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Abstract. We explain the emergence of zero field steps (ZFS) in a Frenkel-Kontorova (FK) model for a 1D
annular chain being a model for an annular Josephson junction array. We demonstrate such steps for a case
with a chain of 10 phase differences. We necessarily need the periodic boundary conditions. We propose a
mechanism for the jump from M fluxons to M + 1 in the chain.

1 Introduction

This paper continues the former two-part series on Sha-
piro steps [1,2]. Zero field steps (ZFS) [3] are reported
under dc bias, thus they are another kind of steps
in comparison to Shapiro steps which emerge with
an additional frequency of an ac-excitation. Josephson
junctions (JJs) are electronic superconducting devices.
They are reported in the observation of different exper-
iments [4–6]. We concentrate here on the emergence of
ZFS in calculations with the Frenkel-Kontorova (FK)
model with periodic boundary conditions (PBC) [7].
This paper is devoted to the aim of understanding what
happens under a ZFS inside the FK chain, compare the
experimental reports in the corresponding Figures 2 in
references [8–11], and Figure 4 in reference [12]. To look
inside the FK chain we use the potential energy sur-
face (PES) of the chain [13–16] in this work. The PES
maps all possible configurations of the chain to their
corresponding energy. Of special interest are low-lying
pathways, valleys, which connect different stationary
structures. The neighborhood of such pathways is the
way where the FK chain moves around the ring under
an external force, if it was depinned before.

The periodic substrate potential is assumed to be a
sinusoidal curve. The annular chain is really of finite
length. We search the form of the movement of the
FK chain through a site-up potential. Overall, we more
deeply treat here the PES for N phase differences (PDs)
of the N JJs which are studied in experiments by other
workers. We find the PES of JJs rings remained not
fully studied until now. The PDs again form a chain.
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We search for a global valley through the ‘mountains’ of
the N -dimensional PES for a sliding of the chain over
the site-up potential. The model changes considerably
in comparison to the parts I and II [1,2]. Addition-
ally, we assume a Josephson phase kink along the array
which is called a fluxon [11].

We use the ansatz of an overdamped Langevin equa-
tion for a coarse understanding, but the full equation of
motion is not further discussed here. Thus, our equa-
tions of motion are purely relaxial. Such a treatment
is appropriate also for JJs [17]. In contrast to known
explanations of ZFS [18,19] by resonant vibrations, we
propose a simpler explanation using the behaviour of
the chain under excitation on the PES. The key prop-
erty of the PES are its nearly vertical walls which cause
the steps, without a resonance.

In Sect. 2 we introduce the discrete sine-Gordon (SG)
equation and the FK model used in this paper, and we
give a preliminary impression of the known case with
one fixed fluxon for the case with N=10 chain length.
In Sect. 3 the case where no fluxon exists is discussed:
where all things start with. In main Sect. 4 we calculate
and discuss a Langevin equation where we find the ZFS
for a dc-force (but where also Shapiro steps can emerge
if one applies an ac-force [1]). In Sect. 4.2 we propose
a mechanism for the transition from M = 0 fluxons to
M = 1, and in Sect. 4.4 we propose another mechanism
for the transition from M = 1 fluxons to M = 2 being
probably the general jump for a step from M to M +1.
In Sect. 5 we additionally report the structures of sta-
tionary states of the chain for M > 2. Finally the last
sections are devoted to some discussions and a conclu-
sion.
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2 The sine-Gordon (SG) equation and the
FK model

One single JJ has already a rich set of properties which
can be described by a 1D SG in dimensionless form

φ̈ + ηφ̇ = − sin(φ) + F (1)

where φ(t) describes a high frequent phase difference
(PD) between the two superconducting layers of the
JJ [6,20], η is a damping factor, and F is the current
through the JJ.

In the more general case, the vector Φ = (φ1, . . . , φN )
represents the value of N superconducting PDs on the
corresponding ith junctions [18] of an annular chain.
Now generally it does not hold that φi < φi+1 for 1 ≤
i ≤ N , in contrast to parts I and II [1,2]. The chain has
the equilibrium distance, ao = 0, and the φi can change
their order. An array of parallel JJs is described by a
system of discrete SG equations [6,18]

φ̈i + ηφ̇i = − sin(φi) + k(φi+1 + φi−1 − 2φi) + F (2)

where the index i runs over certain integers, for a first
ansatz. The periodicity as = 2π is used throughout for
the site-up potential of the JJs, and k is the ‘spring force
constant’ between the PDs. F is an external force which
is equally applied to all φi [18]. The number of JJs in
the ring is N . The ‘geometry’ of the JJs is fixed, also the
‘distances’ between the JJs. However, here a property
of the JJs counts, the superconducting phase difference.
It can be zero for all JJs, but usually it changes. The
PDs, φi, are the ‘variables’ of the FK model. They are
the former ‘particles’. The handling of the periodicity of
a ring of JJs needs deeper attention. Traditionally peri-
odic boundary conditions (PBC) [11,17,21] were used

φN+i = φi + 2π M, for all i, (3)

with an integer M . At first glance the PBC are ‘dis-
turbing’ because for M > 0 the PD with number i and
the PD with number i + N are not equal though they
belong to the same JJ. The contradiction is solved by
the action of the PDs on the site-up potential, sin(φi)
which is periodic with 2π. To give the same value for
i and i + N , the number M in the PBC must be an
integer. M counts the ‘fluxons’ trapped in the chain
which emerge under the cooling of the experiment with
a magnetic field [9]. In Sects. 4.2 and 4.4 below we try
to explain how a jump from M to M + 1 can happen.

The first action of the PBC with a given N is that
the formally infinite system (2) is reduced to N equa-
tions [22]. Thus the PBC act like a modulo specifica-
tion. On the other hand, the variable M in the PBC is
assigned to the number of ‘fluxons’, thus kinks which
are trapped in the chain [21]. One or more fluxons
enforce a difference between the PDs. The frustration is
named by δ = M/N , and the average distance between
the PDs becomes ã0 ≈ 2πδ. Note that this is not the

real distance between all the PDs, like it is claimed
[23,24], compare Fig. 1. The average length of the chain
is |Φ| ≈ 2πM(N − 1)/N . In Sect. 5 we discuss that it
has to hold δ ≤ 1/2 in a JJs ring.

We treat the harmonic spring potential which is the
background of the discrete SG of Eq. (2) [17,25,26], and
an additional ring potential

Sring(Φ) =
k

2

N−1∑

i=1

(φi+1 − φi)2 + (4)

k

2
(φ1 − φN + 2π M)2 . (5)

The usual distance in the chain, a0, of the other FK
models of parts I and II [1,2], is put to zero here. The
first sum (4) is the inductive energy of the chain [26].
The last summand (5) is the contribution to the PBC.
The relation of the periodicity of the sine function in
(2), 2π, and the frustration may strongly affect the spa-
tial structure of the system. The PES for the variable
changes of the φi is the Frenkel-Kontorova model

V (Φ) = P (Φ) + Sring(Φ) (6)

where the site-up P is the potential

P (Φ) =
N∑

i=1

(1 − cos(2π φi/as)). (7)

(Note k = 1 and as = 2 π is used in the paper.) The ring
potential (5) enforces a chain of a length of ≈ 2π M .
The number N of JJs in the chain is packed into this
interval.

