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Abstract. We report on the derivation of analytical equations for ab-initio calculations of the strain depen-
dence of crystal-electric-field (CEF) parameters for arbitrary deformations. The calculation is based on the
fundamental assumption that the charge distribution deforms in the same way as the crystal. Based on
this deformed-charge model, simple formulas for the practical usage are given for various site symmetries
of cubic lattices under uniform strain. These formulas can be used to predict the change of the magnetic
crystal-field anisotropy under strain, which is important for the design of magnetic materials and devices.
As an example for the power of the method, we present a calculation of the magnetic contribution to the
thermal expansion in some rare-earth-based materials.

1 Introduction

The strain dependence of magnetic anisotropy is of
great importance in the design of novel materials and
needs to be tuned to achieve technological applications
of magnetic materials. For example, advanced ultrathin
spintronic nanodevices with customized electronic and
magnetic properties will need a local-strain engineer-
ing [1]. Historically, this problem has been recognized
in investigations of magnetoelastic parameters in rare-
earth materials [2–4]. Some recent research with focus
on transition-metal oxides has been using cluster meth-
ods [5] and spin-polarized bandstructure calculations
[6]. However, a full understanding and quantitative pre-
diction of the strain dependence of magnetic interac-
tions is missing.

Research on this matter started with the theoretical
analysis of magnetoelastic constants [2–4]. Since then,
the huge problem of calculating reliable crystal-electric-
field (CEF) and exchange parameters in magnetic mate-
rials by ab-initio methods have been in the focus of
research for many years.

In many studies of magnetoelastic effects, the com-
parison of theory and experiment involved the fitting
of one or more magnetoelastic parameters to the data
[7,8].

In this work, we make an attempt to calculate
the strain dependence of the magnetic crystal-field
anisotropy for an arbitrary deformation. In many
cases, these single-ion effects play an essential role
in the description of the anisotropic elastic behav-
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ior. Other anisotropies, such as those of the magnetic
exchange (e.g., dipolar or Dzyaloshinskii–Moriya inter-
actions, higher-order coupling effects), are not consid-
ered here. However, these can be additionally included
using the analysis of the distortion dependence of the
exchange parameters. Thus, it is in principle possible
to investigate changes in physical properties caused by
a symmetry breaking, such as elimination of lattice-
induced magnetic frustrations. Macroscopic magnetic
anisotropies, such as shape or surface anisotropy, are
outside the scope of our microscopic considerations. For
example, the considered magnetic deformations can be
induced in magnetic devices by (i) external tensile or
(ii) compressive strain or by (iii) chemical pressure.
Experimentally, the effect on the anisotropy can be
measured by high-sensitivity magnetization and other
bulk techniques or spectroscopic methods [9]. More-
over, we show how the strain dependence of magnetic
anisotropy may be used to predict the magnetic contri-
bution to the thermal expansion.

This paper is made up as follows: In Sect. 2, we give
a thorough introduction to the formulas important for
the magnetoelastic coupling. We use different represen-
tations of the strain tensor to derive explicit formu-
las of the thermal expansion for various strain modes.
In Sect. 3, we give the main result of this paper: the
strain-derivative of a quantity closely related to the
CEF parameters. From this quantity, the change of the
CEF parameters under strain may easily be calculated.
We evaluate the main formula for all possible strain
modes in Sect. 4. Finally, we show the calculated CEF
volume striction of several compounds in Sect. 5. We
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close with an outlook and a summary of the results in
Sects. 6 and 7.

2 A recapitulation of the theory

The strain ε is a 3×3 matrix, a second-rank tensor, that
represents the deformation of a crystal. In the following,
we consider only homogeneous strain, i.e., the strain is
constant in all of the samples. We use two different ways
to represent the strain tensor. On the one hand, we
decompose ε in irreducible representations of the space
group of the crystal and we denote the components of
the strain tensor as εΓj

i . Here, Γ denotes the irreducible
representation of the space group of the crystal, the
index j differentiates between multiple representations
of the same type Γ , and the index i denotes the different
components of the (multi-dimensional) irreducible rep-
resentation. In this decomposition, the elastic energy
takes on a simple form. On the other hand, we decom-
pose ε in terms of irreducible tensors, i.e., irreducible
representations of the rotation group, that transform
into each other via a simple law under rotations. We
denote the components with εJM , with J and M denot-
ing the irreducible representation and its 2J +1 compo-
nents, respectively; these are analogous to the angular
momentum formalism in quantum mechanics. Since the
strain tensor is symmetric, both these representations
have six components.

