is obvious
that the proportion of cooperators and the average pay-
off of all players stably increase by the reward of this
study. The author explains the reason why the propor-
tion of cooperators temporarily decreases in the range
of 0.3≤ t ≤ 0.35 in the regular topology of connections
of 〈k〉 = 4 in the following discussion.

Regarding the random topology of connections, in
the case of 〈k〉 = 4, almost all players become coopera-
tors when t equals 0.1 and 0.15, and approximately 85%
(t = 0.2) and roughly 70% (0.25≤ t ≤ 0.95) of play-
ers become cooperators (Fig. 2c). Because only around
40–45% of players become cooperators when t equals 0
and 1 (i.e. the reward of this study does not work), the
proportion of cooperators and the average payoff of all
players obviously increase by the reward of this study.
On the other hand, in the case of 〈k〉 = 8, the propor-
tion of cooperators and the average payoff of all play-
ers increase only when t equals 0.1 (Fig. 2d). Approx-
imately 30% of players become cooperators when t
equals 0.15, and the proportion of cooperators and that
of defectors in the range of 0.2≤ t ≤ 0.95 are roughly
equal to the values when t equals 0 and 1 (i.e. the reward
of this study does not work) whereas there are some
fluctuations. Therefore, regarding the random topology
of connections of 〈k〉 = 8, the range of t where the
proportion of cooperators and the average payoff of all
players increase by the reward of this study is limited.

Regarding the scale-free topology of connections, the
proportion of cooperators and the average payoff of
all players stably increase by the reward of this study
except in the ranges of 0.15≤ t ≤ 0.45 (〈k〉 = 4) and
0.05≤ t ≤ 0.4 (〈k〉 = 8) (Fig. 2e, f). However, in such
ranges of t (where the proportion of cooperators and the
average payoff of all players do not increase), because

the number of simulation runs that 95% or more players
become defectors in the 600 generation (i.e. the number
of defector-prevailing simulation runs) never exceeds 9
except in the case of 〈k〉 = 8 and t = 0.05 (see scale-free
results in Fig. 2g, h), the reward of this study effec-
tively suppresses the increase of defectors. Figure 2g
and h also shows that in any type of topology of con-
nections, the reward of this study suppresses the num-
ber of defector-prevailing simulation runs to 0 in the
range of 0.1≤ t ≤ 0.95. To sum up, the reward of
this study stably increases the proportion of coopera-
tors and the average payoff of all players except regard-
ing the random topology of connections of 〈k〉 = 8 and
the scale-free topology of connections in the ranges of
0.15≤ t ≤0.45 (〈k〉 = 4) and 0.05≤ t ≤ 0.4 (〈k〉 = 8).

4 Discussion

The author explains the mechanism of the evolution of
cooperation induced by the introduction of the reward
of this study focusing on the value of t (the coefficient
of reward) utilizing the lattice of the regular topology
of connections of 〈k〉 = 4 and 〈k〉 = 8. When t is small,
cooperation evolves because the clusters composed of
four cooperators already in the lattice in the initial state
are rewarded by adjacent defectors, and those defectors
lose the advantage of their high payoff. When t exceeds
a certain value, even a single cooperator surrounded by
defectors becomes able to survive, and such cooperator
generates a large cluster (five cooperators in 〈k〉 = 4
and nine cooperators in 〈k〉 = 8) that leads to the evo-
lution of cooperation. We can find that threshold value
of t, 1/5 in 〈k〉 = 4 and 1/9 in 〈k〉 = 8, by calculating
the expected value of the payoff of such cooperator and
other defectors after probabilistically giving and receiv-
ing reward. Comparing both cases of 〈k〉 = 4 and 8, the
threshold value of t is smaller, and the effect of facil-
itating the evolution of cooperation by the reward of
this study is higher in the case of 〈k〉 = 8. In addition,
the author also explains the reason why the propor-
tion of cooperators temporarily decreases in the range
of 0.3≤ t ≤0.35 in the regular topology of connections
of 〈k〉 = 4. That is because a defector surrounded by
cooperators does not eventually change into a coopera-
tor, and therefore a few defectors always remain in the
lattice in the range of 1/4 (= 0.25) < t < 3/8 (= 0.375)
(see Fig. 3).