In the JJ-ring model, the ring condition of the peri-
odic boundaries comes to its intrinsic right. The ring
structure of the JJs enforces the 2π-modulo relation of
all the φi. It organises, on the other hand, that at the
boundaries no disturbing reflections emerge [3,8], and
so that the array prevents anti-fluxons [18].

We use a short chain with N = 10 PDs and M
= 1. The parameters could be achieved in a typical
experiment. In Fig. 1 we represent two known station-
ary points of the chain, a minimum and a saddle point
of index one (SP1). Their energies are 7.868 and 7.894
units, correspondingly. The ring condition really makes
a chain in the box with the length 2π. The chain itself
is stretched over the full box and thus forms a kink,
in comparison to a solution with zero distances corre-
sponding to a0 = 0.

Note that the ‘centre of mass’ of the chain [17,18]
is probably not a good measure for the annular chain,
because the beginning and the end of the numbering
are arbitrary. Formally one can describe the movement
of the chain along the Φ-axis. However, then the φj

are not periodic functions, like the PBC enforces it, by
the relation modulo 2π M . To Fig. 1 belong still nine
other equivalent minimums and SP structures with a
further moved numbering: compare Fig. 2. After 5 steps
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Fig. 1 Equilibrium structures (minimum left and SP1 right [17,20]) of the FK chain with N = 10 PDs under the ring
condition (5) with M = 1. The bullets are artificially lifted on the potential to guide the eye. Because we use a0 = 0 in the
model potential (4), the PDs can form ‘nearby together lying clouds’ in the minimums of the cosine function

Fig. 2 Energy profile over a piece of the MEP through
minimums (black) and SP1 (red) of Fig. 1 calculated by a
Newton trajectory (NT) [2] to a unitary direction (1,. . . ,1).
On the theory of NTs see part II. The numbers over the SPs
depict the consecutive φk which cross the SP. Note the very
low energy difference of the two stationary points. Thus, the
pathway is nearly flat, and the critical current is very low

on the minimum energy path (MEP), the PD φ1 crosses
the SP1 but all other φj are collected in the next well
around 2π. For both structures of Fig. 1, minimum and
SP1, the bottom of the well contains 6 to 8 PDs, but two
PDs are sitting on top, for the minimum, or only one
PD is placed there, at the SP. To describe a movement
of a fluxon, it is better to say which single PD currently
crosses the top of the site-up potential. Having in mind
the PBC (3) we can say that the ‘centre of mass’ of the
chain is on the opposite side of the active φk where the
set of the other φj jostles.

The energy profile of the global valley line of the PES
is shown in Fig. 2. We calculated an NT to the unit
direction. The nodes depict points on the step length
axis. We use a predictor step of 0.0125. Of course, one
can also reproduce the MEP by consecutive steepest
descends from the SPs [17]. Every top is an SP1 to the
consecutive φj . Corresponding numbers j are put over
the SPs beginning with the j = 6 of Fig. 1. Though the
energy difference between the SP1 and the minimums is
very low, it is not zero. This is important in comparison
to the continuum SG model [17]. But the nearly zero
energy difference on the MEP causes in the experiments
that the depinning current nearly vanishes, and that the
voltage starts to increase as soon as current is injected
[12].

An imagination of a movement of the chain along the
MEP of Fig. 2 sees the consecutive φk climbing over
the SP1-structure, the right one in Fig. 1. But every
such passage is followed by a descent of the structure
to the next, consecutive minimum, where φk−1 and
φk are the two PDs next to the top. The movement

Fig. 3 Schematic 2D contour line projection of the PES of
the 10-chain. The central y = 0-line is the model of the MEP
of Figs. 1 and 2. The minimums are black bullets, but the
SP1 are red bullets. So to say, the x-coordinate is the direc-
tion along with the MEP but the y-coordinate collects all
the (N − 1) directions orthogonal to the MEP. The param-
eter M can run from 1 to 9, compare Sects. 4.3 and 5

looks like a wave. The form of the passage is always the
same, however, there is no fixed quasiparticle. The chain
changes continuously its shape. The distances around
the ‘climbing’ φk are large, where the distances between
the PDs in the wells are short or zero. By the PBC (3)
we have a periodicity. After N = 10 steps the num-
bering of the climbing φk repeats. But we do not have
an invariant chain with respect to discrete translations
from φk to φk−1 [27] what many workers claim.

In contrast to the model of Part II of this series [2]
where the valley through the PES mountains has some
‘floors’ with SPs with an increasing index, (in case of
N=8 with two central SPs of index 4) and complicated
relations between the floors, here we find a very sim-
ple PES with only one ‘floor’ being at the same time
the ground valley. The floor line is the profile over the
MEP over the minimums and SPs of index one of Fig. 1.
In Fig. 3 we suggest a 2D schematic projection of the
full PES. Of course, this is an oversimplification. One
should also note that the straight line of the MEP here
is curvilinear in the real chain because every minimum,
and every SP1 are located in other dimensions of the
10D configurations space. Note, the chain continuously
changes its internal distances between the φi if it moves
along the MEP of Fig. 2. The most ‘single’ φj is the PD
of number j which currently goes over the top of the
cosine function at the SP1.
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Fig. 4 Extended SP1 (left) and SP2 (right) for M = 0. The left numbering of the PDs goes from 1 to 6 with increasing
value, but then back. So that φ6+k = φ6−k, k = 1, . . . , 4 where for the right hand case it goes up to i = 5 and then
symmetrically back. Besides the foldings, the structures look like the minimum and the SP1 of the M = 1-case in Fig. 1

The move of the fluxon along the MEP is a stringent
proof against the assumption [17,27] that the chain is
rigid and moves as a rigid quasiparticle. What is quasi
‘fixed’ is the continuously alternating change of the
minimum- and the SP1-structure where the single PDs
run through their numbering but the chain goes on in
Φ-direction.

The on-site potential will modulate the chain if an
external further force is applied. We use a linear force
by application of a current to the JJ-ring [21,28–31]. It
makes an effective PES

Veff(Φ) = V (Φ) − F (l1, . . . , lN )T · Φ. (8)

We mainly use the standard N -dimensional normalised
force vector (l1, . . . , lN )T = 1/

√
N (1, . . . , 1)T . F is the

factor for the amount of the external force. In this paper
we sometimes suppress the factor 1/

√
N in the formulae

for simplicity. The gradient of Veff(Φ) is used for the
construction of the equation of motion (2).

The external term is named dc driving [32,33] (for
direct current) if F is fixed. If the amount of the force
alternates in time then one names it ac driving [34]
(for alternate current). The force tilts the former on-site
potential for PD φi with the incline F li, i = 1, . . . , N .
The extremal points of the effective PES, Veff , mini-
mums and SPs, move if F increases. A corresponding
curve is described by a Newton trajectory (NT) [35–39].

