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Abstract. In this paper, we examine a population model with carrying capacity, time delay, and sources of
additive and multiplicative environmental noise. We find that time delay, noise sources and their correlation
induce regime shifts and transitions between the population survival state and the extinction state. To
explore the transition mechanism between these two states, we analyzed the shift time to extinction, or
the delayed extinction time, of populations. The main finding is that the extinction transition time as a
function of the noise intensity shows a maximum, indicating the existence of an appropriate noise intensity
leading to a maximal delayed extinction. This nonmonotonic behavior, with a maximum, is a signature of
the noise-enhanced stability phenomenon, observed in many physical and complex metastable systems. In
particular, this maximum increases (or decreases) as the cross-correlation intensity or the delay time in
the death process increases. Furthermore, the signal-to-noise ratio as a function of noise intensity shows a
maximum, which is a signature of the stochastic resonance phenomenon in the population dynamics model
investigated in the presence of time delay and environmental noise.

1 Introduction

Recently, a large body of research has focused on
the cooperative interplay of noise and nonlinearity
in dynamical systems, leading to phenomena such as
regime shifts [1,2]. Regime shifts are substantial, long-
lasting reorganizations of complex systems. In nonlin-
ear stochastic systems, even a weak noise can gener-
ate unexpected phenomena that have no analogues in
the deterministic case [3,4]. These noise-induced phe-
nomena such as a stochastic resonance [5,6], noise-
induced transitions [7,8], noise-enhanced stability [9–
13], stochastic bifurcations [14,15], noise-induced chaos
and order [16–18], and stochastic excitability [19,20]
still attract attention of many researchers from the dif-
ferent domains of science [21].

Actually, many interesting stochastic phenomena are
observed also in life science [22,23]. The effect of
noise on the spatial-temporal behavior of the maxi-
mum chlorophyll in the deep Mediterranean [24]. They
predict the behavior of Listeria monocytogenes under
the influence of noise during the fermentation of tra-
ditional Sicilian salami [25]. In addition, noise has also
played an active and constructive role in other inter-
disciplinary fields such as materials science, and other
stochastic phenomena have appeared. Such as the reso-
nant activation in polymer translocation [26], field- and
irradiation-induced phenomena in memristive nanoma-
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terials [27], a selectively laser-melted stainless steel
[28] and out-of-equilibrium quantum critical phenom-
ena [29].

On the other side, these investigations on the dynamic
properties of the population dynamics may neglect the
possible effects induced by time delay. The important
effects of time delays in dynamical systems have been
brought to light in Refs. [30,31]. In physics, time delays
reflect the transmission times related to the transport
of matter, energy and information through the sys-
tem [32]. Furthermore, time delay changes the dynamic
properties of the system and brings a series of inter-
esting and significant results [33], for example, time
delay induced traveling wave solutions [34], coherence
resonance [35], excitability [36], periodically oscillate
synchronously [37] and stochastic resonance [38]. Time
delay is also very important for issues that affect the
survival of humans around the world. For example,
the time delay is also a key factor in studying the
dynamic mechanism of COVID-19 transmission [39,40].
Actually, the effects of time delay and stochasticity on
dynamic systems are not always positive [41–43]. How-
ever, it appears that the combination of noise and time
delay is ubiquitous in nature and often changes funda-
mentally the dynamics of the systems investigated [44–
46]. Bistable systems with noise and time delay have
been investigated in detail in Refs. [35,47].

Stochastic resonance (SR) is a noise-induced effect
demonstrating the phenomenon of signal amplification,
which has been extensively investigated in biological
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Table 1 Transition processes and associated rates in pop-
ulation model

Transition processes Associated rates

N → ø μN
2N → 3N λN(N − 1)/(2K)
3N → 2N σN(N − 1)(N − 2)/(6K2)

systems [48–50]. In particular, such as stochastic res-
onance and noise-delayed extinction in a model of two
competing species [51]; role of the noise on the transient
dynamics of an ecosystem of interacting species [52];
and Cyclic fluctuations, climatic changes and role of
noise in Planktonic Foraminifera in the Mediterranean
Sea [53]. The concept of SR was originally proposed
to explain periodic recurrences of the earth’s ice age
[54], it has attracted researchers’ interests, and it has
been studied in geophysical, biological, chemical sys-
tems, and other fields [55] to manifest the construc-
tive role of noises. Noise-induced resonance phenomena
include doubly stochastic resonance [56], SR on bone
loss [57], SR in excitable systems [58], coherence res-
onance [19] and array-enhanced coherence resonance
[59]. In this paper, regime shifts between the popula-
tion survival state and the extinction state induced by
the noise sources, their cross-correlation, and by time
delays have been observed and investigated. Moreover,
the STE as a function of the noise intensity has a non-
monotonic behavior with a maximum, indicating the
existence of an appropriate noise intensity leading to a
maximal delayed extinction. This nonmonotonic behav-
ior is a signature of the noise-enhanced stability phe-
nomenon (NES) observed in many physical and com-
plex metastable systems. Finally, the stochastic reso-
nance (SR) phenomenon of the population model with
time delay and noises is observed and investigated. The
paper is organized as follows. In Sect. 2, the population
model subject to noises and time delay is presented,
and then the impacts of the noises and time delay on
the time series, probability distribution, STE, NES and
SR are discussed in Sect. 3, respectively. Finally, con-
clusions are given in Sect. 4.