The simplest possible expression of the harmonic
elastic energy of a unit cell is given by [2,3,10]:

Eel(ε) =
V

2

∑

mnkl

cmnklεmn, εkl, (1)

where εmn are the Cartesian components of the strain
tensor ε, cmnkl are the Cartesian components of the
elasticity tensor characteristic of each compound and
obey certain symmetries depending on the lattice; V is
the volume of a unit cell of the crystal. Depending on
the lattice symmetry, we can rewrite the elastic energy
in terms of strains adapted to the lattice symmetry εΓ,j

i
[2]:

Eel =
V

2

∑

Γjj′i

cΓ
jj′ε

Γ,j
i εΓ,j′

i . (2)

The cΓ
jj′ are the elastic constants of the symmetry-

adapted strain modes εΓ,j
i of the ith component of the

jth one-, two- or three-dimensional irreducible repre-
sentation Γ ; these strain modes are given for each lat-
tice symmetry in the classic paper [2]. In particular, the
elastic energies of the cubic and hexagonal crystal with
the conventional superscripts are given by [3]:

Ec
el =

V

2

(
cαεαεα + cγ(εγ

1εγ
1 + εγ

2εγ
2) (3)

+ cε(εε
1ε

ε
1 + εε

2ε
ε
2 + εε

3ε
ε
3)

)
, (4)

Eh
el =

V

2

(
(cα

11ε
α,1εα,1 + 2cα

12ε
α,1εα,2 + cα

22ε
α,2εα,2)

(5)

+ cε(εε
1ε

ε
1 + εε

2ε
ε
2) + cζ(εζ

1ε
ζ
1 + εζ

2ε
ζ
2)

)
. (6)

Besides the elastic energy, we use the CEF energy to
investigate magnetoelastic coupling in this work. Below
the ordering temperature of a magnetic compound (if
existing), exchange effects are dominating the magne-
toelastic behavior of a compound. However, also in
that region the CEF-striction mechanism is contribut-
ing; however, only above the ordering temperature and
at zero field, the CEF striction can be isolated from
exchange striction. The CEF Hamiltonian ĤCEF of one
unit cell projected on the J-manifold of the ground
state of the free rare-earth ion up to first order in the
symmetrized strains εΓ,j

i is given by:

ĤCEF =
∑

flm

Bl
m(f, εf (ε))Ôl

m(Jf ) (7)

=
∑

flm

Bl
m(f, 0)Ôl

m(Jf ) (8)

+
∑

flm

⎛

⎝
∑

Γji

∂εΓ,j
i

Bl
m(f, εf (ε))εΓ,j

i

⎞

⎠ Ôl
m(Jf )

(9)

+ O((εΓ,j
i )2), (10)

where Bl
m(f, εf (ε)) and Ôl

m(Jf ) are Stevens parame-
ters and operators of the fth ion in the unit cell under
the strain εf in the local coordinate system at that
position, respectively. The operators Ôl

m(Jf ) are repre-
sented in the angular-momentum operators of the local
coordinate system at the fth ion. The first term on
the right is the CEF Hamiltonian of the undeformed
crystal and the second term is the magnetoelastic cou-
pling Hamiltonian. The coupling constants are, there-
fore, ∂εΓ,j

i
Bl

m(f, εf (ε)), the strain dependence of the
CEF parameters, the quantity we are interested in.

The components of εf are related to the components
of the global strain ε via rotation matrices. The latter
is the strain in the global reference frame parallel to
the symmetry axes of the crystal and the former is ε
represented in the local coordinate system used for the
CEF Hamiltonian. To get simple transformation laws
between the components of the strain tensor, we avoid
using the Cartesian standard basis and instead use irre-
ducible tensors as basis. The components in this basis
are denoted with εf

JM and they relate to the compo-
nents εJM ′ in the global coordinate system via:

εf
JM ′ =

+J∑

M=−J

εJMDJ
M,M ′(αf , βf , γf ), (11)
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where DJ
M ′,M (αf , βf , γf ) denotes the Wigner-D-matrix

of the rotation of Euler angles αf , βf and γf between
the local and global coordinate system [11]. The strain
tensor, being a symmetric tensor, is made up of the
six components with J = 0, M = 0 and J = 2,
M = −2,−1, . . . , 2. The irreducible tensors in Carte-
sian coordinates are given in the appendix. Hence, the
derivative of the CEF parameter Bl

m at ion f can be
written as:

∂εΓ,j
i

Bl
m(f, εf (ε)) = ∂εf

Bl
m(f, 0) · ∂εεf · ∂εΓ,j

i
ε

=
∑

JMM ′

∂Bl
m(f, 0)