The spring constant, k, in Eqs. (2) and (4) is often
represented as a ‘discretisation’ parameter k = 1/a2.
This imagination is coming from the connection to the
continuum SG [40]. If we take the limit a → 0, i a → x
and φi → φ(i a), we get for 1/a2

∑
i=1(φi+1+φi−1−2φi)

the second derivative, φxx, to a length coordinate, x,
for corresponding decreasing distances between the φi.
Here we understand the parameter, k, as the spring
constant in the FK model.

3 Preliminary treatment of the PES of an
FK chain with M = 0

The ring condition secures, in the case M = 0, that we
first get a rigid vector, Φ. If we move it by a sufficiently
strong extended unitary force then it will overcome the
top of the cosine function of the site-up potential. The
ground state of the chain is the sitting of every PD in
one and the same well of the cosine function. The lowest

eigenvalue of the Hesse matrix of the PES there is 1,
and the corresponding eigenvector of the first normal
mode is pure translational vibration [30]. This move-
ment leaves the chain unchanged, it only vibrates ‘col-
lectively’ in this one well.

We can excite the vector of PDs over the critical
force, Fc =

√
10, for the equal bias on all PDs. Then

we get a sliding behaviour. It moves like a lump of nar-
row points over the site-up potential. The lump whirles
over the SP of the cosine potential [41]. The minimum
of the PES is all in all φi = 0 with energy zero, but
an SP is for all φi = π with energy 20 units. Thus the
energy difference for this path is much larger than in
the case M = 1, compare Fig. 2. However, the SP has
index three.

So, there is a lower SP anywhere. We get it by a
PDs chain which first extends along the axis, but then
folds back, so that the last φN comes back to the begin-
ning to fulfil the ring condition, M = 0. Its energy
is 15.256 units, see left panel of Fig. 4 for an illustra-
tion. A steepest descent on the left-hand side goes to
the minimum φi = 0 for all i, but on the right-hand
side it goes to the minimum φi = 2π for all i. In Ref.
[7] such a structure is named fluxon-antifluxon pair,
though the name is not explicitly explained there. We
will question such a description. What is here the anti-
structure? The concept kink-antikink means stretching
or compression of the structure of a chain. For M = 0
and a lumped set of PDs, there a further compression
cannot take place. Only the kink-concept of a stretch-
ing can be applied. We think that the description by
the words ‘folded chain’ is better. Maybe one could also
say ‘folded kink’. But nevertheless, the report of such
states in Ref. [7] leads us to the search, and finally to
the detection of this state.

The exorbitant higher energy difference of the SP1

to the minimum in this case, M = 0, in comparison to
the ‘flat’ MEP of the M = 1 case, see Fig. 2, makes a
qualitative different behaviour. Without reference to a
possible case of M = 0, this is named ‘parasite’ pinning
[11]. Compare Sect. 4.1 below where we further treat
this case.

Closely nearby in energy is also the next index SP,
the SP2, with 15.294 units of energy, see the right-hand
side of Fig. 4. We could not find any further SPs on
the PES for M = 0. The reported further structures in
Ref. [7], in the case M = 0, have to be of dynamical
character. It would be an interesting task to illustrate
their localisation on the PES between the three SPs.
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(a)

(b)

Fig. 5 Energy profiles of NTs from SP1 (a) and from SP2

(b) for M = 0. The search direction is the unitary one. Both
NTs bifurcate at a VRI point

Profiles over NTs starting at both SPs of index one
and two are shown in Fig. 5. Both curves bifurcate at a
valley-ridge inflection point (VRI), and unite after this
with the global minimum or the higher SP3. The VRI
point is the structure with all φi = 1.97 for i = 1, . . . , N ,
thus again a lump of points. It is on the fully symmetric
pathway from minimum to SP3 with the rigid ‘chain’.
One could speculate that the symmetry breakdown at
the VRI point opens a lower pathway for a moving chain
than the fully symmetric path over the SP3. See Sect.
4.1 below for the description of such a path.

The two SPs of index one and two are connected
by an annular ridge of the PES, quite as the MEP of
Fig. 2. We found an artificial NT to the direction of
the first positive eigenvalue of the SP1 which connects
in a continuous way the series of the two stationary
points by a consecutive ‘rotation’ of the PDs where the
chain stays on the place. The search direction of the
NT is lrot= (0, 0.19, 0.46, 0.46, 0.19, 0, − 0.19, − 0.46, −
0.46, − 0.19). The profile of the NT is shown in Fig. 6a.
In Fig. 6b the final structure of the chain at the end of
the NT is represented which nicely shows the rotation
of the PDs where the vector Φ stays all in all on its
place.

4 The overdamped Langevin equation

The components of the gradient of the effective PES
are

geff i = k (φi+1 + φi−1 − 2φi) − v sin(φi) + F li (9)

(a)

(b)

Fig. 6 a Energy profile over a piece of an NT through
consecutive SP1 and SP2, for M = 0. The search direction
of the NT is the first positive eigenvector of SP1. The NT
balances on a ridge. b A stroboscopic structure at the end
of the NT: the PDs are ‘rotated’ where the chain stays on
the place. Compare the order in Fig. 4

for i = 1, . . . , N . For i = 0 and i = N + 1 here emerge
additional particles which are connected over the PBC
[25]. They form the ring of this FK model, see Sect. 2.
If we put the gradient to zero, we get the ansatz of the
NT theory [13]. In contrast, one can put the gradient
into a steepest descent equation, and one can name it
the overdamped Langevin equation [43,44]

η Φ̇ = −geff(Φ). (10)

For JJs systems, the full Eq. (2) is usually the correct
description. However, if one shunts each JJ by a resis-
tance then one can get a correct description by the over-
damped dynamics [17]. Numerically we approximate
solutions of Eq. (10) with t-steps of length 0.001, 0.005,
or 0.01. In corresponding representations we depict the
time axis by ‘node’.

If one chooses F > Fc, the critical force, in the
Langevin equation then a positive amount emerges for
the velocity of a change of the chain. By the stronger
tilting of the force, F than Fc, the chain will be
depinned and slides ‘downhill’ the effective PES. How-
ever, by the PBC we get a rotation of the chain around
the annular JJs array.

4.1 Movement of an FK chain for M = 0

We remember that the ground state of the chain is the
lump of PDs in one and the same well of the cosine
function. The movement under the equal excitation
F/

√
10 (1, . . . , 1) leaves the chain unchanged. We have

to report that this pathway is quite stable. If we start in
the unsymmetrical SP1 then a Langevin solution first
correctly relaxes to the region of the global minimum
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Fig. 7 Energy profile over a Langevin solution on the PES
only (without representation of the tilting, compare parts I
and II [1,2]) starting at SP1, for M = 0. The excitation
direction is the unique case, (1,1,. . . ,1), and the amount,
Fdc = 3.5 is a bit over the critical force, Fc =

√
10 = 3.16.

After settling in the first cycle, the solution alternately
crosses the regions of the minimum and of the SP3

and then goes the way over the fully symmetric SP3,
see Fig. 7 for a corresponding energy profile. Note that
we use a reduced representation, without the part of
the external bias, the PES only, compare parts I and II
[1,2].