2 Description of population models

2.1 Deterministic description of population model

Consider a specific example first where the local dynam-
ics displays the Allee effect [60]; i.e., in a certain range
of parameters the single patch dynamics is bistable:
there is one stable state with population survival state
and another corresponding to the extinction state. The
corresponding population model is represented by the
transition processes and associated rates in Table 1.

The first two transitions are required to capture the
Allee effect. The death rate of a low-density population
is given by μ, and the birth rate of the population when

Fig. 1 Deterministic description of population model. The
potential U(n) as a function of n with μ = 0.2, σ = 3.0,
λ = 1.425. For different initial conditions, the n(t) can be
distributed at one of the two steady states (ne and np)

the density is large enough is given by λ. The negative
birth rate for an overcrowded population is provided
by σ, and K is the carrying capacity of the population.
Therefore, the deterministic rate equation has the form
[61]:

dn(t)
dt

= −σ

6
n3(t) +

λ

2
n2(t)

︸ ︷︷ ︸

birth

−μn(t)
︸ ︷︷ ︸

death

= h(n(t)) (1)

When Δ2 = 1 − 8σμ/(3λ2) > 0, this equation has
three fixed points and, therefore, describes a significant
Allee effect. The fixed points ne = 0 (the extinction
state) and np = K(1 + Δ) (the population survival
state) are attracting, the fixed point nr = K(1 − Δ) is
repelling. The fixed point nr corresponds to the criti-
cal population size for establishment, whereas np corre-
sponds to the established population. The parameter
K = 3λ/(2σ) sets the scale of the established pop-
ulation size. The potential function corresponding to
Eq. (1) is

U(n(t)) = −
∫ n(t)

h(n(t)))dn(t)

=
σ

24
n4(t) − λ

6
n3(t) +

μ

2
n2(t) (2)

An interesting aspect of the model is that, based on
the different initial conditions, n(t) can be distributed
at one of the two stable steady states (ne and np). It is a
bistable system for certain values of μ, σ, λ. Bistability
is a kind of important dynamical feature in this system,
especially for the fate decision in some processes. In this
article, our works are employed in the bistable region
as shown in Fig. 1. It pointed out that dynamics of the
population size according to the mean-field theory cor-
responds to the coordinate n(t) of an overdamped par-
ticle, performing deterministic motion in this potential.
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2.2 Stochastic description of population model with
time delay

Population systems are often subject to environmen-
tal noise [62,63]. It is therefore useful to reveal how
the noise affects the delayed population systems. It has
been well known in physics, biology, complexity science,
control theory, and econophysics [9,64,65] that noise
can also have a stabilizing effect [10–13]. It has also
been revealed recently by Mao, Marion, and Renshaw
[66] that the environmental noise can suppress a poten-
tial population explosion. These indicate clearly that
different structures of environmental noise may have
different effects on the population systems. Therefore,
it is reasonable to study the effects of random fluctua-
tions on the population model is given by

dn(t)
dt

= h(n(t)) +
2

∑

j=1

gj(n(t))ξj(t) (3)

where gj(n(t)) are deterministic functions that char-
acterize the state dependent action of Gaussian noises
ξj(t), and the noises are white with zero mean which
obeys 〈ξj(t)ξj(t′)〉 = 2djδ(t − t′), dj are the intensities
of the noises ξj(t), respectively. In our model, we simul-
taneously consider both the multiplicative [g1(n(t)) =
−n(t)] and additive [g2(n(t)) = 1] noises. The environ-
mental fluctuations act also in the death rate constant
μ, so the control parameter μ is replaced by μ + ξ1(t),
and as additive noise source ξ2(t). The additive noise
describes the inherent uncertainties due to the existence
of alternative attractors. The two independent noises
ξ1(t) and ξ2(t) may have a common source, thereby the
correlation between them should be taken into account
in our model, such that 〈ξ1(t)ξ2(t′)〉 = 〈ξ2(t)ξ1(t′)〉 =
2q

√
d1d2, where q is the intensity characterizing the

cross-correlation of the noises, |q| ≤ 1.
On the other hand, all processes take time to com-

plete. While physical processes such as acceleration and
deceleration take little time compared to the times
needed to travel most distances. However, the times
involved in biological processes such as gestation and
maturation can be substantial when compared to the
data-collection times in most population studies. There-
fore, it is often imperative to explicitly incorporate
these process times into mathematical models of pop-
ulation dynamics. These process times are often called
delay times, and the models that incorporate such delay
times are referred as delay differential equation (DDE)
models. The stochastic delay Langevin equation corre-
sponding to this population model is given by

dn(t)
dt

= h(n(t), n(t − τi)) +
2

∑

j=1

gj(n(t), n(t − τi))ξj(t)

(4)

The time delays τi could appear at any level of popu-
lation model, like in the death, birth or global process.