∂εf
JM ′

∂εf
JM ′

∂εJM

∂εJM

∂εΓj
i

=
∑

JMM ′

∂Bl
m(f, 0)

∂εf
JM ′

DJ
M,M ′(αf , βf , γf )

∂εJM

∂εΓj
i

,

(12)

where αf , βf and γf are the Euler angles that rotate
the global reference frame to the local reference frame
at ion f . For convenience in the following formulas,

we use
∂εf

JM′
∂εΓ j

i

=
∑

M DJ
M,M ′(αf , βf , γf )∂εJM

∂εΓ j
i

. Note that

D0
0,0(αf , βf , γf ) = 1 for all angles, which leads to simple

evaluation of the uniform strain mode.
For high symmetry lattices such as cubic, hexago-

nal, trigonal and tetragonal lattices, the symmetrized
strains of the lattice coincide with the irreducible ten-
sors, i.e., the last factor in Eq. (12) is one or zero. For
the other lattices, simple linear relations between the
symmetrized strains of the lattice and the irreducible
tensor components can be found by decomposing the
first in terms of the latter, as shown in the Appendix
A.

Before calculating the strain dependence of the CEF
parameters, we show how it can be used to calculate
the equilibrium strain. The elastic energy and the CEF
energy change with deformation and compete with each
other. In equilibrium, the free energy is minimized, i.e.,
the derivative of the free energy with respect to εΓj

i
vanishes [2,3,10]. The strain-dependent part of the free
energy is simply the sum of the CEF energy and the
elastic energy:

F (ε) =
∑

f

∑

lm

Bl
m(f, εf (ε))〈Ôl

m(f)〉 + Eel(ε), (13)

where 〈Ôl
m〉 denotes the thermal average of the expec-

tation value of the operator Ôl
m. The equilibrium con-

dition yields a system of linear equations in εΓ,j
i [2].

For example, for the cubic lattice (omitting the index
j = 1):

εα =
1

V cα

∑

flm

∂Bl
m(f, 0)

∂εf
00

〈Ôl
m(f)〉, (14)

εγ
i =

1
V cγ

∑

flm

∑

M ′

∂Bl
m(f, 0)

∂εf
2M ′

∂εf
2M ′

∂εγ
i

〈Ôl
m(f)〉, i = 1, 2,

(15)

εε
i =

1
V cε

∑

flm

∑

M ′

∂Bl
m(f, 0)

∂εf
2M ′

∂εf
2M ′

∂εγ
i

〈Ôl
m(f)〉, i = 1, 2, 3,

(16)

and for the hexagonal lattice with Δ = cα
11c

α
22 − cα

12c
α
12:

εα,1 =
1

V Δ

(
− cα

22

∑

flm

∂Bl
m(f, 0)

∂εf
00

〈Ôl
m(f)〉 (17)

+ cα
12

∑

flm

∑

M ′

∂Bl
m(f, 0)

∂εf
2M ′

∂εf
2M ′

∂εα,2
i

〈Ôl
m(f)〉

)
, (18)

εα,2 =
1

V Δ

(
cα
12

∑

flm

∂Bl
m(f, 0)

∂εf
00

〈Ôl
m(f)〉 (19)

− cα
11

∑

flm

∑

M ′

∂Bl
m(f, 0)

∂εf
2M ′

∂εf
2M ′

∂εα,2
i

〈Ôl
m(f)〉

)
, (20)

εε
i =

1
V cε

∑

flm

∑

M ′

∂Bl
m(f, 0)

∂εf
2M ′

∂εf
2M ′

∂εγ
i

〈Ôl
m(f)〉, i = 1, 2,

(21)

εζ
i =

1
V cζ

∑

flm

∑

M ′

∂Bl
m(f, 0)

∂εf
2M ′

∂εf
2M ′

∂εζ
i

〈Ôl
m(f)〉, i = 1, 2.

(22)

Having given the explicit formulas of the equilibrium
strain, we now come to the evaluation of the strain
derivative of the CEF parameters, which will be given
in the next section hosting the main result of this paper.

3 Strain derivative of the CEF parameters

The CEF parameters Bl
m(f) are linear functions of

ωl
m(f), which are expressed by:

ωl
m(f) =

1
2l + 1

∫
d3R

ρf (R)Y l
m(ΩR )

ε0|R|l+1
, (23)

where ρf is the charge distribution in the crystal cen-
tered on the fth ion in the unit cell in the local frame
of reference, Y l

m denotes the spherical harmonics, ΩR

the solid angle and R the position vector. The Bl
m are

defined by the tesseral (i.e., real spherical) harmonics
and related to ωl

m via:

Bl
m = βl

m

⎧
⎪⎨

⎪⎩

i√
2
(ωl

m − (−1)mωl
−m), if m < 0,

ωl
0, if m = 0,
1√
2
(ωl

−m + (−1)mωl
m), if m > 0,

(24)
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where βl
m = −|e|pl

m〈rl
4f 〉Θl. In order to go transform

back and forth between Bl
m and ωl

m, we also need the
inverse relation:

ωl
m =

(
βl

m

)−1

⎧
⎪⎪⎨

⎪⎪⎩

1√
2
(Bl

|m| − iBl
−|m|), if m < 0,

Bl
0, if m = 0,

(−1)m

√
2

(Bl
|m| + iBl

−|m|), if m > 0.

