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Abstract. We perform a theoretical analysis of the structural and electronic properties of sodium potassium
niobate K1−xNaxNbO3 in the orthorhombic room-temperature phase, based on density-functional theory
in combination with the supercell approach. Our results for x = 0 and x = 0.5 are in very good agreement
with experimental measurements and establish that the lattice parameters decrease linearly with increasing
Na contents, disproving earlier theoretical studies based on the virtual-crystal approximation that claimed
a highly nonlinear behavior with a significant structural distortion and volume reduction in K0.5Na0.5NbO3

compared to both end members of the solid solution. Furthermore, we find that the electronic bandgap
varies very little between x = 0 and x = 0.5, reflecting the small changes in the lattice parameters.

1 Introduction

Piezoelectric ceramic materials are central to a wide
range of technical devices, such as sensors, actua-
tors, crystal oscillators, and ultrasonic transducers. The
most common piezoelectric ceramic used for commer-
cial purposes is lead zirconate titanate (PbZrxTi1−xO3,
PZT), which is favored due to its large piezoelectric
coefficient, physical strength, and relatively low manu-
facturing costs [1]. However, its toxicity has prompted
an increasingly urgent search for safer, lead-free alter-
natives [2]. Among the possible substitutes, potassium
sodium niobate (K1−xNaxNbO3, KNN) is regarded as
particularly promising owing to its excellent piezoelec-
tric properties that are comparable with PZT [3,4] and
its high Curie temperature, which is a prerequisite for
many applications.

The solid solution KNN is part of the perovskite fam-
ily and exhibits a multitude of different phases depend-
ing on composition and temperature [5–8]. Therefore,
elucidating the complex phase diagram has been a cen-
tral thrust of numerous experimental investigations. At
room temperature, pure potassium niobate (KNbO3),
corresponding to x = 0, has a ferroelectric orthorhom-
bic crystal structure that originates from a symmetry-
lowering distortion of the cubic aristotype. This config-
uration remains stable if up to 52.5 mole % of K are
replaced by Na, but successive phase transitions occur
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at x = 0.525, 0.675, and 0.825 [6]. The resulting struc-
tures, originally assumed to be orthorhombic [5], are
now identified as ferroelectric monoclinic [7,8]. Finally,
above x = 0.98, it changes into the antiferroelectric
orthorhombic structure of sodium niobate (NaNbO3).
As a function of temperature, KNN undergoes a poly-
morphic phase transition to one of several ferroelectric
tetragonal structures at about 220 ◦C and further to a
paraelectric cubic structure at about 430 ◦C [7]. These
transition temperatures are essentially independent of x
in pure KNN, except for very Na-rich samples, but they
can be tuned to a great extent by the addition of other
elements [9], thus opening a route to design KNN-based
piezoceramics with improved functional properties [10].

Although the symmetry of the crystal structure
changes at certain values of the compositional parame-
ter x in KNN, it is generally believed that these phase
transitions are not accompanied by major alterations of
the external lattice parameters, but chiefly reflect inter-
nal rearrangements of the atomic positions inside the
existent unit cells, such as different tilt patterns of the
oxygen octahedra and cation displacements [8]. In par-
ticular, although some experimental studies identified
small irregularities in the lattice parameters of KNN
in a very narrow compositional region around the sup-
posed phase boundary near x = 0.525 [11], which are
indicative of a structural transformation, no systematic
trends are visible on a larger scale. For example, Tellier
et al. [12], who used X-ray diffraction to measure the
lattice parameters of KNN in the range 0.4 ≤ x ≤ 0.6 in
steps of 0.02, observed that the three lattice constants
of the rectangular orthorhombic unit cell increase lin-
early with the potassium content, with no discernible
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anomalies. Consequently, the variation of the unit-cell
volume is also linear. In the alternative rhombic metric,
which utilizes two length parameters and one angle β >
90◦ instead, the latter decreases towards a more sym-
metrical orthorhombic unit cell with increasing potas-
sium content. The relation between β and x is nonlin-
ear, featuring a shallower slope on the sodium-rich side
of the investigated compositional range, but the abso-
lute variation is extremely small with an overall drop
from 90.34◦ at x = 0.6 to 90.32◦ at x = 0.4. Very similar
results were obtained by Wu et al. [13], who measured
the lattice parameters over an even larger compositional
range and likewise observed a continuous, linear behav-
ior for 0.4 ≤ x ≤ 0.6; in addition, they pointed out that
anomalies outside this interval, especially for large x,
correlate with deviations in the grain-size distribution
of the analyzed nanoparticles, a factor that may also
play a role in other studies.