Table 2 Note that n(t) = n, n(t − τi) = nτi

Time delay Equation: h(n, nτi)

τd in the death process −σ
6
n3 + λ

2
n2 − μnτd

τb in the birth process −σ
6
n3

τb
+ λ

2
n2

τb
− μn

τg in the global process −σ
6
n3

τg
+ λ

2
n2

τg
− μnτg

We estimate the effects induced by time delay τd in
the death process, τb in the birth process and τg in the
global process.

The modified model I: we first include the local time
delay τd in the death process, i.e., the death term
−μn can be written as −μnτd

. According to Table 2,
the stochastic delay differential equation (4) is further
rewritten:

dn

dt
= −σ

6
n3 +

λ

2
n2 − (μ + ξ1(t))nτd

+ ξ2(t) (5)

where the τd previous to the time when dn/dt is com-
puted. Since μnτd

is dependent linearly on the popula-
tion, for simplicity, we call this form of time delay as
linear time delay. In addition, only small time delay is
investigated in the modified model I, since the theoreti-
cal approximation methods below are applicable for the
small delay time.

The modified model II: since time delays in popula-
tion models often account for maturation or gestation
periods, we include the local time delay into the birth
term (the rates constant σ and λ):

dn

dt
= −σ

6
n3

τb
+

λ

2
n2

τb
− (μ + ξ1(t))n + ξ2(t) (6)

where the first and second terms on the right side is
evaluated at a time τb previous to the time when dn/dt
is computed, and is nonlinear time-delayed, and the
delay time does not appear in the stochastic force. For
simplicity, we regard this case as nonlinear time delay
case.

The modified model III: lastly, we consider the inclu-
sion of both the delay appearing in death and birth
processes:

dn

dt
= −σ

6
n3

τg
+

λ

2
n2

τg
− (μ + ξ1(t))nτg

+ ξ2(t) (7)

In this equation, τg is a global delay in the population
model, this case combines the impacts of the above
two cases. The statistics properties of our theoretical
model subjected to correlated noises and time delays
are explored in different cases.

3 Main results and discussion

To investigate the roles of time delays and environ-
mental noise on catastrophic regime shifts in popula-
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tion model, we study numerically the time series, the
probability density and mean first shift time of the
population. The numerical simulations are performed
by directly integrating the stochastic delay differential
equation (4). The Box–Mueller algorithm is used to gen-
erate Gaussian noise [67]. The numerical data of prob-
ability distribution are obtained using the Euler proce-
dure with a time step of h = 0.01, and the data of prob-
ability distribution are saved over 500 different trajec-
tories. We performed 100,000 simulations to determine
this limit of stability.

3.1 Time series and probability density of
population

In this subsection, we estimate the impacts induced by
noises and delays on the probability density to ana-
lyze the regime shift phenomenon. Let P (n, t) denotes
the probability density distribution that the probabil-
ity exactly equals n at time t. Then, the delay Fokker–
Planck equation of P (n, t) corresponding to Eq. (4) can
be given by [44]

∂P (n, t)
∂t

= − ∂

∂n
F ((n, nτi

))P (n, t)

+
∂2

∂n2
G((n, nτi

))P (n, t) (8)

where

F (n, nτi
) = h(n, nτi

) +
1
2
G′(n, nτi

) (9)

G(n, nτi
) = d1g

2
1(n, nτi

) + 2q
√

d1d2g1(n, nτi
) + d2

(10)

In Figs. 2 and 3, the impacts of the intrinsic noise d1

and extrinsic noise intensity d2 on the probability den-
sity of population are plotted by directly simulating the
Langevin equation (4). As the value of d1 increases (see
d1 = 0.01, d1 = 0.05, and d1 = 0.20 in Fig. 2), the peak
of ne state becomes higher, and the np becomes lower.
The above result indicates that the population model
is affected by the internal noise d1 and will switch from
the population survival state np to the extinct state ne.
However, as the extrinsic noise d2 increase (d2 = 0.003,
d2 = 0.005, and d2 = 0.020), the structure of the prob-
ability density of population changes from ne state to
np state, as shown in Fig. 3. Therefore, the two noise
intensities have different effects on the population sys-
tem. To get more physical insight into the noise-induced
transition phenomenon investigated, we cite an exam-
ple to illustrate. We have fixed parameters are the same
as in Fig. 3 (d2 = 0.005). In Fig. 8, we have calculated
the PDF at different times (t = 0, t = 10, t = 100,
and t = 1000), corresponding to the stationary state.
And we can see the time evolution of the PDF from a
peaked delta-function at t = 0 towards the stationary
double peak. Figure 4 shows the influence of different
cross-correlation intensity q on probability density of
population. For the negative cross-correlation intensity

(q = −0.9), the probability density as a function of n
shows the extinct state ne state. As the value of cross-
correlation intensities increases (q = 0.1), the structure
of the probability density of population exhibits two
peaks. When the q = 0.9, the transition from two peaks
to single peaks. In other words, as the cross-correlation
intensity increases, the probability density of popula-
tion changes from extinct state ne to population sur-
vival state np. We can understand that if the popu-
lation system is to remain extinct state ne, then the
cross-correlation intensity need to reduce.