If one is on the PES for M = 0 then the ‘collective’
unified movement of the chain as a lump, over an SP
of index 3, is not the direction to a lower energy path
through the PES mountains. This should go over the
region of the SP1. We found such pathways for other
external excitation directions. One may imagine that in
the array of JJs not all currents through every single JJ
are equal. Then the vector of the force, l, may be not the
vector of equal entries. Or one can imagine a disorder
by thermal noise. Here we use l = (0.3, 0.39, 0.48, 0.23,
0.1, 0.07, 0.1, 0.23, 0.48, 0.39). It is the direction of the
gradient in the barrier breakdown point (BBP) [2] of
the steepest descent from the SP1 downhill. The result
of a Langevin solution is shown in Fig. 8. The amount
of the external force is Fdc=3.2. We still illustrate the 4
turning points (TP) of the solution of Fig. 8, in Fig. 9.
M1 is near an SP2 and one can observe that φ3 and φ9

climb over the top of the site-up potential. The point
m1 is nearer to an SP1 and the pairs φ4−φ3 and φ8−φ9

are on top. For M3 already the φ4 and φ8 are over the
top, it is again nearer to the SP2 structure.

4.2 Middleton’s rule, jump of M = 0 to M = 1

In contrast to the NT in Sect. 3, for M = 0 does not
exist a stable Langevin solution staying only on the
ridge between the two SPs of index one and two, as one
could speculate with the result of the NT. In Fig. 10
we show the solution with the start at SP2 to the not-
unique eigenvector of the former NT and an Fdc = 0.1.
It comes back, really once times, on the PES only (com-
pare parts I and II [1,2]) to the region of the SP2, but
then it descends after a longer sliding to the minimum
where it is fixed caused by the small Fdc far below the
critical force. The first loop is, so to say, still a settling
phase.

Fig. 8 Energy profile of a dc-driven Langevin solution on
the PES only for M = 0 and for Fdc = 3.2. The excitation
direction is a gradient vector, see text. We find a stable
vibration after an initial settling

Fig. 9 Structures of the TPs for the movement of the chain
in Fig. 8 for N = 10, M = 0. The pattern repeats for every
next cycle of the sliding

Fig. 10 Energy profile (PES only) over a Langevin solu-
tion starting at SP2, for M = 0. The bias direction is the
first positive eigenvector of SP1, lrot of Fig. 6. The excitation
amount is Fdc = 0.1, but the step length of t-steps is 0.01.
After step 15,000 it descends to the global minimum (not
shown). M1, m1, and m2 are maximal and minimal TPs
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Fig. 11 Structures of the TPs of the Langevin solution
of Fig. 10 for N = 10, M = 0. Note the rotation of the PDs
from (m1) to (m2), or from SP2 (Fig. 4, right panel) to (M1)

The rotation of the PDs in the folded kink, on the
profile of the cosine function reported in Fig. 11, con-
tradicts the Middleton’s no-passing rule [45] because
the rotation destroys the given order of the chain at
an initial structure. One reason may be the not-unique
force vector with alternating signs. Compare, however,
another case in Sect. 4.4 below.

On the other hand, if one images a rotation by 3
places of all PDs, starting with the SP1 of Fig. 4 left,
or still better a rotation by 8 places, then one gets the
PDs ‘sorted’ in the kind that on one side of the cosine
function one half of numbers is collected, 1–5, and on
the other side the numbers 6–10 are collected.

Gedankenexperiment
Now one can imagine a cut of the ring potential (5)
with the M = 0 parameter. Thus we solve the ‘bond’
between φ1 = φ11 and φ10. The structure of the folded
chain will relax to a minimum where one half of the PDs
collects at the left hand well, but the other half collects
at the right hand well. It can relax to a minimum of
the chain of the case with PBC M = 1. The minimum
structure itself (see Fig. 1) does not make a contribution
to the PBC.

Of course, the special ring condition (5) with φ1 and
φN only is contributed to the numbering; so, every SP1-
‘bond’ of the folded chain can tear. In Fig. 4 left it con-
cerns the bond 3-4 or 8-9.

The ring condition itself is necessary to guarantee the
ring structure of our problem. However, which M one
should put? This is arbitrary. So, under the excitation
of the last subsections, one can guess that it is possible
that the system jumps to the next M . The given M is
conserved by our formula (5) but probably not in the
real chain. There only any M must rule the ring charac-
ter. Reference [12] describes that M is ...“determined by
the initial conditions, but remains constant throughout
the subsequent evolution of the system ...” The initial
conditions are put by an orthogonal magnetic field of

M flux quanta, MΦ0 [9,46] which is applied before the
experiment. See a further discussion in Sect. 5.

So to say, JJ arrays in ring form have the dimension
(N +1) where N dimensions describe the N JJs but the
(N+1)st dimension describes the number of fluxons. Of
course, the last coordinate, M , can only assume discrete
integer values, but it can jump.

Up to now, we cannot combine the optimisation of
the N usual dimensions with the extra M . But we can
change the M in our formula by hand. Compare a simi-
lar remark in Ref. [10], as well as: “while the fabrication
of annular junctions is rather easy, trapping of fluxons
in them remains a difficult art” [42]. In experiments,
it is reported that JJs arrays really jump between the
M-‘coordinate’ [10,20]. Thus nature finds these ‘worm-
holes’ between the different M -worlds. See Sect. 4.4
below for a further propose how it could work.

4.3 The movement of an FK chain for M = 1

Here we have again a box of 10 elements of the JJs
ring. However, now by M = 1 we allow a ‘fluxon’ of
the PDs, to emerge in the ring [7,9,20]. It acts like
an enforcement of an SP1 respective an intermediate
minimum for the chain; it is shifted to the first floor
of the PES of a chain with N = 10 particles and free
boundaries [15]. However, this first floor now has no
end. It is periodic along the JJs ring.

In Fig. 12 we show calculations of a ‘sliding chain’, a
solution of the Langevin Eq. (10) with a unique force,
which quickly finds the region over the MEP and then
there goes on up to infinity. Note that the pathway of
the MEP is (for k = 1) quasi flat.

Note that the profiles still follow the pattern of the
MEP between the minimum and the SP1 of the chain in
Fig. 2, but on an increasing level of energy. The external
force acts uniformly on all φi, not only on the one φk

which actually overcomes the top of the site-up poten-
tial. The decay direction for the PD φ6 (see Fig. 1) being
on the top of the sine potential is the eigenvector (0.02,
0.03, 0.06, 0.16, 0.41, 0.78, 0.41, 0.16, 0.06, 0.03). This
is not the unique excitation direction of the JJs ring.
So, we have an unnecessary force effort to all parts of
the chain, where one only needs the force fk to act on
the one φk. This accumulates a great amount of the
external force to move the one φk further, and then
the next φk+1, and so on. The increase of the energy
of the profile line of the different cases with increasing
Fdc demonstrates the effect.