As the apparent inconsistencies between some of
these experimental studies are still debated and may
be linked to technical details of the sample fabrica-
tion, the expectation grows that numerical simulations
might provide answers. In this respect, recent first-
principles calculations for KNN have challenged the pic-
ture of weakly, monotonically varying lattice parame-
ters. In particular, Liu et al. [14] investigated the geo-
metric structure, total energy, and electronic properties
of three competing phases based on density-functional
theory (DFT) in the full range 0 ≤ x ≤ 1 and claimed
that the variation of the lattice parameters of the
orthorhombic structure is highly nonlinear. Most sur-
prisingly, their results suggest that the volume of the
unit cell is minimal at x = 0.5, where the composi-
tional disorder is largest, and significantly smaller than
either at x = 0 or at x = 1. This is accompanied by a
large distortion, as β peaks at 94◦ for x = 0.5, although
both pure potassium niobate and pure sodium niobate
have angles close to 90◦. Furthermore, the electronic
bandgap derived within DFT reaches 2.7 eV at x = 0.5,
compared to 2.2 eV for both end members of the solid
solution.

In another computational study of the orthorhombic
and tetragonal phases in the interval 0.540 ≤ x ≤ 0.570,
Yang et al. [15] found large, nonmonotonic changes of
up to 0.1 Å in the lattice parameters between x val-
ues separated by merely 0.005, and overall variations
of 0.05 eV in the bandgap across this narrow composi-
tional range. This suggests an extreme sensitivity with
respect to the K:Na ratio that not only contradicts the
experimental evidence [12,13] but also the slow, albeit
large, variation predicted by Liu et al. [14] using very
similar theoretical methods. These discrepancies remain
as yet unresolved.

In general, DFT is regarded as a highly accurate
computational scheme for predicting crystal structures
from first principles, i.e., without any empirical param-
eters, and although it underestimates the absolute size
of electronic bandgaps [16], trends with respect to struc-
tural or compositional variations are typically obtained
reliably. However, the modeling of solid solutions like

KNN, where the potassium and sodium atoms are dis-
tributed randomly, poses a special challenge, because
most implementations require three-dimensional peri-
odic boundary conditions. In this situation, DFT stud-
ies of disordered systems often resort to the virtual-
crystal approximation (VCA), which was also employed
in Refs. [14] and [15]. In this approach, the two dis-
tinct atomic species are replaced by merely one virtual
atom type created by mixing the two pseudopotentials
of the original elements in the required ratio [17]. A
single primitive unit cell then suffices to represent the
solid solution, making the calculations extremely effi-
cient. While the VCA is generally trusted and often
describes the properties of disordered solids, including
perovskites [17,18], correctly, it ignores the true local
interactions that act between the real atoms, which may
lead to deviations from supercell calculations [19]. The
electronic properties, in particular, are very sensitive to
this. The most serious possible pitfall of the VCA, how-
ever, is that the automatic mixing of pseudopotentials is
prone to produce so-called ghost states [20], unphysical
extra bound states, even if the underlying pure pseu-
dopotentials are well behaved. This leads to incorrect
orbital occupancies and hence to seemingly converged
but false results. Therefore, the VCA must always be
applied with caution and carefully validated.