Figures 5, 6 and 7 depict that probability density
of population n for different time delays τd, τb and
τg, respectively. When time delays τd=τb=τg=0.1, the
probability density of population as a function of n
exhibits two peaks, one is at ne state, and the other
is at np state. As the value of degradation delay τd

increases, the structure of the probability distribution
switches from population survival state np to extinct
state ne in the population system. However, the case
of τb = 1.0 (Fig. 6) is different from τd (Fig. 5) and τg

(Fig. 7) increase. With the increase of τb = 2.0, the phe-
nomenon of two peaks becomes more obvious. In other
words, the population survival state np and extinction
state ne coexist.

3.2 The shift time to extinction and NES

The system possesses two stable states: one is the pop-
ulation survival state (np), and another is the extinc-
tion state (ne). Environmental perturbations and time
delays present in the population system can induce
regime shifts between the two alternative stable states.
A quantity of interest is the time from the population
survival state to the extinction state. This time is a ran-
dom variable and is often referred to as the first shift
time. It is necessary for us to study the mean first shift
time from the population survival state to the extinc-
tion state. A simple but very general approach to the
classical mean first shift time problem was given in Refs.
[68], which has been extended by us for investigation
the shift time to extinction (STE) of populations. We
assume that all populations in the simulations are ini-
tial located at position n(t = 0) = np (the population
survival state). The STE T (n; a, b) is the average time
of the first exit from the interval (a, b) and satisfied the
question [69]:

−1 = F (n, nτi
)
dT (n)

dn
+

1
2
G(n, nτi

)
d2T (n)

dn2
(11)

where the drift and diffusion coefficients F (n, nτi
) and

G(n, nτi
) are given in equation (9) and (10), respec-

tively. The STE T (n) = T (np → ne) for exit from
the basin of attraction of the stable steady state at
ne (the extinction state) is obtained with the inter-
val (a, b) = (0, np) and boundary conditions given by
T ′(a; a, b) = 0 and T (b; a, b) = 0. The prime denotes
differentiation with respecting to n, with reflecting and
absorbing boundary conditions prevailing at a and b.
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(a) (b)

Fig. 2 Time series and probability density of steady-state n(t) for different noise intensity d1: 0.01, 0.05, and 0.20. The
other parameter values are μ = 0.2, σ = 3.0, λ = 1.425, d2 = 0.01, q = 0.8, τd = 0.1. As the value of d1 increases, the peak
of ne state becomes higher, and the np becomes lower

(a) (b)

Fig. 3 Time series and probability density of steady-state n(t) for different noise intensity d2: 0.003, 0.005, and 0.020. The
other parameter values are μ = 0.2, σ = 3.0, λ = 1.425, d1 = 0.03, q = 0.8, τd = 0.1. As the value of d2 increases, the peak
of np state becomes higher, and the ne becomes lower

Thus, the STE can be given by

T (np → ne) =
∫ ne

np

dn

G(n, nτi
)Pst(n)

∫ n

−∞
Pst(y)dy

(12)

Figure 9 shows the impact of the extrinsic noise inten-
sity d2 and cross-correlation intensity q between two
noises on the STE (T (np → ne)), respectively. The STE
exhibits one maximum value as d1 increase is shown in
Fig. 9a. As the extrinsic noise intensity d2 increased,
the maximum value is decreased. From Fig. 9b, we can
see that when the cross-correlation intensity q = 0.1,
there is no peak in STE. If the cross-correlation inten-
sity q increased (0.8 and 0.9), the STE exhibits a non-
monotonic behavior with a maximum as d1 increases.
This maximum for STE as a function of d1 identifies

the characteristic of the noise-enhanced stability (NES)
of the np state. This nonmonotonic behavior was first
found numerically by Hirsch et al. [70], and later by
Dayan et al. [71], but without any physical explanation.
Later, the phenomenon was observed experimentally by
Mantegna and Spagnolo [9], who named it as Noise-
Enhanced Stability (NES), having as signature a non-
monotonic behavior, with a maximum, of the average
escape time from the metastable state as a function of
the noise intensity. The NES phenomenon was theoreti-
cally explained and physically understood in the papers
[72–74]. Recently, the investigation on the stabilizing
effects of the noise was extended to the quantum con-
text, studying the dissipative dynamics of a quantum
particle moving along an asymmetric bistable potential
[75]. This maximum for STE implies that the stabil-
ity of the population survival state np can be enhanced
by the noises, and the mean lifetime of the population