(25)

The main assumption of our model is that the charge
distribution deforms in the same way as the lattice. This
assumption seems natural and is usually justified a pos-
teriori. In the vicinity of structural phase transitions,
this assumption may be violated, for example near the
variant conversion transition in magnetic shape mem-
ory systems such as RCu2 [12]. For the general formulas,
we derive here, we parametrize the specific strain modes
by the linear expansion ε = Δl/l such that the tensor
ε = Mε, where M is a constant 3 × 3 matrix. To take
full advantage of the formalism of spherical harmonics
in [11], we will represent the components of the tensor
ε in the spherical basis [11] and not Cartesian; in this
basis, we use the indices σ and σ′ for ε and the matrix
M. Suppose the lattice deformation in the local refer-
ence frame is given by the matrix O = E+ εfM with E
the 3×3 unit matrix and M a symmetric matrix. Then,
we assume that the deformed charge distribution ρ′

f is
related to the undeformed charge distribution ρf with
the deformation matrix O−1 via:

ρ′
f (R) = det(O−1)ρf (O−1R), (26)

where the factor det(O−1) is needed to ensure the
invariance of the total charge:

∫
ρ′

fd3R =
∫

ρfd3R.

ωl
m(f, εf ) = ωl

m(f, 0) − εf (l + 1)
∑

m′,μ,σ,σ′
Mσ′σClm

(l+1)μ1σClm′
(l+1)μ1σ′ωl

m′(f, 0)

+εf

√
(l + 1)(l + 2)

(2l + 1)(2l + 5)
∑

m′,μ,σ,σ′
Mσ′σClm

(l+1)μ1σCl+2m′
(l+1)μ1σ′W

l
m′(f, 0),

(27)

where W l
m′(f, 0) =

∫
d3R′ ρf (R′)

ε0|R′|l+1
Y l+2

m′

(28)

Using fundamental identities of integral transforma-
tions, the approximation O−1 = E − εM and the
Clebsch–Gordan expansion of products of spherical
harmonics, we obtain the main result of this paper,
Eq. (27); the derivation is given in the Appendix B. In
Eq. (27), Ccγ

aαbβ denote the Clebsch–Gordan coefficients

[11] and the matrix M is represented in the spherical
basis with components Mσσ′ ; the indices σ and σ′ may
take values ±1 and 0. To study arbitrary deformations,
we decompose them in the specific deformation modes
εf
JM and study their effects individually. For a given

set of CEF parameter Bl
m, the strain dependence may

be calculated via casting the Bl
m to ωl

m using Eq. (25),
then calculating the strain dependence of the ωl

m with
Eq. (27) and recasting the ωl

m to Bl
m using Eq. (24).

In the case of a general deformation, the linear expan-
sion of ωl

m(ε) includes three parts:

(a) ωl
m(f, 0) as zero order approximation,

(b) a sum that mixes contributions of ωl
m′(f, 0) into

ωl
m(f, 0), depending on the specific deformation,

(c) a sum that mixes contributions of a quantity similar
to ωl

m but of a higher multipolar order of maximal
order 8.

In general, not all necessary quantities can be obtained
from the unperturbed system. Especially, the last term
makes evaluation for small arbitrary deformations dif-
ficult. For the special case of the volume changing
mode εf

00, however, evaluation is simple. Yet, it is only
in systems with cubic lattice symmetry, that the vol-
ume changing mode does not couple to other modes
when considering the equilibrium strain. Therefore,
even though we give explicit formulas for all modes
εf
JM , the calculated example afterwards is focused on

the volume changing mode εf
00 in cubic systems.