To examine the VCA as a possible explanation for the
discrepancy between the theoretical results by Liu et al.
[14] as well as Yang et al. [15] on the one hand and the
experimental measurements [12,13] on the other hand,
we avoid the VCA in this work and instead choose the
supercell approach to calculate the lattice parameters
and the electronic bandgap of KNN. We focus specif-
ically on K0.5Na0.5NbO3, denoted as KNN50 in the
following, which has an outstanding piezoelectric coef-
ficient [5] due to its proximity to the morphotrophic
phase boundary at x = 0.525 and is, therefore, of prin-
cipal interest for technical applications. In addition, the
discrepancy between the previously published experi-
mental and theoretical results is largest at this point.

Compared to the VCA, the supercell approach is
computationally more demanding, because it requires
larger simulation cells containing the proper ratio of K
and Na atoms, whose spatial distribution should ideally
be as close as possible to the statistical average over all
possible random structures [21]. To avoid an excessive
computational cost, we follow a different, less expensive
route in this work by selecting a set of six configurations
that possess a high degree of periodic ordering and can
be embedded in relatively small supercells but never-
theless span a wide variety of local chemical environ-
ments. This approach is validated a posteriori by the
fact that our results for KNN50 turn out to be insen-
sitive to the actual atomic arrangement and agree well
for all configurations.

This paper is organized as follows. In Sect. 2, we
give an overview of our computational method, includ-
ing the selected supercell configurations that we use for
KNN50. In Sect. 3, we then present our results and com-
pare the calculated lattice parameters and electronic
bandgaps with the available theoretical and experi-
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Fig. 1 a Primitive unit cell of orthorhombic KNbO3, b c-
stacked and c a-stacked unit cell for selected configurations
of K0.5Na0.5NbO3 generated by doubling the primitive cell
along c or a and replacing one of the two K atoms by a Na
atom

mental data. Finally, we summarize our conclusions in
Sect. 4.

2 Computational method

The solid solution K0.5Na0.5NbO3 crystallizes in the
same perovskite structure as KNbO3 [7], which is shown
in Fig. 1a. The perfect cubic aristotype is realized
above 430 ◦C and undergoes a succession of symmetry-
lowering deformations as the temperature decreases,
first to a tetragonal phase and then to the room-
temperature orthorhombic phase. The orthorhombic
geometry refers to a rectangular unit cell containing
two formula units (10 atoms), which is characterized
by three distinct edge lengths oriented along the sym-
metry axes of the crystal structure. Alternatively, it
can also be described in terms of the primitive unit
cell, which contains one formula unit (5 atoms) and
exhibits a rhombic symmetry [12,22]. It has the shape
of a right prism with a rhombus as base and is charac-
terized by two length parameters and one obtuse angle.
Further adding to the confusion, different notation sys-
tems are in common use: if the axis perpendicular to
the other two is designated as b, the space group is
labeled Bmm2. This convention was adopted, e.g., in
Ref. [12]. If this axis is chosen as a instead, the space
group becomes Amm2. In this work, however, we fol-
low yet another notation established in Refs. [14,15] to
facilitate a direct comparison. In this system, the axis
perpendicular to the other two is c, the edges of the
rhombic base are a = b, and the angle between the a
and b axes is β > 90◦, as illustrated in Fig. 1a.

To model KNN50 in the orthorhombic phase, we
adopt the supercell approach. The general recipe to

Table 1 Position of the K and Na atoms inside the unit cell
and choice of the lattice translation vectors for the six con-
figurations used to model K0.5Na0.5NbO3 in this work. The
vectors a , b, and c span the primitive unit cell of KNbO3

as depicted in Fig. 1a

Configuration K Na Lattice vectors

1 0 c a + c, b + c, 2c
2 0 c a , b + c, 2c
3 0 c a , b, 2c
4 0 a 2a , b + a , c + a
5 0 a 2a , b + a , c
6 0 a 2a , b, c

set up supercells is to repeat the primitive unit cell
of KNbO3 along one or more axes, so that one obtains
a bigger cell with a larger number of atoms, and then
replace half of the potassium atoms by sodium atoms.
For large cell volumes, this leads to a vast number
of possible configurations and hence to computational
costs that are disproportionate in the context of this
work, however. Instead, we only double the unit cell
along one direction but use different combinations of
lattice translation vectors to generate various possible
crystal structures from these building blocks. In the
example shown in Fig. 1b, the primitive unit cell is dou-
bled along the c axis. After one of the two potassium
atoms is substituted, this may be used to build a con-
figuration where the K and Na atoms are stacked in
layers perpendicular to the c axis. In Fig. 1c, the prim-
itive unit cell is repeated along the a direction instead,
which allows, for example, to construct layer structures
perpendicular to this axis. We note that a repetition
along the b direction need not be considered explicitly,
because the a and b axes are equivalent in the rhombic
symmetry.