123



219 Page 6 of 16 Eur. Phys. J. B (2021) 94 :219

(a) (b)

Fig. 4 Time series and probability density of steady-state n(t) for different noise intensity q =: -0.9, 0.1, and 0.9. The
other parameter values are μ = 0.2, σ = 3.0, λ = 1.425, d1 = 0.03, d2 = 0.01, τd = 0.1. As the value of q = increases, the
peak of np state becomes higher, and the ne becomes lower

(a) (b)

Fig. 5 The time series and the probability density of steady-state n(t) for different time delays τd: 0.1, 1.0, and 2.0. The
other parameter values are μ = 0.2, σ = 3.0, λ = 1.425, d1 = 0.03, d2 = 0.01, and q = 0.8. As the value of τd increases, the
peak of ne state becomes higher, and the np becomes lower

survival state np is longer than the deterministic decay
time. Above results reveal that noise intensity leads to
a np state of expression and so it can be regarded as a
control parameter of the shift time to extinction state
ne. This resonance-like behavior contradicts the mono-
tonic behavior that was predicted by Kramers theory
[76]. Simultaneously, the increase in q lead to a increase
in the STE (see Fig. 9b), i.e., the cross-correlation inten-
sity can enhance stability of the population survival
state np.

The impacts of the time delays τd, τb, and τg on
the STE can be seen in Fig. 10, respectively. The STE
first increases, reaches a maximum, and then decreases
with increasing intrinsic noise intensity d1, as shown
in Fig. 10a–c. In other words, the STE as functions of
the noise intensities (d1 exhibits a maximum, this max-
imum implies that the stability of the population sur-
vival state np can be enhanced by the noise. The height

of the maximum in the STE is decreased, is shown in
Fig. 10a. On the other hand, the peak position is shifted
to a small value of d1 when the value of τb is increased in
Fig. 10. While the height of its maximum is decreased
and its position is shifted to a small value of d1 when the
value of τg is increased (see Fig. 10). It is emphasized
that the increase of τg cannot still change STE, which
is shown in Fig. 10c. The influence of τg on the STE
of the system is the result of the interaction between
τd and τb. The maximum value not only decreases but
also shifts to a position with less noise.

3.3 Theoretical analysis and verification

Here, we provide a theoretical analysis for the quasi-
stationary probability distribution and shift time to
extinction in the modified model I (i.e., Eq. (5)) with
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(a) (b)

Fig. 6 The time series and the probability density of steady-state n(t) for different time delays τb: 0.1, 1.0, and 2.0. The
other parameter values are μ = 0.2, σ = 3.0, λ = 1.425, d1 = 0.03, d2 = 0.01, and q = 0.8. As the value of τb increases, the
peak of ne state becomes higher, and the np becomes lower

(a) (b)

Fig. 7 The time series and the probability density of steady-state n(t) for different time delays τg: 0.1, 1.0, and 2.0. The
other parameter values are μ = 0.2, σ = 3.0, λ = 1.425, d1 = 0.03, d2 = 0.01, and q = 0.8. As the value of τg increases, the
peak of ne state becomes higher, and the np becomes lower

environmental noises and time delay τd. For this case,
the effective drift and diffusion coefficients Feff(n) and
Geff(n) are given by

Feff(n) =

√

1
2πG(0)(n)τd

∫ ∞

−∞
F (n, nτd

)

exp
{

− [nτd
− n − h(0)(n)τd]2

2G(0)(n)τd

}

, (13)

Geff(n) =

√

1
2πG(0)(n)τd

∫ ∞

−∞
G(n, nτd

)

exp
{

− [nτd
− n − h(0)(n)τd]2

2G(0)(n)τd

}

(14)

with

F (n, nτd
) = h(n, nτd

) +
1
2
G′(n, nτd

), (15)

G(n, nτd
) = d1g

2
1(n, nτd

) + 2q
√

d1d2g1(n, nτd
) + d2.

(16)

and G(0)(n) = G(n, nτd
)|(nτd

=n) = d1n
2 − 2q

√
d1d2n +

d2, h(0)(n) = h(n, nτd
)|(nτd

=n) = −σ
6 n3 + λ

2 n2 − μn.
Substituting equations (15,16) into (13,14). We obtain

Feff(n) = (1 − μτd)
(

−σ

6
n3 +

λ

2
n2 − μn

)

+ d1(1 − τd)2n − q
√

d1d2(1 − τd), (17)

Geff(n) = d1(1 − τd)2n2 − 2q
√

d1d2(1 − τd)n + d2.
(18)
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Fig. 8 Probability density of n(t) for the different times t = 0, t = 10, t = 100, and t = 1000. The other parameter values
are μ = 0.2, σ = 3.0, λ = 1.425, d1 = 0.03, d2 = 0.005, q = 0.8, and τd = 0.1

From Eq. (8), the quasi-stationary probability distri-
bution function (PDF) of populations can be derived
as

Pst(n) =
N

√

Geff(n)
exp

∫ n heff(n′)
Geff(n′)

dn′

=
N

√

Geff(n)
exp

[

−Ueff(n)
d1

]