4 Explicit formulas

In this section, we evaluate the previous formula for the
different εJM with their specific M in spherical coordi-
nates using the Kronecker delta function δnm. We start
with the simplest deformation mode:

εf
00 : Mσ′σ =

1√
3
δσ′σ, (29)

ωl
m(f, ε00) = ωl

m(f, 0) − ε00
l + 1√

3
ωl

m(f, 0), (30)

where the formula follows from straightforward evalu-
ation or the identity

∑
αβ Ccγ

aαbβCc′γ′
aαbβ = δcc′δγγ′ [11],

since the second term in Eq. (27) reduces to ε00(l +
1)/

√
3ωl

m and the third term vanishes. For the other
εf

JM , evaluation of the Clebsch–Gordan coefficients is
straightforward [11] and yields Eqs. (31)–(40).
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εf
20 : Mσ′σ =

1√
6
(3δσ′0δσ0 − δσ′σ), (31)

ωl
m(f, εf

20) = ωl
m(0) − εf

20√
6(2l + 3)

(
(l2 + 1 − 3m2)ωl

m(0) − 3

√
(l + 1 + m)(l + 1 − m)(l + 2 + m)(l + 2 − m)

(2l + 1)(2l + 5)
W l

m

)
, (32)

εf
21 : Mσ′σ =

1√
2
(δσ′0δσ−1 − δσ′1δσ0), (33)

ωl
m(f, εf

21) = ωl
m(f, 0) − εf

21√
2

√
l + 1 + m

2l + 3

(
−1√
2

√
(l − m)(1 + 2m)ωl

m+1(f, 0) +

√
(l + 1 − m)(l + 2 + m)(l + 3 + m)

(2l + 1)(2l + 5)
W l

m+1(f, 0)

)
,

(34)

εf
2−1 : Mσ′σ =

1√
2
(δσ′0δσ1 − δσ′−1δσ0), (35)

ωl
m(f, εf ) = ωl

m(f, 0) − εf
2−1√
2

√
l + 1 − m

2l + 3

(
−1√
2

√
(l + m)(1 − 2m)ωl

m−1(f, 0) +

√
(l + 1 + m)(l + 2 − m)(l + 3 − m)

(2l + 1)(2l + 5)
W l

m−1(f, 0)

)
,

(36)
εf
22 : Mσ′σ = (δσ′1δσ−1), (37)

ωl
m(f, εf

22) = ωl
m(f, 0) − εf

22

√
(l + 1 + m)(l + 2 + m)

2(2l + 3)

(√
(l − 1 − m)(l − m)ωl

m+2(f, 0) +

√
(l + 3 + m)(l + 4 + m)

(2l + 1)(2l + 5)
W l

m+2(f, 0)

)
,

(38)
εf
2−2 : Mσ′σ = (δσ′−1δσ1), (39)

ωl
m(f, εf

2−2) = ωl
m(f, 0) − εf

2−2

√
(l + 1 − m)(l + 2 − m)

2(2l + 3)

(√
(l − 1 + m)(l + m)ωl

m−2(f, 0) +

√
(l + 3 − m)(l + 4 − m)

(2l + 1)(2l + 5)
W l

m−2(f, 0)

)
.

(40)

From the linearization of ωl
m, we can obtain the lin-

earization of Bl
m via Eq. (24), for example, for the mode

εf
00 in cubic crystals:

Bl
m(f, εf

00) = Bl
m(f, 0) − εf

00

l + 1√
3

Bl
m(f, 0) (41)

ĤCEF =
∑

flm

Bl
m(f, εf

00)Ô
l
m(f) (42)

=
∑

flm

(
1 − εf

00

l + 1√
3

)
Bl

m(f, 0)Ôl
m(f).

(43)

Depending on the CEF symmetry at the relevant rare-
earth site, only few Stevens parameters are non-zero.
For the mode εα, we now also give the equilibrium
strain, which is particularly simple to express, because
εα =

√
3εf

00 =
√

3ε00 independent of the local coordi-
nate system at position f . Hence, the equilibrium strain
in an arbitrary CEF symmetry and for a cubic Bravais
lattice reads:

εα =
1

V cα

∑

f

∑

lm

(l + 1)Bl
m(f, 0)〈Ôl

m(f)〉 (44)

=
N

V cα

∑

lm

(l + 1)Bl
m(1, 0)〈Ôl

m(1)〉, (45)

where N is the number of rare-earth ions in the unit
cell and Bl

m(1, 0) and 〈Ôl
m(1)〉 are evaluated for the first

ion as representation of all others in the unit cell. Thus,
we see that for the calculation of volume expansion in
cubic crystals, the knowledge of the CEF parameters is
sufficient. However, the Stevens parameters have very
complicated influence on the expansion because they
are not only explicitly used in the formulas but also
implicitly contained in the CEF levels and wave func-
tions used for thermal average 〈Ôl

m〉. The formulas of
the Hamiltonians and expansions for the several impor-
tant point symmetries are given in Table 1.