By combining the c-stacked cell of Fig. 1b, where the
K atom is positioned at 0 and the Na atom at c, and
the a-stacked cell of Fig. 1c, where the K and the Na
atom are located at 0 and a , respectively, with the sets
of lattice translation vectors listed in Table 1, we arrive
at a total of six configurations.

In the configurations 1 and 4, the K and Na atoms
alternate along each of the three basis vectors a , b, and
c that define the edges of the primitive unit cell.

In the configurations 2 and 5, the K and Na atoms
form chains along a and c, respectively, but alternate
along the other two directions.

In the configurations 3 and 6, the K and Na atoms
are stacked in alternating layers perpendicular to c and
a , respectively.

The configurations 1 and 4 actually correspond to
the same physical system but are treated separately
because the underlying unit cells exhibit different sym-
metries and thus allow a consistency check between
calculations based on either the c-stacked or the a-
stacked unit cell. The other configurations are physi-
cally distinct and visualized in Fig. 2. Instead of a single
extensive supercell designed to model the solid solu-
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Configuration 1 (4) Configuration 2 Configuration 3

Configuration 5 Configuration 6

c

b
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Fig. 2 Crystal structures of the six configurations of K0.5Na0.5NbO3 considered in this work. The color scheme is the same
as in Fig. 1. The black lines indicate the unit cell spanned by the lattice translation vectors listed in Table 1. Configuration
4 represents the same physical system as configuration 1, differing only in the choice of the lattice translation vectors, and
is not illustrated separately

tion KNN50 as realistically as possible, we thus have
an ensemble of diverse but individually simpler struc-
tures covering a variety of local crystal environments, in
which the six nearest alkali-metal neighbors of each K or
Na atom comprise either six (configurations 1, 4), four
(configurations 2, 5), or two (configurations 3, 6) mem-
bers of the other species. Together with data of pure
potassium and sodium niobate, these are expected to
provide meaningful brackets for the lattice parameters
of KNN50 that may be compared with experimental or
other theoretical values. Indeed, as we show below, the
results are remarkably insensitive to the actual configu-
ration, which we take as further a posteriori justification
for our approach.

The Vienna Ab initio Simulation Package (VASP)
[23], a plane-wave implementation of DFT, is used to
perform the calculations in this study. The electron–ion
interaction is described within the projector-augmented-
wave (PAW) scheme [24,25]. The K 3s and 3p, Na 2s
and 2p, and Nb 4s and 4p electrons from inner occu-
pied shells are explicitly treated as valence states. For
the parametrization of the exchange-correlation energy,
we choose the PBEsol generalized gradient approxima-
tion [26], which we previously tested against a range
of other functionals and found to be highly accurate
for KNbO3 [22,27] as well as other alkali-metal nio-
bates [28]. Independently, a similar assessment was also
reported specifically for NaNbO3 [29].

The electronic wave functions are expanded into
plane waves up to a kinetic energy of 600 eV. For
the optimization of the lattice parameters, we select

a shifted regular mesh of 6 × 6 × 6 k points to sample
the Brillouin zone of pure KNbO3, corresponding to 6
× 6 × 3 (3 × 6 × 6) k points for configurations based
on the c-stacked (a-stacked) unit cell. All internal and
external degrees of freedom are relaxed until the forces
on each atom are smaller than 0.001 eV/Å. To deter-
mine the electronic bandgap, we switch to an unshifted
4 × 4 × 2 (2 × 4 × 4) k -point mesh centered at Γ, which
includes the special high-symmetry k points where the
band edges are located. The bandgap is then obtained
within DFT from the difference between the Kohn–
Sham eigenvalues of the highest occupied valence-band
state and the lowest unoccupied conduction-band state.