(19)

where N is a normalization constant and Ueff(n) is
the effective potential function, which can be expressed
exactly as:

Ueff(n) = −d1

∫ n (1 − μτd)
(
− σ

6 n′3 + λ

2 n′2 − μn′
)

d1(1 − τd)2n′2 − 2q
√

d1d2(1 − τd)n′ + d2
dn′

(20)

Integrating Eq. (20), we obtain

Ueff(n) = β1n
2 + β2n

+ β3 ln |(1 − τd)2n2 − 2(1 − τd)q
√

dn + d|

+
β4

(1 − τd)
√

d(1 − q2)
arctan

(1 − τd)n − q
√

d
√

d(1 − q2)
(21)

with

d = d2/d1,

β1 =
σ(1 − μτd)
12(1 − τd)2

,

β2 =
σq

√
d(1 − μτd)

3(1 − τd)3
− λ(1 − μτd)

2(1 − τd)2
, (22)

β3 =

[

σq
√

d(1 − μτd)
3(1 − τd)

− λ

2

]

q
√

d(1 − μτd)
(1 − τd)3

+
[

μ − σd

6(1 − τd)2

]

1 − μτd

2(1 − τd)2
, (23)

β4 =
[

μ − σd

6(1 − τd)2

]

q
√

d(1 − μτd)
(1 − τd)

+

[

σq
√

d

3(1 − τd)
− λ

2

]

d(2q2 − 1)(1 − μτd)
(1 − τd)2

.

(24)

In addition, the impacts of noises and time delay on
the bifurcation diagram are given by the maxima of
the PDF. The maxima of the PDF are obtain from the
general equation Feff(n) − G′

eff(n) = 0. According to
equations (13, 14), this leads to
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(a) (b)

Fig. 9 The STE as a function of the intrinsic noise intensity d1 and for different values of extrinsic noise intensity d2 and
cross-correlation intensity q. q = 0.9 in (a) and d2 = 0.1 in (b). The other parameter value are μ = 0.2, σ = 3.0, λ = 1.425,
and τd = 0.1

(1 − μτd)
(

−σ

6
n3 +

λ

2
n2 − μn

)

− d1(1 − τd)2n

+ q
√

d1d2(1 − τd) = 0. (25)

Using the steepest descent method, the explicit
expression for the SET (12) is given by

T (np → ne)

=
2π

√|U ′′(nr)U
′′(np)|

exp
[

Ueff(nr) − Ueff(np)
d1

]

(26)

where U(n) and Ueff(n) are given by Eqs. (2) and (21),
respectively.

To check the credibility of the numerical simula-
tions in population system subject to the noises and
time delay, let us compare the numerical simulations
(Figs. 2, 3, 4, 5) with approximate theoretical results
(Fig. 11a–d). Here, we provide a theoretical analysis
for the stationary probability distribution in population
system with time delay τd. The numerical simulations
in the probability distributions are consistent with the
approximate theoretical results, which implies that the
numerical simulations in population system with time
delays and noises are credible.

The phenomenon of noise-induced transition [77] and
phase transition [78,79] have been shown in other non-
linear systems, here the noise-induced transition exists
in the population system. The impacts of the extrin-
sic noise intensity d2 on the bifurcation diagram can
be seen in Fig. 12a through equation (21). When the
extrinsic noise intensity is small(d2 = 0.003) and μ1 <
μ < μ2, the Eq. (21) has three roots. In other words,
the system corresponding SPD is a bimodal struc-
ture. As the value of d2 increases (d2 = 0.030) and
μ1 < μ < μ

′′
1 , the Eq. (21) has one root and the corre-

sponding SPD is a unimodal structure. However, if the
value of μ increase, we can see that the structure of the

SPD is changed from unimodal to bimodal when d2 is
increased.

Similarly, it is shown from Fig. 12b that the impacts
of the time delay τd on the SPD and bifurcation dia-
gram through equations (21). When the μ ∈ Δμ1 and
τd = 0.1, equation (21) has one root and the corre-
sponding SPD has an un unimodal structure, as shown
in Fig. 12b. As the value of τd increasing (see τd = 0.9 in
Fig. 12b), Eq. (21) has three roots and the correspond-
ing SPD is a bimodal structure, i.e., the structure of
the SPD is changed from unimodal to bimodal when τd

is increased. Therefore, the impacts of the time delay
on the SPD and bifurcation diagram are consistent.

The three-dimensional curves of the STE as functions
of n and noises (or time delay) are shown in Fig. 13,
respectively. Obviously, the STE as functions of the
noise intensities d1 exhibits a maximum, this maximum
implies that the stability of the population state can be
enhanced by the noise [9–13,64,65]. When the value
of d2 is larger, the peak value is higher (Fig. 13a). In
Fig. 13b, we can see that the cross-correlation intensity
q has a great influence on the change of STE. When
the value of q increases, the maximum value of STE
increases significantly. The time delay τd promotes the
increase of the maximum value of STE, as shown in
Fig. 13c. These results can also correspond well with
numerical simulation results, as shown in Figs. 9 and
10.