In panel Fig. 12a we find, after a short settling, that
the flow oscillates by a fixed, but low frequency. The
profile repeats the MEP of Fig. 2, however, on a higher
energy level. The minima and maxima of the profile are
turning points (TPs) but not stationary points of the
PES.

To panel (b): after ≈10,000 t-steps (nodes) the chain
slides ‘down’ the tilted effective PES by a stable flow,
and with a much higher frequency than in case (a).
However, the amount of the vibration decreases. The
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(a)

(b)

(c)

Fig. 12 Energy profile of dc-driven Langevin solutions on
the PES only (without representation of the tilting, com-
pare parts I and II [1,2]) for N = 10, M = 1 and direction
(1,. . . ,1). a For Fdc = 0.15, somewhat over the critical force
Fc = 0.02542, with the start in a minimum, b the profiles
for Fdc =1, 3, and 5, c for Fdc = 7.5. We find a stable small
vibration in cases a and b after an initial settling. In case c
the curve flattens out

projected profile on the original PES is much higher
than the MEP.

To (c): a giant settling after the large Fdc causes a
‘collective’ push of the chain of PDs, thus of all φi,
to an inversion of the former positions. In low energy
positions most φi are in the well of the cosine func-
tion. However, in high energy positions they are on the
top of the cosine function. After ≈ 15, 000 t−steps the
vibration flattens out and ‘stays’ without any vibration
at 11.784 units. One could imagine that the frequency
increases to ‘infinity’, in comparison to case (b), but
the amount of the vibration decreases to zero. Thus,
the external force drives the chain along a level line of
the PES. The small difference between the minimum
and the SP1 is totally flattened out.

In Fig. 13 is shown a moment structure to case (c).
The diverse PDs nearly have equal distances, com-
pare reference [12]. However, the distances are still not
totally equal, here. They are at the structure of Fig. 13
Δφ= (0.56, 0.55, 0.57, 0.62, 0.67, 0.71, 0.71, 0.68, 0.63).
Note that we have shortened the representation by the
transformation of the chain to the initial interval by the
PBC modulo relation with 2π.

Fig. 13 Stroboscopic picture of the structure of the chain
in case of Fig. 12c for Fdc = 7.5 at the end of the calcu-
lated time. The chain comes already near to an equidistance
between the PDs, the blue bullet in Fig. 14

Fig. 14 2D projected picture of the PES of the 10-chain
at the equidistant structure of the chain (the fat blue bul-
let at coordinate (0, 0, V)). This point is probably a VRI
point. The two directions are the gradient there, and the
one negative eigenvector of the Hessian. By the black bullet
we depict a minimum

The transition from a ‘stable’ wave as in Fig. 12b to a
flat curve as in panel 12c goes on quasi continuously for
the Langevin solution. For the continuum SG equation,
however, it has a singularity, see Fig. 2 of reference [12].

How far can the pathway be moved uphill? Or in
other words: is there an end for Fdc? Like the observed
Zero-field steps (ZFS) would mean [8–11]. A similar fig-
ure like 12c we get for Fdc=10, where the level of the
flat final line is at an even higher energy of 11.967 units.
The energy of a chain with an equidistant distribution
of the PDs is 11.974 units. The structure has the PDs
φi = (i−1) 2π/N giving (0, 0.63, 1.26, 1.89, 2.51, 3.15,
3.77, 4.4, 5.03, 5.66). An equally distributed chain, Φ,
of length 2π needs a nearly equal amount of force to
move along the site-up potential. Thus the PES profile
line can really flatten out. One could guess that this
is the end of the story? (Compare the pre-structure in
Fig. 13.) But a further, strong excitation with Fdc=25
makes a ‘line’ at the energy of 11.975, over the equidis-
tant distribution of the PDs. The chain itself is here a
little bit compressed, on its way ‘downhill’ the sliding.
Its length varies between 5.63 and 5.68 being smaller
than 2π.

On the other hand, the example of an excitation with
Fdc = 25 is far over the symmetric SP3 of the case
M = 0 lying at 20 units of energy. If one assumes here
an inverse ‘relaxation’ of the not fully stretched chain
from the M = 1 to the M = 0 case, one would get a
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(a)

(b)

Fig. 15 a Langevin profile (PES only) for a non unique
excitation, see text. The red inlay is the changing of the
length of the chain under the ‘downhill’ sliding with this
force. The black bullet in the upper right corner is a possible
entry point to a ‘wormhole’ to M = 2. Its structure is given
in panel b

back jump and the pure whirling of the chain as a lump,
like in Sect. 3.

All in all, we cannot see a resonant oscillation of the
chain at the fin of the ZFS [6]. In contrast we detect no
kind of vibration, but only a straight, stiff ‘downhill’
sliding of the chain.

Conjunction
The reason for the ZFS is that the force for the move-
ment of the chain can increase, but the PES flank
becomes steeper, to vertical. So the increase of the level
line goes to zero. The relation of the PDs to the voltage
of experiments is given by the Josephson voltage-phase
equation [12,47]

Vj =
Φ0

2π
< φ̇i > (11)

where < .. > means time average. If the φi all move with
equal distance and velocity, we get a constant voltage.
Note that the relation (11) can be directly transformed
into the usual current-voltage characteristics.

We imagine the different cases of the external exci-
tation, f, in Fig. 12 with the help of Fig. 3. The chain is
uniformly driven by the ‘washboard’ force to all direc-
tions f = F /

√
10(1, . . . , 1)T . However, it is moved by

the component fk only over the k−th SP1 where the
PD φk is on top of the cosine function. The other
components act in the moment to other dimensions.
Thus, the driving is, so to say, inefficient. The orthog-
onal components to the MEP of f are consumed with
unnecessary energy. This explains why the solutions of
the Langevin equation do not follow the MEP but are
moved somewhat uphill on the flank of the PES. How-
ever, the Langevin solution goes somewhat parallel to
the MEP.

Fig. 16 Ladder of energy levels of the MEP for different
numbers of fluxons, M . Note that steps for M > N/2 are
not realized in experiments, by symmetry reasons [9,12,24]
caused mainly by the PBC (3)

Table 1 MEP levels to different fluxons

M 0 1 2 3 4 5

V (Φmin) 0 7.87 16.17 28.8 40.85 58.12

We study the character of the point on the PES
for the equidistant distribution of the PDs, compare
Fig. 14. The gradient there does not have equal com-
ponents but is symmetric: (0, 0.588, 0.951, 0.951, 0.588,
0, − 0.588, − 0.951, − 0.951, − 0.588), and it is of course
not near the zero vector, and the determinant of the
Hessian is negative. An eigenvector to the one nega-
tive eigenvalue is (0.02, 0.035, 0.101, 0.257, 0.486, 0.61,
0.486, 0.257, 0.101, 0.035) which is orthogonal to the
gradient.

In Fig. 14 the 2D projected PES at the equidistant
structure of the chain is shown. It seems that the point
of interest could be near a valley-ridge inflection (VRI)
point of a ridge of the 10D PES. An NT to the downhill
direction correctly gives a known minimum. It seems
that Fig. 14 represents a piece of Fig. 3. An NT going
uphill this structure starts the folding of the chain, but
we could not find any ‘folded’ SP. Diverse NTs going
uphill turn back later after passing only TPs.