3 Results and discussion

3.1 Lattice parameters

To study the geometrical structure of the KNN50 solid
solution, we consider the six different configurations
described in the previous section. In a first step, we
fill all alkali-metal positions with potassium atoms and
perform a full structural relaxation. Although all con-
figurations describe the same physical system in this
case, pure KNbO3, the calculations themselves are tech-
nically not equivalent, because the distinct choices of
primitive lattice translation vectors listed in Table 1
imply differing applicable symmetry operations. For
example, configurations 4, 5, and 6 do not enforce b = a,
because the underlying a-stacked cell, in contrast to
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Table 2 Calculated lattice parameters a, b, and c in Å, β in degrees, and equilibrium unit-cell volume V in Å3 for
orthorhombic KNbO3, modeled using the six configurations considered in this work. The last row contains room-temperature
experimental data for comparison. The calculated value of V is slightly smaller because it does not include thermal expansion

Configuration a b (a + b)/2 c β V

1 4.019 4.019 4.019 3.962 90.16 64.00
2 4.019 4.019 4.019 3.962 90.16 64.00
3 4.019 4.019 4.019 3.962 90.16 64.00
4 4.019 4.019 4.019 3.962 90.16 64.01
5 4.021 4.017 4.019 3.962 90.16 64.00
6 4.021 4.017 4.019 3.962 90.16 64.00
Expt.a 4.035 4.035 4.035 3.973 90.27 64.64

aReference [30]

Table 3 Optimized lattice parameters a, b, and c in Å, β in degrees, and equilibrium unit-cell volume V in Å3 for KNbO3,
NaNbO3, and K0.5Na0.5NbO3 in the six configurations considered in this work, compared to experimental values

Configuration a b (a + b)/2 c β V

KNbO3 4.019 4.019 4.019 3.962 90.16 64.00
1 3.994 3.994 3.994 3.939 90.30 62.83
2 4.024 3.968 3.996 3.932 90.26 62.79
3 3.994 3.994 3.994 3.936 90.27 62.80
4 3.998 3.991 3.995 3.938 90.30 62.84
5 3.998 3.991 3.994 3.937 90.27 62.81
6 4.013 3.974 3.993 3.939 90.27 62.80
Expt.a 4.003 4.003 4.003 3.945 90.33 63.22
NaNbO3 3.970 3.970 3.970 3.912 90.44 61.66

aReference [12]

the c-stacked cell, lacks the appropriate mirror sym-
metry. Therefore, we take the average (a + b)/2 as the
actual, physically meaningful value. The calculated lat-
tice parameters a, b, c, and β as well as (a + b)/2 and
the equilibrium unit-cell volume V are listed in Table
2. The fact that the results for all configurations are
almost identical indicates a very small error bar due
to the different geometrical setups and validates our
computational scheme. Compared to the experimental
values [30], which are measured at room temperature,
the lattice parameters are underestimated, because our
calculations refer to zero temperature and ignore the
effects of thermal expansion. If the measured data are
extrapolated to T = 0, then the quantitative agreement
is indeed excellent [27].

Starting from the relaxed geometries, we next replace
50% of the K atoms with Na atoms, which yields the
crystal structures illustrated in Fig. 2. For each con-
figuration, we again reoptimize the lattice parameters
and the atomic positions. The calculated results for a,
b, c, and β as well as the equilibrium unit-cell volume
V are listed in Table 3. The other angles of the unit
cell are also allowed to vary but turn out numerically
as 90◦ and are not tabulated. As the spatial arrange-
ment of the K and Na atoms reduces the symmetry with
respect to the pure KNbO3, the a and b axes are not
equivalent in most of the six configurations of KNN50
that we consider, and the different values of the lat-

tice constants hence reflect true anisotropies. However,
there is always a matching mirror system where the
roles of a and b are reversed, which contributes equally
to the solid solution. In the mirror system of configu-
ration 2, for example, the K and Na atoms form chains
along b instead of a . To take the equal contribution
of the mirror system into account, we again take the
average (a + b)/2, which is also included in Table 3, as
the actual prediction for the lattice parameter corre-
sponding to the edge length of the rhombic base of the
primitive unit cell. Compared to the experimental data
[12] for x = 0.5 featured in Table 3, we note that our
results are in very good agreement with the measured
lattice constants.