3.4 The SR

We consider a simple periodic form ˜A cos ωt, A and ω
are amplitude and frequency of periodic signal, respec-
tively. Therefore, Eq. (5) can be rewritten as

dn

dt
= −σ

6
n3 +

λ

2
n2 − (μ + ξ1(t))nτd

+ ξ2(t) + ˜A cos ωt

(27)

To investigate the SR in a population system, we
need the SNR of the system. First, we derive transition
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(a) (b)

(c)

Fig. 10 The STE as a function of d1 with different time delays τd (a), τb (b), and τg (c). The other parameter value are
μ = 0.2, σ = 3, λ = 1.425, q = 0.9, and d2 = 0.1

rates between two states and then calculate the SNR
of the system. Using the steepest descent method [68],
the explicit expression for the (STE) T1,2 of the process
n(t) to reach the state np,e with initial condition ne,p

is given by

Tnp−ne
= T1 =

2π
√|U ′′(nr)U

′′(np)|
exp

[

Ueff(nr, t) − Ueff(np, t)
d1

]

,

Tne−np
= T2 =

2π
√|U ′′(nr)U

′′(ne)|
exp

[

Ueff(nr, t) − Ueff(ne, t)
d1

]

. (28)

Note that the above result is valid only when the
intensity of two types of noise, measured by d1 and
d2, is small in comparison with the energy barrier
height: d1, d2 < ΔU = |U(nr, t) − U(np,e, t)|. This pro-
vides restriction on the parameters (i.e., d1, d2, ˜A,ω, et
al.). We must point out that the following results are
restricted in valid regions. Therefore, we can obtain the

transition rates

Wnp−ne
= W1 =

√|U ′′(nr)U
′′(np)|

2π

exp
[

Ueff(np, t) − Ueff(nr, t)
d1

]

,

Wne−np
= W2 =

√|U ′′(nr)U
′′(ne)|

2π

exp
[

Ueff(ne, t) − Ueff(nr, t)
d1

]

. (29)

where U
′′

is the second derivative of U with respect to
n and the U(n) is given by Eq. (2). The Ueff(n, t) is to
rewrite Ueff(n, t) [Eq.(20)] after considering the periodic
signal, the method is as in Ref. [45].

We start by considering a system described by a dis-
crete random dynamical variable n that adopts two pos-
sible values: np and ne, with probabilities np,e, respec-
tively. The probabilities satisfy the condition n1 +n2 =
1. The master equation for our problem is

dn1

dt
= −dn2

dt
= W2(t)n2(t) − W1(t)n1(t)

= W2(t) − [W2(t) + W1(t)]n1(t) (30)
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Fig. 11 The steady-state probability distribution of population as a function of n(t) for different d1 (a), extrinsic noise
intensities d2 (b), cross-correlation intensities q between two noises (c), and time delay τd (d). The other parameter values
are μ = 0.2, σ = 3, λ = 1.425, a d2 = 0.01, q = 0.8, τd = 0.1; b d1 = 0.03, q = 0.8 and τd = 0.1; c d1 = 0.03, d2 = 0.01 and
τd = 0.1; d d1 = 0.03, d2 = 0.01 and q = 0.8

(a) (b)

Fig. 12 Bifurcation diagram for the protein concentration n as a function of μ for different extrinsic noise intensities d2

(a) and different time delay τd (b). The other parameter values are σ = 3, λ = 1.425, a d1 = 0.03, q = 0.8, τd = 0.1; b
d1 = 0.03, d2 = 0.03, q = 0.8
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Fig. 13 Three-dimensional curve of the STE affected by different noises and time delay. The parameter values are μ = 0.2,
σ = 3.0, λ = 1.425, a q = 0.8, τd = 0.1; b d2 = 0.03; τd = 0.1; c d2 = 0.03, q = 0.8

where W1,2 are the transition rates out of the np,e

states. Since we assume the signal amplitude is small
enough (i.e., ˜A � 1), the transition rates W1,2(t) can
be expanded up to the first order of ˜A as

W1(t) = μ1 − ν1
˜A cos ωt,

W2(t) = μ2 + ν2
˜A cos ωt, (31)

where

μ1 = W1

∣
∣
∣
S(t)=0

, ν1 = − dW1

dS(t)

∣
∣
∣
S(t)=0

, S(t) = Ã cosωt,

μ2 = W2

∣
∣
∣
S(t)=0

, ν2 =
dW2

dS(t)

∣
∣
∣
S(t)=0

(32)

Then, the SNR in terms of the output signal power
spectrum can be given by

SNR =
˜A2π(ν2μ1 + ν1μ2)2

4πμ1μ2(μ1 + μ2)
. (33)