We want to mention the effects of anisotropic defor-
mations that are not important for the case of zero field
and the paramagnetic state in cubic crystals; following
[2] for symmetry reasons the anisotropic modes vanish.
However, if behavior in field, axial stress (as in recently
available strain cells) or the thermal expansion of crys-
tals with lower symmetry than cubic are considered also
the anisotropic modes ε2M with M = 0,±1,±2 will
become relevant and the according expressions above
may be used. For example, the hexagonal, trigonal and
tetragonal Bravais lattices have one more symmetry
conserving mode εγ,1 that decomposes in irreducible
tensors of type ε2M with M = 0,±1,±2.

Coming back to the case of the thermal CEF vol-
ume striction of cubic crystals, we use Eq. (45) in the
examples in the next section.
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Table 1 CEF Hamiltonians for rare-earth ions in various site symmetries

Td, O, Oh: ĤCEF = (1 − 5ε)
(
B4

0〈O4
0〉 + 5B4

0O4
4

)
+ (1 − 7ε)

(
B6

0O6
0 − 21B6

0O6
4

)

C6, C3h, D3d: ĤCEF = (1 − 3ε)B2
0O2

0 + (1 − 5ε)
(
B4

0O4
0 + B4

3O4
3+

)
+

(1 − 7ε)
(
B6

0O6
0 + B6

6O6
6 + B6

−6O
6
−6

)

5 Example: CEF parameters and CEF
volume striction of pyrochlore titanates

In this section, to illustrate the theoretical part, we
show how to apply the derived equations from the last
section, to calculate the CEF volume striction given
only the CEF parameters, the elastic constants and
the lattice parameters. The thermal averages of the
expectation values of the Stevens operators 〈Ôl

m〉 are
calculated with McPhase[13]. We show how to derive
the CEF parameters for members of an isostructural
series when the CEF parameters of one of them is
known and the lattice parameters of the whole series
is known. The calculated CEF is then used to calcu-
late the CEF volume striction for all compounds of the
isostructural series. We use the isostructural series of
rare-earth titanate pyrochlores as an example, crystal-
lizing in the cubic space group Fd3̄m (Nr. 227).

The CEF parameters of rare-earth compounds are
calculated via [10]:

Bl
m = −|e|pl

mγl
m〈rl

4f 〉Θl, (46)

where −|e|pl
m is a factor independent of the rare-earth

ion and the lattice, γl
m are the coefficients of the multi-

pole expansion of the charge distribution ρ and a linear
combination of the ωl

m so that the same behavior under
volume change applies that we have derived earlier;
〈rl

4f 〉Θl is a factor dependent only on the ground state
and the kind of the rare-earth ion. Θl is αJ , βJ or γJ

for l = 2, 4, 6, respectively, and tabulated, cf. [10]. If the
substiitution of the rare-earth ion R by another rare-
earth ion R’ in a compound does not change the lattice
symmetry but only the lattice parameter, then there
are two parts contributing to changes of the Stevens
parameters: First, the linear expansion or contraction
of the lattice influences the CEF parameters according
to Eq. (41), with ε =

√
3εf

00. And second, the substitu-
tion of the rare-earth ion has a large influence shown in
Eq. (46). Putting both together, we get:

Bl
m(R′) = Bl

m(R′)|ε (47)

= (1 − ε(l + 1)) Bl
m(R′)|0 (48)

= (1 − ε(l + 1))
〈rl

4f (R′)〉Θl(R′)

〈rl
4f (R)〉Θl(R)

Bl
m(R)|0.

(49)

In the following example, we use this formula to calcu-
late the CEF parameters of compounds in the same

Fig. 1 CEF contribution to the thermal expansion of the
pyrochlore titanates due to the thermal population of the
CEF levels computed with McPhase using Eq. (45) with
lattice parameters from [15] and a cα = 568GPa (measured
for Ho2Ti2O7 [16]) as estimate for all compounds.

isostructural series and using these we calculate the
CEF volume striction.

The rare-earth ion resides at Wyckoff position 16d
with local CEF symmetry D3d. The cubic crystal struc-
ture is stable for the relevant temperature range. Using
Eq. (45) in the special case of a point symmetry D3d (cf.
Table 1), we can calculate the contribution of the CEF
to the thermal expansion. For all rare-earth titanate
pyrochlores, the CEF parameters of the rare-earth ions
were calculated from the ones of Ho2Ti2O7[14] using
Eq. (49). The values compare very well to the ones given
in [14] and were then used to calculate the CEF volume
striction shown in Fig. 1.