In addition, Table 3 shows our results for the two
end members KNbO3 and NaNbO3 of the solid solution
in the orthorhombic phase. In the absence of atomic
disorder, the primitive rhombic unit cell can be used in
these cases. The values for KNbO3 equal those in Table
2.

In Fig. 3, we display our calculated lattice parameters
together with the experimental data by Fontana et al.
[30] for x = 0 as well as Tellier et al. [12] and Wu et al.
[13] for x > 0, and with the theoretical results by Liu et
al. [14] and Yang et al. [15] as a function of the Na con-
tents x. As explained before, our values for a shown in
this figure are the averaged values listed as (a+ b)/2 in
Tables 2 and 3. No experimental results are available for
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Fig. 3 Calculated lattice constants a and c, angle β, and
the unit-cell volume V , compared to experimental data by
Fontana et al. [30] for x = 0 as well as Tellier et al. [12] and
Wu et al. [13] for x > 0, and to theoretical results by Liu
et al. [14] and Yang et al. [15]. Our values for a displayed
in this figure are the averaged values listed as (a + b)/2 in
Tables 2 and 3

NaNbO3, because the ferroelectric orthorhombic crystal
structure considered here becomes energetically unsta-
ble for a high Na contents and can only be studied in
theoretical simulations.

As an important observation, we note that our results
for the six different configurations of KNN50 are all very
similar, confirming that they are essentially insensitive
to the detailed spatial arrangement of the alkali-metal
atoms. Furthermore, our results for pure KNbO3 (x =
0) as well as pure NaNbO3 (x = 1) agree with those
from Ref. [14], but there are significant deviations for
solid solutions with intermediate x, especially at x =
0.5.

According to the experiments, the lattice constants
a and c decrease linearly as x increases; the extra-
polation to x = 0 coincides with the values from Ref.
[30]. Our own results confirm this behavior: The cal-
culated values are in very good agreement with the
experiments, except for the small systematic underesti-
mation, identical at x = 0 and x = 0.5, that stems from
the neglect of thermal expansion in our computational
scheme. On the other hand, we find no evidence for a
strong variation of the lattice constants as observed in
Ref. [14]. In particular, the large drop in c, whose min-
imum at x = 0.5 is 2.5% smaller than at x = 0, is not
reproduced by our calculations. Besides, our results also
contrast with the data from Ref. [15], which suggest a
high sensitivity of the lattice constants with respect to
the Na contents; however, the latter refer to slightly
larger values 0.540 ≤ x ≤ 0.570 near the phase bound-
ary and are hence not necessarily in conflict with our

Table 4 Fundamental bandgap of K0.5Na0.5NbO3,
obtained within DFT using the PBEsol exchange-
correlation functional, in eV for the six configurations
considered in this work

Configuration Bandgap

KNbO3 1.929
1 1.951
2 1.878
3 1.953
4 1.951
5 1.946
6 1.896
NaNbO3 2.009

results, although they contradict the experimental mea-
surements [12,13].

For the angle β, the experiments indicate only a
minor increase from 90.27◦ at x = 0 [30] to 90.33◦
at x=0.5 [12]. Our results are in excellent quantita-
tive agreement with the measured data and once more
in stark contrast to Ref. [14], which predicted a huge
increase of β at intermediate x with a maximum of 94◦
at x = 0.5. No evidence of such a large, nonmonotonic
variation is found here.

The dependence of the unit-cell volume V = a2c sin β
on x shown in the bottom panel of Fig. 3 follows from
that of the previously discussed lattice parameters.
Except for the neglect of thermal expansion, our results
are again in very good agreement with the experimental
data, which exhibit an essentially linear decrease [12],
whereas Ref. [14] found a minimum at x = 0.5 that is
significantly smaller than the unit-cell volume of both
end members.