By virtue of the expression of SNR [Eq. (33)] as a
function of intrinsic noise intensity d1 and the cross-
correlation intensity q, time delay τd are plotted in the
following Fig. 14a, b. In Fig. 14a, SNR as a function
of d1 exhibits a maximum for the negative value of q.
The existence of the maximum in the SNR as a func-
tion of d1 are the identifying characteristics of the SR
phenomenon. As the value of q is continues increas-
ing, the maximum in the SNR as a function of d1 is
decreased, i.e., the positive cross-correlation intensity
between two noises weakens the SR phenomenon. In
Fig. 14b, as value of τd increases, maximum in SNR as
a function of d1 decreases. Similarly, the time delay τd

also weakens the SR phenomenon.
The SNR as a function of extrinsic noise intensity d2

and the cross-correlation intensity q, time delay τd are
plotted in Fig. 15a, b. Figure 15 shows that SNR as a
function of d2 exhibits only a maximum. The maximum
in SNR as a function of d2 is decreased as value of q and
τd increase, i.e., cross-correlation intensity q and time
delay τd weaken SR phenomenon. In Fig. 16, the SNR
as a function of intrinsic noise intensity d1 and extrinsic
noise intensity d2 are plotted for different value of the

123



Eur. Phys. J. B (2021) 94 :219 Page 13 of 16 219

Fig. 14 The SNR as a function of intrinsic noise intensity d1 for cross-correlation intensity q (a) and time delay τd (b).
The other parameter values are μ = 0.2, σ = 3.0, λ = 1.425, d2 = 0.001, A = 0.1, a τd = 0.9; b q = −0.5

Fig. 15 The SNR as a function of extrinsic noise intensity d2 for cross-correlation intensity q (a) and time delay τd (b).
The other parameter values are μ = 0.2, σ = 3.0, λ = 1.425, d1 = 0.2, A = 0.1, a τd = 0.9; b q = −0.5

Fig. 16 The SNR as a function of signal amplitude A for intrinsic noise intensity d1 (a) and extrinsic noise intensity d2

(b). The other parameter values are μ = 0.2, σ = 3.0, λ = 1.425, τd = 0.9, q = −0.5, a d2 = 0.001; b d1 = 0.2
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signal amplitude A. The interesting point here is that,
when the absolute value of signal amplitude A increases,
a maximum value appears. If the value of A is close to
0, the maximum value disappears. In other words, the
signal amplitude | A | enhances the SR phenomenon.

4 Conclusions

The main point of our work is that if we consider
the three different time delays, e.g., model I, model
II and model III, then noises and time delays induce
regime shifts between the two alternative stable states,
typically the shift process can be further accelerated
with increasing time delay. The deterministic potential
related to the deterministic force of Eq. (2) has two
steady stable states, which correspond to the popula-
tion state and the extinction state, respectively. We are
interested in how the shift from one state to the other on
account of the noises and time delayed. The main find-
ing is that the d1 or τd can induce the shift from np state
to ne one. In addition, the time delay τb and τg also pro-
mote the transition from the np state to the ne state.
However, the opposite is that as the d2 or q increases,
the ne state will switch to np state. In other words,
when the d2 or q increases, enhances the probability
density of np state. To explore the mechanism of trans-
formation between the two states, we have also studied
STE of populations. The main finding is that the STE
as a function of the noise intensity (d1) can exhibit a
maximum, which indicates the existence of an appropri-
ate noise intensity leading to a maximal STE. This non-
monotonic behavior is a signature of the noise enhanced
stability phenomenon (NES) observed in many physi-
cal and complex metastable systems [64] and here in
a population dynamics model, in the presence of time
delay and environmental noise sources. In particular,
the maximum for STE increases (or decreases) as q (or
τd) increases. It was demonstrated that a shift process
can be induced by the noises d1 and d2, cross-correlation
intensity q, time delay τd. Furthermore, effects of the
cross-correlations intensity, time delay and signal inten-
sity on SNR as a function of noise intensities are ana-
lyzed. SNR as a function of intrinsic noise intensity
exhibits maximum, the maximum is the identifying
characteristics of SR phenomenon. Increasing q and τd

are weaken SR, conversely, increasing | A | enhances SR
phenomenon in population system.

Next, to check the numerical simulations of the prob-
ability distributions of population levels and shift time
to extinction the are presented, and are in agreement
with the theoretical results. The numerical simulations
in the probability distributions are consistent with the
approximate theoretical results, which implies that the
numerical simulations in population system with time
delays and noises are credible.

In summary, time delay and noise widely exit in
nature and often change fundamentally dynamics of
the system. Our results shown that the time delay and
noise cross-correlation intensity induce the structure of

the probability density of population transfers from one
state to the other. Moreover, we study the effects of the
different time delay and noise cross-correlation intensity
on the STE, NES and SR with a periodic signal. From
the above findings, we can obtain further understand-
ing of the roles of the time delay and cross-correlation
intensity in this population model. As a result, we hope
that these stimulate analysis could help understanding
the state transitions in the population model. For the
practical problems faced in real life, we will control the
state of the dynamic system.
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