4.4 A possible ‘wormhole’ for a jump to M = 2,
once more Middleton’s no-passing rule

The last subsection has demonstrated that an external
excitation of the ring chain by a totally symmetric force
vector, (1,1,. . . ,1), climbs up the wall quasi parallel to
the floor of the MEP, compare Fig. 3. But because the
wall becomes steeper and steeper, the increase of energy
height, thus the increase of the ‘speed’ of the chain on
its ‘downhill’ sliding on the effective PES will become
smaller and smaller. We guess that this is the reason
for the measured ZFS in experiments.

How can a jump to the next M state happen, or with
the experimental result, how can the array switch to a
higher voltage state [10]? We assume that the excita-
tion of the chain is not totally symmetric. In an exper-
iment one can imagine, besides the omnipresent noise
[48], that one can change the array parameters [17] by
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Fig. 17 Extended two fluxons of the chain for PBC M = 2 with the minimum (left) and SP1 (right). The SP1 is symmetric,
but the φ1 disturbs the symmetry for the minimum

Fig. 18 Energy profile over the MEP through minimums
and SP1 of Fig. 17 calculated by an NT to unitary direction
(1,. . . ,1). Note again the very low energy difference of the
two stationary points. Thus, the pathway again is nearly
flat

(a)

(b)

(c)

Fig. 19 Energy profile of three dc-driven Langevin solu-
tions in case M = 2 on the PES only (without representa-
tion of the tilting) for N = 10 PDs. a For Fdc = 0.15 with
the start in a minimum, b for Fdc = 1, and c for Fdc = 7.5.
We find a stable small vibration in cases a and b after an
initial settling. In case c the curve flattens out quite analo-
gously to the case M = 1. Note the different t-scales in the
three panels

the plaquette self-inductance, or by the single JJ criti-
cal currents. Additionally, in some experiments [12] the
current is actually injected at one JJ, instead of all JJs.
So, we take for a calculation an unsymmetrical excita-
tion direction
lwormhole =1/3.26 (0.5, 0.75, 1, 1, 1, 1, 1, 1, 1.25, 1.5) with
norm 1, and the large amount Fdc=20.

Figure 15a shows the profile of the Langevin solution,
being somewhat similar to former curves. The red inlay
is the length of the chain: it becomes stretched because
of the unsymmetrical force. The black bullet is a struc-
ture, shown in panel (b) which has 3 PDs in the left
well, 4 PDs in the central well, but 3 PDs in the right
well of the cosine function. This structure will relax to
the SP1, or to the minimum of the case M = 2, (see
Sect. 4.3 below) if the ring condition of the PBC is put
to M = 2. The chain can jump to the next M like this.
Because the ‘floors’ of the PES to different M values
have different energies (see Fig. 16 and Table 1 below)
we get for the transitions between the branches in the
experiments a discontinuous voltage [47].

Note again an interchange of φ1 and φ2, as well as
of φ9 and φ10, of the ‘wormhole’-entry. Thus the no-
passing rule here is injured as well. Though, in this
case, the force vector has only positive components, in
contrast to Sect. 4.2. The reason for the interchange of
the outer PDs may be the strong action of the PBC (5).
One may see this structure as a beginning of a folding,
like the SP1 of the M = 0-case.

Note that the exact calculation seems quite difficult,
for which high Fdc amount, for which slightly unsym-
metrical force, and at which point on the pathway of
the chain ‘downhill’ such an entry point first emerges.
Our example only demonstrates the existence of such a
point. One hint can give the minimal energy step which
one should apply to jump from the minimal floor of one
M to the next floor for M + 1, which is represented
in the scheme of Fig. 16, compare Sect. 5 for the cases
M = 3 to 10.

4.5 The movement of an FK chain for M = 2

Two ‘fluxons’ of the PDs can emerge in the ring, see
Fig. 17 for the structure of a minimum and an SP1.
Their energies are 16.173 and 16.237 units, correspond-
ingly. An NT which connects consecutively the mini-
mums and the SP1 with a wandering top φi is given in
Fig. 18. It is similar to former cases in Figs. 2 and 6(a).

In Fig. 19 we show calculations of a ‘sliding chain’, a
solution of the Langevin Eq. (10), which quickly finds
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Fig. 20 Minimum left and SP1 right of the FK chain with
N = 10 PDs under the ring condition (5) with M = 3
fluxons. There exits a mirror symmetric structure of the
minimum (not shown)

Fig. 21 Minimum left and SP1 right of the FK chain with
M = 4 fluxons

the region over the MEP and then goes on up to infin-
ity. Note that the pathway of the MEP is (for k = 1
and M=2 also) quasi flat. The profiles follow again the
pattern of the MEP between the minimum and the SP1

of the chain in Fig. 18, on an increasing level of energy.
In panel Fig. 19a we find, after a short settling, that

the flow oscillates by a fixed. but low frequency. The
profile repeats the MEP of Fig. 18 however, on a higher
energy level. The minima and maxima of the profile are
TPs but not stationary points of the PES.

To (b): after less than 500 t-steps (nodes) the chain
slides ‘down’ the tilted effective PES by a stable flow
with a much higher frequency than in case (a). However,
the amount of the vibration decreases. The projected
profile on the original PES is much higher than the
MEP.

To (c): a giant settling takes place for the large Fdc.
But after less than 1 000 t−steps the vibration flattens
out and ‘stays’ without a vibration at 17.847 units.

5 Structures of the FK chain for M = 3 to
M = 10

The stationary structures of the chain for M = 3 are
shown in Fig. 20. The MEP for M = 3 is similar to for-
mer cases, compare Figs. 2 and 18. Energies are 26.805
units for the minimum and 26.81 for the SP1, so the
MEP between the stationary points becomes very flat.
Langevin solutions exist for the depinned chain sliding
‘downwards’ similarly to Fig. 19.

The stationary structures of the chain for M = 4 are
shown in Fig. 21. The MEP for M = 4 is similar to for-
mer cases, see Figs. 2 and 18. Energies are 40.852 units
for the minimum and 40.885 for the SP1. Langevin solu-
tions exist for the depinned chain sliding ‘downwards’
similarly to Fig. 19.

The stationary structures of the chain for M = 5
are shown in Fig. 22. Although 5 PDs are on the tops
of the site-up potential at the SP, it has indeed index
one. The character of the PES changes if the bound-
ary conditions are removed (but a0 = π is used). Then

the same SP structure has the SP index 2. Besides the
given SP structure exits a mirror symmetrical SP. The
MEP for M = 5 is similar to former cases in Figs. 2
and 18. Energies are 58.123 units for the minima and
59.348 for the SP1. The left minimum goes over 5 wells
with a length of 27.789, but the right minimum is
longer and extends over 5 hills with a length of 28.76.
The two SPs have the exact length of 9π=28.274 being
in between. The example again demonstrates that the
average distance of the chain, ã0, is not constant at
2π M/N [24]. The PBC goes into the potential energy
ansatz (5) as a part of the potential energy. It is
ã0 ≈ 2π M/N only approximately realized. The rea-
son is that the PBC demands that φN+1 − φ1 = 2π M ,
however, the distance φN+1 − φN is variable for the
forces of the FK model, as well as all other distances of
the chain.