Altogether, although our treatment of an ensemble of
selected configurations is not designed to yield any defi-
nite values for the lattice parameters of KNN50, we sug-
gest a = 3.994 Å, c = 3.936 Å, and β = 90.27◦ here as
the best zero-temperature estimates within DFT using
the PBEsol exchange-correlation functional, obtained
from a weighted average of the results in Table 3 where
configurations with physically distinct mirror systems
are counted twice.

3.2 Bandgap

The electronic bandgap of a material is a key quan-
tity for optical applications, another technological area
where potassium sodium niobate is frequently employed
due to its nonlinear optical properties, and therefore,
of principal interest. Pure KNbO3 exhibits an indi-
rect band gap where the valence-band maximum and
the conduction-band minimum are located at T and
Γ in the first Brillouin zone, respectively [22]. Conse-
quently, the band gap of KNN50, which shares the same
orthorhombic crystal structure, is also indirect. Table 4
contains our numerical results for the six configurations
considered in this work. In each case, the fundamental
(indirect) bandgap equals the energy difference between
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Fig. 4 Calculated bandgap of K1−xNaxNbO3 within DFT
as a function of x, compared to the results by Liu et al.
[14] and by Yang et al. [15] at the same level of theory but
with different exchange-correlation functionals. The observ-
able optical bandgap, obtained by adding the quasiparticle
correction of 1.64 eV and subtracting the exciton binding
energy of 0.5 eV [27], is in good quantitative agreement with
experimental measurements at x = 0 [35–39] and x = 0.5
[37,40]

the Kohn–Sham eigenvalues of the highest valence-band
and the lowest conduction-band state within DFT. Our
results reveal that the bandgap is very similar for all
six configurations of KNN50, which is plausible from
the fact that the alkali-metal atoms do not contribute
to the density of states near the band edges [22].

In Fig. 4, we compare our numerical results with
those by Liu et al. [14] and by Yang et al. [15]. All
calculations are at the same level of theory but use
different exchange-correlation functionals: PBEsol in
this work, the Perdew–Burke–Ernzerhof parametriza-
tion [31] in Ref. [14], and the local-density approxima-
tion [32] in Ref. [15]. The absolute values of the Kohn–
Sham eigenvalue gaps deviate for this reason, but as
all of them ignore the derivative discontinuity [16] and
hence underestimate the true electronic bandgap, only
the relative variations within each dataset as a function
of x should be considered significant. If we keep the lat-
tice parameters fixed but derive the bandgap with PBE
instead of PBEsol, then all of our values increase uni-
formly by 0.062 eV, and they increase even more if PBE
is also employed for the structure optimization.

The qualitative differences in Fig. 4 are clearly visi-
ble; while Ref. [14] finds very similar bandgaps of about
2.2 eV for the end members KNbO3 and NaNbO3, it
predicts a huge increase above 2.7 eV at intermediate x.
In stark contrast, our own results indicate only a very
small change in the DFT bandgap from x = 0 to 0.5
and 1. Finally, the values obtained by Yang et al. [15]
for 0.540 ≤ x ≤ 0.570 are close to those of the end mem-
bers in Ref. [14], but with strong oscillations for minor
changes in the composition. In all cases, the evolution

of the bandgap follows that of the lattice parameters
discussed in the previous section.

Although no direct measurement of the electronic
bandgap of KNN has been reported until now, the
optical bandgap is often studied in experiments. The
two quantities are related but distinct: the former is
the minimum energy for independent electron and hole
excitations, whereas the latter is the minimum energy
for the excitation of bound electron–hole pairs, i.e.,
excitons. The optical bandgap is always smaller than
the electronic bandgap; the difference is interpreted as
the exciton binding energy.