We calculate the CEF volume striction with McPhase
using the lattice parameters from [15] and an estimate
of the elastic parameter cα = 568 GPa measured for
Ho2Ti2O7 [16]. Figure 1 shows that the CEF has a sig-
nificant contribution to the thermal expansion between
ΔL/L = εCEF = 4×10−4 for Tb2Ti2O7 and 7.5×10−4

for Tm2Ti2O7 between 0 and 500 K. Compared to
phononic thermal expansion in the order of 3 × 10−3,
this would be a measurable effect. Essentially, the order
of magnitude is the same for all titanate pyrochlores
and largest for Tm2Ti2O7.
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6 Outlook

Several possible ways to work with the results presented
in this paper come to mind.

First, for high-symmetry crystals, an intensive study
of Eq. (28) might allow evaluation of arbitrary homoge-
neous deformations. The authors expect many of these
values to vanish for high-symmetry crystals. Second, an
investigation of low-symmetry crystals seems promis-
ing, since significantly larger CEF striction effects can
be expected from our model. The reason for this is that
the elastic constants, especially shear elastic constants
are considerably softened in non-centrosymmetric crys-
tals [17]. Third, an extension of the theory to the strain
dependence of the exchange parameters would also be
possible. This would take a thorough investigation of
the symmetry of the two quantum states of neighboring
atoms and is a natural next step to consider. Important
theoretical work has already been done in the review
[18]. Finally, our formulas may be used as an equation-
of-state for numerical simulations: Strictly speaking, a
crystal is an object that is invariant under some (dis-
crete) translation group; inhomogeneous deformations
would break this translation invariance, as would sta-
tistically distributed defects. However, given that the
quantum state at a specific atom in the crystal is
influenced only by a small region surrounding it, the
local symmetry of that environment at the position
of the atom needs to be considered. That symmetry
group may change within the crystal to allow symmetry
breaking by defects or non-homogeneous deformations,
as possible in non-centrosymmetric crystals [19]. How-
ever, the solution of such a problem in general is not
accessible with analytic methods and one needs to use
numerical methods.

7 Summary

In this paper, we have shown new formulas of the
effect of a deformation on the CEF parameters asso-
ciated with Stevens operators. We started from a so-
called deformed charge model, where the lattice defor-
mation affects the charge distribution one-to-one and
even charge clouds are deformed. This ansatz allowed
us to derive an analytical formula of the change of the
CEF parameters for small deformation ε. We applied
this formula to different deformation modes and found
in the simplest case of a pure volume changing mode
a simple formula. The resulting formulas can be used
to calculate the change of the CEF parameters in new
strain experiments on bulk materials as well as thin
films. We also gave a recapitulation of the general the-
ory of CEF striction with explicit formulas for cubic
and hexagonal crystals. With these formulas, it is easy
to expand the theory given in this paper if the for-
mulas of the strain derivative of the Stevens parame-
ters can be evaluated. Finally, we used the formulas for
several cases of current scientific interest, such as the

rare earth pyrochlores including the spin-ice compounds
Dy2Ti2O7 and Ho2Ti2O7.
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A Irreducible tensors in Cartesian
coordinates

The irreducible tensors in Cartesian coordinates are given
for the convenience of the reader and may be found in lit-
erature [11]:

ε00 =
1√
3

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ , ε20 =
1√
6

⎛

⎝
1 0 0
0 1 0
0 0 −2

⎞

⎠ ,

(50)

ε21 =
1

2

⎛

⎝
0 0 1
0 0 i
1 i 0

⎞

⎠ , ε2−1 =
1

2

⎛

⎝
0 0 −1
0 0 i

−1 i 0

⎞

⎠ ,

(51)
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ε22 =
1

2

⎛

⎝
−1 −i 0
−i 1 0
0 0 0

⎞

⎠ , ε2−2 =
1

2

⎛

⎝
−1 i 0
i 1 0
0 0 0

⎞

⎠ .

(52)

The N ×N square matrices form an N2-dimensional vec-
tor space. Together with the Frobenius inner product as
scalar product, we can project out components of matrices
in the same way as components of vectors. The Frobenius
inner product of two N × N matrices A and B is given
by A · B =

∑
ij ĀijBij . With this scalar product, the irre-

ducible tensors above form an orthonormal basis for the sub-
space of symmetric matrices like the strain tensor. We can
use this basis to uniquely decompose arbitrary symmetric
N ×N matrices. To illustrate the procedure of decomposing
a matrix into its irreducible components, we perform this
on the symmetric matrix:

M =

⎛

⎝
1 2 3
2 4 5
3 5 6

⎞

⎠ . (53)

For example, we project out the ε00 component of the tensor
M like this:

(ε00 · M) =
1 + 4 + 6√

3
. (54)

Projecting out the other components of M we get the decom-
position of M in the symmetric irreducible tensors εJM :

M =

⎛

⎝
1 2 3
2 4 5
3 5 6

⎞

⎠ =
11√

3
ε00 +

−7√
6
ε20 +

6 − 10i

2
ε21

+
−6 − 10i

2
ε2−1 +

3 + 4i

2
ε22 +

3 − 4i

2
ε2−2.