For an M = N/2 case an experiment notes a small
depinning current [9]. It corresponds to the larger differ-
ence of the two energies of 1.225 units in this case, the
Peierls-Nabarro barrier [49], being higher in compari-
son to the cases of former M > 0. Langevin solutions
exist for the depinned chain sliding ‘downwards’, see the
right pannel in Fig. 22. The force amount Fdc must be
higher than the critical force at the barrier breakdown
point (BBP) [2] of the PES. If the 5 fluxon chain moves
along the MEP then it has to alternate from the ‘long’
minimum to the ‘right’ SP (where the 5 top PDs are at
the right-hand side), to the ‘short’ minimum, and then
to the ‘left’ SP, and so on. It is clear that this process
does not take place by a ridgid chain, a ‘ridgid fluxon’
[27] which is claimed to represent a quasiparticle. No,
the chain always changes its length. It is not rigid.

The case of M = N/2 has already been discussed in
part I [1] for an additional ac-excitation of the chain.
Then Shapiro steps emerge.

We add Table 1 with the minimum energies on the
MEP to different fluxon numbers, M . These energies
are not linear in M . It is claimed that in an experiment
the M fluxons are set by a magnetic field of ‘about M
flux quanta Φ0 corresponding to exactly M vortices of
the ring’ [9]. This cannot be exactly correct in view on
the nonlinear dependence of the energies of the floors
on the number M , see Table 1.

In contrast, workers in Ref. [50] write that they could
not experimentally determine the exact number of flux-
ons in the ring. So, there is no universal agreement
among different experiments.

The stationary structures of the chain for M = 6
are shown in Fig. 23. The MEP for M = 6 is similar to
former cases, see Figs. 2 and 18. Energies are 80.33 units
for the minimum and 80.363 for the SP1. The structures
are a kind of mirror picture to the M = 4-case. It is
known that due to symmetry the average distance ã0

can be restricted to the interval [0,π] without loss of
generalyty [24]. One has to contract here all φi by the
factor 4/6. We get a formula for the single PDs (by N
even) with

φj

∣∣∣∣N
2 −k

(
N

2
+ k

)
= φj

∣∣∣N
2 +k

(
N

2
− k

)
(12)
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Fig. 22 Minimum left, SP1 centre left, and second minimum centre right, of the FK chain with M=5 fluxons. Both
minimums have the same energy, but a different length. There exits a mirror symmetric SP (not shown). The right panel
is the energy profile over the MEP through minimums and SP1 calculated by a Langevin equation with unitary direction
(1,. . . ,1)

Fig. 23 Artifical minimum left and SP1 right of the FK
chain with M = 6 fluxons

for j = 1, . . . , N, 1 ≤ k < N
2 . On the left hand side

we have real structures of the chain, but on the right
hand side we find only artificial structures. For M = 6
distances between the PDs are much more stretched,
thus the energy levels would be much higher. Equiva-
lently to the symmetry treatment [12], in experiments
[9,50] is reported that the steps with M = N/2+k give
equal I/V curves like the steps with M = N/2 − k for
k = 1, . . . , N/2−1. Thus these steps with M > N/2 do
not emerge, at all. The much higher energy of the ‘over-
stretched’ structures is not realized. The spring formu-
las (4) and (5) allow for M > N/2 an artifically over-
stretched solution. Nature, however, does not realise
this solution.

Energies for M = 7 are 105.762 units for the artificial
minimum and 105.766 for the artificial SP1. Again the
structures are a mirror picture to the M = 3-case. One
has to contract all φi by the factor 3/7. Equation (12)
here also applies.

Energies for M = 8 are 134.609 units for the artifi-
cial minimum and 134.672 for the artificial SP1. The
structures are a mirror picture to the M = 2-case. One
has to contract all φi by the factor 2/8. Equation (12)
here also applies.

Energies for M = 9 are 165.782 units for the artificial
minimum and 165.808 for the artificial SP1. And the
structures are a mirror picture to the M = 1-case. One
has to contract all φi by the factor 1/9. Equation (12)
here also applies.

The artificial stationary structures of the chain for
M = 10 are shown in Fig. 24. Energies are 197.392 units
for the minimum, 212.648 for the SP1, 212.686 for the
SP2, and 217.392 for the SP3. The difference of SP3 to
the minimum is 20 units like in the case M = 0. A com-
parison with the folded structures of the SP1 and SP2

of the M = 0-case shows that here the structures are
unfolded, like in the other cases for 0 < M < 10. How-
ever, the unnecessary ‘overstretched’ structures are not
realized in experiments, there is an energy penalty. For
the minimum, one can see the ‘impossibility’ because

all φi ≡ 0mod 2π. The case M = N (winding num-
ber ω = 1) which is discussed in reference [44], is an
abstraction which has no realisation for the PBC (3).
It is a mathematical extension to play with.

6 Impurities

We have seen in Sect. 4 that some ‘theoretical’ problems
emerge if we deal with the symmetric array of JJs under
a fully symmetric excitation. The pathway of the chain
of PDs will then hold the symmetry, being usually a
way on a ridge on the PES, but it does not find the
quite lower, unsymmetric region of the corresponding
MEP. However, if the chain is disturbed, from the early
beginning, by any kind of impurity then the symmetry-
‘problem’ come off by itself.

7 The folding problem

If φ1 and φN have the ‘correct’ distance of the PBC,
≈ 2π M(N −1)/N , then nevertheless other φi can be in
a ‘false’ order. Thus the distances Δφi can have positive
or negative values. Compare the folded SP1 and SP2

of case M = 0 in Sect. 4.1. The possibility emerges in
calculations of the entry of the ‘wormhole’ in Sect. 4.4,
or of NTs in higher energy regions of the PES because
the ‘ordering’ action of an a0 > 0 is missing in the
model.

An example is a VRI point with an energy of 21.96
units for M = 1. The PDs are (1.46, 3.65, 4.79, 4.56,
3.14, 1.73, 1.5, 2.63, 4.82, 6.28) modulo 2π. φ1 to φ4

are ordered correctly, but φ5 to φ7 go backwards, and
at the end φ8 to φ10 are again ordered correctly. The
structure is two times folded.

However, we did not find any SP with such a folded
structure for M > 0.

8 Discussion

An interesting question for the imagination is: how
one has to imagine the tilting of the annular chain by
the washboard potential, thus by the unitary external
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Fig. 24 Artifical equilibrium structures of the FK chain with M = 10 fluxons. Left to right: minimum, SP1, SP2, and SP3

force? So to say, the externally excited JJs array is a real
example for M. C. Eschers ‘waterfall’ [51]. The explana-
tion is the ‘topological constraint’ of Eq. (3) [12] enforc-
ing a cycle. “In a cyclic process, the arrow of time is
made circular” [52].