In the following, the author summarizes the mecha-
nism of reward of previous studies and makes it clear
that the reward of this study is a new mechanism not
covered by existing studies, which has the probability
of rewarding a cooperator proportional to the difference
of payoff between a player and a cooperator. Sigmund
[12] considers the rewarding as the strategy in place
of punishment in the public goods game, having not
dynamical but simple small probabilistic effect. Szol-
noki and Perc [19] considers the public goods game on a
square lattice with periodic boundary conditions, where
initially each player on a site x is designated either as
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig 2 This figure shows the results regarding the regular a, b, random c, d, and scale-free e, f topology of connections of
〈k〉 = 4 (left panels) and 〈k〉 = 8 (right panels). Those panels a–f show the dependence of the proportion of cooperators
and that of defectors, and the average payoff of all players in the 600 generation on the coefficient of reward (t) (error bars:
SD, standard deviation). Bottom two panels (g: 〈k〉 = 4, h: 〈k〉 = 8) show the dependence of the number of simulation runs
that 95% or more players become defectors in the 600 generation (i.e. the number of defector-prevailing simulation runs)
on the coefficient of reward (t) regarding each topology of connections. Following the previous study [2], this study also
considers that the evolution of cooperation emerges when the number of defector-prevailing simulation runs is 9 or less out
of 20 simulation runs, otherwise defectors defeat cooperators
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(a) (b)

Fig. 3 This figure explains the reason why the lattice of the regular topology of connections of 〈k〉 = 4 does not achieve
the fully cooperative state in the range of 0.3 ≤ t ≤0.35. In the range of 1/4 (= 0.25) < t < 3/8 (= 0.375), a defector (i)
does not reward other cooperators and not become a cooperator from generation to generation because a defector expands
into a cluster of five defectors (b), and then shrinks back to a defector (a). Except such range of t, a defector (i) rewards
other cooperators and becomes a cooperator (t < 1/4 (= 0.25)), or becomes a cooperator through a cluster of five defectors
because two or more defectors in such cluster will remain defectors and then become cooperators (t = 1/4(= 0.25), and 3/8
(= 0.375) ≤ t < 1.0)

a cooperator, defector, or rewarding cooperator, with
equal probability. Cooperators and rewarding coopera-
tors not probabilistically but always receive the reward
from every rewarding cooperator that is a member of
the focal group, and every rewarding cooperator of that
group also bears an additional cost.

The following studies [20–27] have some conditional
mechanisms for rewarding cooperators, while such
mechanisms are different from the mechanism of this
study. In the adaptive rewarding by Szolnoki and Perc
[20], players are more inclined to support coopera-
tion by means of additional incentives if defectors are
increasing in their group. Szolnoki and Perc [21], as
well as Hilbe and Sigmund [22], consider a defector (to
do nothing), a cooperator punishing defectors, a coop-
erator rewarding other cooperators, or a cooperator
both punishing defectors and rewarding other cooper-
ators with equal probability. Chen et al. [23] deal with
a relative weight that determines the equally shared
part among the cooperators and the remainder used for
equally punishing the defectors in the group. Han and
Tran-Thanh [24] consider the external decision-maker
with a budget to reward cooperative population. Han
et al. [25] introduce the classes of interference mech-
anisms based on the number of cooperators and the
neighbourhood cooperation level. In addition to such
classes, Cimpeanu et al. [26] present the class of interfer-
ence mechanism based on the connectivity of the node
in the network. Chen et al. [27] consider the system that
a fraction of cooperators is selected randomly and des-
ignated as punishers, and they equally share the asso-
ciated costs, respectively.

In this study, based on the discussion of existing stud-
ies regarding reward, the author introduces the new
probabilistic reward based on the difference of payoff.
The reward of this study has the mechanism that the
greater the difference of payoff between a player and
his/her opposing cooperator is, the higher the probabil-

ity of rewarding his/her opposing cooperator becomes.
The introduction of the reward of this study leads
to the evolution of cooperation, especially in the reg-
ular and scale-free topology of connections. Compar-
ing the reward of this study with the proposed peer-
punishment [2], the proposed peer-punishment is supe-
rior to the reward of this study particularly in the case
of the random topology of connections. On the contrary,
in terms of the number of defector-prevailing simulation
runs, the reward of this study sometimes shows better
results than the proposed peer-punishment especially
in the scale-free topology of connections of 〈k〉 = 8.

In future works, the author would like to consider
the other rules (common knowledge of advice [42] and
a simple exhortative message [43]) except punishment
and reward. Common knowledge of advice [42] gen-
erates a process of social learning that leads to high
contributions and less free-riding. This behaviour is
sustained by advice that is generally exhortative, sug-
gesting high contributions, which in turn creates opti-
mistic beliefs among subjects regarding contributions
of others. Chaudhuri et al. [42] suggest that socially
connected communities may achieve high contributions
to a public good even in the absence of punishment
for norm violators. Chaudhuri and Paichayontvijit [43]
show that a simple exhortative message appealing to
goodwill of participants can achieve high rates of coop-
eration in social dilemmas played over many rounds,
even in the absence of punishments for free-riding. As
a further extension, based on the studies introducing
the switching mechanism from reward to punishment
depending on the evolution of cooperation [22,23], the
author considers the introduction of the combination
of the reward of this study and the proposed peer-
punishment. In addition, I would like to combine the
reward of this study and the proposed peer-punishment
with commitments like Han et al. [44] and examine that
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such combination would ensure even higher levels of
cooperation.
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