(55)

For the sake of completeness: To decompose arbitrary N×
N matrices or antisymmetric tensors, which we do not need
to do in this paper, the irreducible tensors ε11 and ε1−1 are
needed, as well.

B Derivation of the crystal field parameters

Our goal is to expand ωl
m(ε) linearly for small deformations

ε of the charge distribution ρ′ with deformation matrix O =
E + εM.

ωl
m

′
=

1

2l + 1

∫
d3R

ρ′(R)Y l
m(ΩR )

ε0|R|l+1
, ρ′(R) = detO−1ρ(O−1R)

(56)

=
1

2l + 1

∫
d3R

detO−1ρ(O−1R)Y l
m(ΩR )

ε0|R|l+1
, R′ = O−1R

(57)

=
1

2l + 1

∫
d3R′ ρ(R′)Y l

m(ΩOR ′)

ε0|OR′|l+1
(58)

=
1

2l + 1

∫
d3R′ ρ(R′)

ε0

(
Y l

m(ΩR ′)

|R′|l+1
+ ∇

[
Y l

m(ΩR ′)

|R′|l+1

]

·(MR′)ε) , ∇
[

Y l
m(ΩR ′)

|R′|l+1

]
=

√
(l + 1)(l + 2)

Y l+1
lm

|R′|l+2

(59)

= ωl
m(0) + ε

√
l + 1

2l + 1

∫
d3R′ ρ(R′)

ε0

(
Y l+1

lm

|R′|l+2
· (MR′)

)

(60)

= ωl
m(0) + ε

√
l + 1

2l + 1

∫
d3R′ ρ(R′)

ε0|R′|l+1

∑
μ,σ,σ′

Mσ′σ

√
4π

3

(
Clm

(l+1)μ1σY l+1
μ Y 1

σ′
)

(61)

= ωl
m(0) − ε(l + 1)

∑
m′

⎛
⎝ωl

m′
∑

μ,σ,σ′
Mσ′σClm

(l+1)μ1σClm′
l+1μ1σ′

⎞
⎠

(62)

+ ε

√
(l + 1)(l + 2)

(2l + 1)(2l + 5)

∑
m′

(∫
d3R′ ρ(R′)

ε0|R′|l+1
Y l+2

m′

∑
μ,σ,σ′

Mσ′σClm
(l+1)μ1σCl+2m′

l+1μ1σ′

⎞
⎠ . (63)

This is achieved in the derivation in Eqs. (56)–(63). While
the first steps are simple insertions of definitions the last
steps need some more explanation that is given in the follow-
ing. In Eq. (60), Y l+1

lm denotes the vector spherical harmon-

ics [11]; if represented in spherical basis, these read: Y l+1
lm =∑

μ,σ Clm
(l+1)μ1σY l+1

μ (ΩR)eσ. To evaluate the scalar product

in Eq. (60), we also expand R′ = |R′|
√

4π
3

∑
σ′ Y 1

σ′eσ′
in the

spherical basis [11]. The effect of M on the spherical basis

is given by: Meσ′
=

∑
μ′ eμ′

Mσ′μ′ . Hence, we can evaluate

Eq. (60) using eμ′
eσ = δμ′σ. We further simplify Eq. (61)

using the Clebsch–Gordan expansion of the product of two
spherical harmonics

Y l1
m1Y l2

m2 =
∑

LM

√
(2l1 + 1)(2l2 + 1)

4π(2L + 1)
CL0

l10l20C
LM
l1m1l2m2Y L

M .

(64)

So considering the product Y l+1
μ Y 1

σ′ there are three possible
L = l, l+1, l+2 of which only L = l or L = l+2 contribute
since CL0

l+1010 is zero for odd L. As l is even, we get

Y l+1
μ Y 1

σ′ = −
√

3

4π

∑

m′

√
l + 1

2l + 1
Clm′

l+1μ1σ′Y l
m′

+

√
3

4π

∑

m′

√
l + 2

2l + 5
Cl+2m′

l+1μ1σ′Y
l+2

m′ . (65)

Inserting this into Eq. (61), we obtain Eq. (63), the main
result of this paper. This formula is used in the main text
to calculate the change of the CEF parameters during a
deformation of the lattice.
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