In all cases of M > 0 we have to realise that the PBC
(5) is a strong force in our potential formula. It dic-
tates the shape of the FK chain, compare the structure
Figs. 1, 4, 16, and 20, 21, 22, 23 and 24. In all cases
0 < M < 10 we have one deep valley with the MEP
over the minimums and the SP1 on nearly the same
level. The MEP crosses all N dimensions and closes to
the ring by the PBC. There is only this one floor, and
nothing else. The remaining PES has only steep flanks
tending to vertical walls. It seems that no further SPs
exist, at least not in a usefull energy region. So to say,
we find a very simple PES, in contrast to part II [2]. Of
course, different floors emerge for different numbers of
fluxons, M .

We can explain the ZFS by the use of a Langevin
equation only, for 0 < M ≤ N/2. It is a simplification
but it is sufficient. We do not need the full, more correct
equations of motion with the second derivatives. Thus,
we do not treat the radiation of small amplitude waves
(phonons) of the chain [11,12,18,53]. The PES (6) is
the same for both equations, of first or second order.
Possibly, a further internal vibration of the chain could
make the entry into a ‘wormhole’ for the transition from
a given floor of M fluxons to the floor of M + 1 ones
easier. The question deserves further study, compare
Ref. [11] which, on the other hand, uses a very larger
N = 50 and a very smaller k-parameter between 0.5
ond 0.25.

The deep minimum well of the PES in case M=0
makes it possible that the chain vibrates along with the
N different normal modes. However, in the cases M >0
we do not find a deep minimum well. The MEP is a
very flat ‘floor’ on the PES for spring parameter k = 1.
For M=1 we have the lowest eigenvalue of the Hessian
at the minimum at 0.06 units, and the decay direction
of the SP1 has the eigenvalue − 0.058. The barrier is
0.025 units. Here cannot exist a vibration of the chain
with a frequency such that it can be fitted more or less
along this MEP. Here does not exist a ‘kink internal
mode’ [54] along the MEP. (One can imagine vibrations
orthogonal to the MEP. They can be named breathers
[47] indicated by a single li = 1, but all other lj �=i = 0.
However, these we do not need for a sliding. They make
the treatment only more complicated.) A low external
force with F/

√
10 > Fc, the critical force, induces a

depinning and avoids any vibration. The sliding of the
chain is indeet a rotation through the JJs array, by the

PBC. And this rotation will have a ‘frequency’ deter-
mined by the velocity of the chain. Note that we never
observed a whirling of parts of the chain [41].

In the FK model with free boundaries [2] kinks and
antikinks have an own length which is determined by
the parameters of the model, (v = 1 here) and k, the
ratio of the parts of the potential energy. Under the
PBC (5) the chain is, for M > 0, stretched over the
full interval, 2π M . This means that the corresponding
fluxon does not have an own length. The chain itself
is the fluxon. The observation is in contrast to ref. [21]
which claims that the 2π M(N −1)/N form is too crude
to grasp the crucial points of the problem, and demands
that the kink is not an ≈ 2π M form. We must deter-
mine here that the ansatz (5) acts in our description;
the mathematics is not negotiable.

We guess that there are not such constructs like anti-
fluxons which can annihilate themselves with fluxons
[6,8]. We guess that there cannot be more than one sin-
gle fluxon in the chain with a different velocity [10]. We
guess that there cannot be an addition of, for example,
two fluxons with 1M , to one fluxon with 2M [10,18]. At
least not in this FK model with the PBC. The reason
is that for every M only one minimum exists, and only
one SP1 structure (besides the numbering of the PDs,
and their ‘rotation’). Different fluxon structures for a
fixed M are not compatible with such a simple PES, at
least not for our small N = 10.

In all parts of this series, I, II, and this paper, com-
pare refs. [1,2], we start with an FK model by its math-
ematical formula, including the corresponding bound-
ary condition. Using corresponding properties of the
models, we demonstrate how the models allow diverse
stationary states, or flows of the chain of particles, or
parts like the phase differences φi in this paper. We
claim that this simple mathematical analysis, as we
did it, is essential for the decision that the FK for-
mulae can be a model for the explanation of diverse
experiments.

So far the treatment of resonant steps in FK models
has mainly be restricted to describe ‘that they emerge’,
but not yet extended to explain ‘why they emerge as
they are’. This we try in the series of the three papers.
The main tool is the study, the development of the old
known PES of the current model, its global and inter-
mediate minimums, and its SPs of an increasing index,
and of possible low energy paths connecting diverse sta-
tionary points. We resolve that these paths and their
neighbourhoods on the PES are often the sliding regions
of the chain under the external force, which (we guess
so) are also implicitly used by older simulations of the
sliding of FK chains by other groups.
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9 Conclusion

By analysing the PES of the FK model with PBC we
can describe the stationary states forming the pathway
for a sliding of the chain. Which in reality is a rota-
tion of one or more fluxons through the annular JJs.
For increasing external forces we get an explanation for
the zero-field steps (ZFS) by nearly vertical walls of the
PES. We can assign the different number of fluxons, M ,
to different structures of the chain. We propose a mech-
anism for the jump of the chain from M to M +1. The
first such jump from M = 0 happens at an SP of index
one quite exactly at the corresponding critical force to
overcome this SP, where a folded chain structure relaxes
to the M = 1 minimum. However, for higher M one has
to stretch the chain up to a length where it can relax
to the next M + 1. But note that we need an unsym-
metrical force for the explanation, in both cases.
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7. I.R. Rahmonov, J. Tekić, P. Mali, A. Irie, Y.M. Shukri-
nov, Phys. Rev. B 101, 024512 (2020)

8. A. Davidson, B. Dueholm, B. Kryger, N.F. Pedersen,
Phys. Rev. Lett. 55, 2059 (1985)

9. H.S.J. van der Zant, T.P. Orlando, S. Watanabe, S.H.
Strogatz, Phys. Rev. Lett. 74, 174 (1995)

10. J. Pfeiffer, M. Schuster, A.A. Abdumalikov Jr., A.V.
Ustinov, Phys. Rev. Lett. 96, 034103 (2006)

11. J. Pfeiffer, A.A. Abdumalikov Jr., M. Schuster, A.V.
Ustinov, Phys. Rev. B 77, 024511 (2008)

12. S. Watanabe, H.S.J. van der Zant, S.H. Strogatz, T.P.
Orlando, Phys. D 97, 429 (1996)

13. W. Quapp, J.M. Bofill, Mol. Phys. 117, 1541 (2019)
14. W. Quapp, J.M. Bofill, Eur. Phys. J. B 92, 95 (2019)
15. W. Quapp, J.M. Bofill, Eur. Phys. J. B 92, 193 (2019)
16. W. Quapp, J.Y. Lin, J.M. Bofill, Eur. Phys. J. B 93,

227 (2020)
17. F. Falo, P.J. Mart́ınez, J.J. Mazo, T.P. Orlando, K.
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M. Pavkov-Hrvojevic, Phys. Scr. 96, 035211 (2021)
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