Experimental values for optical bandgaps are typ-
ically deduced from Tauc plots [33], where the low-
energy part of the measured absorption coefficient is
fitted with a power function α(E) ∝ (E − Egap)r.
The bandgap Egap is then obtained from the extra
polation of the fitting function to zero. The exponent
depends on the nature of the transition with r = 1/2 for
direct allowed transitions, the same value also used for
amorphous semiconductors in Tauc’s original work [33],
and r = 2 for indirect allowed transitions [34]. Since
KNbO3 has an indirect electronic bandgap [22], it is
clear that r = 2 should be selected in this case. Follow-
ing this procedure, values of 3.2 eV [35], 3.15 eV [36],
3.18 eV [37], 3.25 eV [38], and 3.22 eV [39] have been
reported. As the valence-band maximum is formed by
O 2p states and the conduction-band minimum by Nb
4d states [22], the character of the electronic bandgap
does not change if half of the K atoms are replaced by
Na atoms. Hence, it seems natural to use r = 2 also for
orthorhombic KNN50. The values of 3.15 eV [37] and
3.19 eV [40] derived in this way are essentially identi-
cal to those of KNbO3 and confirm that the optical
bandgap does not depend strongly on x. In particu-
lar, Khorrami et al. [37], who analyzed samples with
x = 0 and x = 0.5 using the same fabrication and mea-
surement techniques, obtained nearly identical gaps of
3.18 eV and 3.15 eV, respectively. To enable a quanti-
tative comparison, we add the quasiparticle correction
of 1.64 eV [27], derived within the GW approximation
for KNbO3, to the indirect Kohn–Sham eigenvalue gap
and subsequently subtract the exciton binding energy
of 0.5 eV [27], which equals the redshift of the absorp-
tion edge due to electron–hole attraction effects in the
solution of the Bethe–Salpeter equation. The resulting
optical bandgaps, displayed in the upper part of Fig. 4,
are in very good agreement with the experimental data.

It should be noted that an extrapolation with r =
1/2 leads to substantially larger values for the optical
bandgap if based on the same experimental data for the
absorption coefficient [39,40]. As a consequence, sev-
eral experimental studies that falsely assumed a direct
instead of an indirect transition between the valence
and the conduction bands reported much larger optical
bandgaps for KNbO3 [41] and KNN50 [42,43] than the
ones featured in Fig. 4, but these should be disregarded
in the present context.
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4 Conclusions

In this work, we conducted a new first-principles anal-
ysis of the structural and electronic properties of
orthorhombic K1−xNaxNbO3 to resolve the strong dis-
crepancy between the experimental lattice parameters
[12,13] and previous theoretical results [14,15]. As a
crucial difference, we avoid the virtual-crystal approx-
imation, which sometimes yields incorrect results due
to the appearance of unphysical ghost states, and
instead adopt the supercell approach. For pure KNbO3,
corresponding to x = 0, our results agree not only
with those from Ref. [14], which are obtained at the
same level of theory, but also with the experimen-
tal values [30]. For x = 0.5, our calculations are in
equally good agreement with the experimental mea-
surements [12,13], whereas Ref. [14] predicts a large
deviation from the lattice parameters of both KNbO3

and NaNbO3 in the orthorhombic phase, including a
substantial volume contraction and a shearing that is
effectuated by a strong increase of the obtuse angle β
compared to the two end members of the solid solu-
tion. None of these could be observed in the present
study. We attribute this to methodological differences,
possibly the VCA that was employed in Ref. [14] but
not in our work, and thus consider the discrepancy as
resolved.

In conjunction with the experimental data [12,13],
our numerical results establish that the lattice con-
stants a and c of orthorhombic K1−xNaxNbO3 decrease
approximately linearly as the Na contents increases at
least up to x = 0.5, whereas the angle β stays essentially
constant. The volume reduction is consistent with the
smaller atomic radius of sodium compared to potas-
sium. Furthermore, our results reveal that the elec-
tronic bandgap is essentially identical for x = 0 and
x = 0.5, which is confirmed by experimental measure-
ments of the optical bandgap [37] and contradicts the
surge at intermediate x observed in Ref. [14]. Although
the electronic and optical bandgaps are distinct phys-
ical quantities, our results are in good quantitative
agreement with the available experimental data [35–
40] if we take the quasiparticle corrections to the DFT
eigenvalues and the exciton binding energy [27] into
account.
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