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Abstract. We consider the strongly anisotropic spin-1/2 XXZ model on the sawtooth-chain lattice with
ferromagnetic longitudinal interaction Jzz = ∆J and aniferromagnetic transversal interaction Jxx = Jyy =
J > 0. At ∆ = −1/2 the lowest one-magnon excitation band is dispersionless (flat) leading to a massively
degenerate set of ground states. Interestingly, this model admits a three-coloring representation of the
ground-state manifold [H.J. Changlani et al., Phys. Rev. Lett. 120, 117202 (2018)]. We characterize this
ground-state manifold and elaborate the low-temperature thermodynamics of the system. We illustrate the
manifestation of the flat-band physics of the anisotropic model by comparison with two isotropic flat-band
Heisenberg sawtooth chains. Our analytical consideration is complemented by exact diagonalization and
finite-temperature Lanczos method calculations.

1 Introduction

Frustrated quantum Heisenberg spin systems are of great
interest nowadays. Exact calculations and rigorous state-
ments, although scarce, are obviously important for this
field. One source of such results stems from the flat-band
antiferromagnets, i.e., the models with a dispersionless
(flat) one-magnon band [1]. The flat one-magnon band
leads to localized multi-magnon states which dominate the
low-temperature physics in antiferromagnetic flat-band
models close to the saturation field. Their contribution
to the partition function can be exactly calculated by
visualizing the localized multi-magnon states as hard-
core-object configurations on a corresponding auxiliary
lattice. Then the hard-core description allows to use clas-
sical statistical mechanics to describe frustrated quantum
spin models. This approach has been successfully used
for a wide class of frustrated quantum antiferromag-
nets supporting flat bands [2–7] including the kagome
antiferromagnet in two dimensions and the pyrochlore
antiferromagnet in three dimensions. We mention that a
similar description of flat-band states can be developed for
the Hubbard model [1,8–12]. A popular one-dimensional
example of a flat-band antiferromagnet is the Heisenberg
sawtooth chain with the special relation between antiferro-
magnetic exchange interaction along the basal line J1 > 0
and along the zig-zag path J2 > 0, of J2/J1 = 2, that
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was widely used as a playground for localized-magnon
physics at low temperatures around the saturation field
hsat = 4J1, see, e.g., [2–5,13–15].

Later on it was found that flat-band physics and cor-
responding localized multi-magnon states can appear in
frustrated magnets also at zero magnetic field in case that
ferro- and antiferromagnetic interactions compete [16].
Again, the sawtooth chain is a prominent example, how-
ever, with ferromagnetic bonds J2 < 0 along the zig-zag
path and antiferromagnetic bonds J1 > 0 along the basal
line [16–22]. Here the flat-band physics is realized at a crit-
ical point J2/J1 = −2, where the ferromagnetic ground
state gives way for a ferrimagnetic one. It is worth men-
tioning that the ferro-antiferromagnetic sawtooth chain
is an appropriate model to describe the recently synthe-
sized compound Fe10Gd10 [23] and is also relevant for
Cs2LiTi3F12 that hosts ferro-antiferromagnetic sawtooth
chains as magnetic subsystems [24].

Very recently, using the three-coloring description
Changlani et al. [25,26] have noticed that the ground-
state manifold of the spin-1/2 XXZ sawtooth chain with
antiferromagnetic bonds J1 = J2 > 0 and with a neg-
ative zz anisotropy parameter ∆ = −1/2 (denoted as
XXZ0 model) exhibits also a huge degeneracy. As already
noticed before (but not investigated) in reference [19],
the XXZ0 sawtooth chain also belongs to the class of
flat-band systems hosting localized multi-magnon states
in zero magnetic field. The three-coloring description of
spin systems is a general and promising approach to
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Fig. 1. (Top) The sawtooth-chain lattice (here, N = 11 sites
and open boundary conditions are imposed) considered in the
present study. The brownly highlighted bonds mark a trap for
a localized magnon on the sawtooth chain, see equations (6)–
(9). (Bottom) Auxiliary simple chain used for characterization
of the ground states of the sawtooth-chain spin models.
A localized magnon is represented by a brown site of the simple
chain.

study frustrated magnets [25–29]. To illustrate the relation
between the three-coloring and the flat-band localized-
magnon description by the example of the sawtooth spin
chain is one of the aims of the present study.

In the present paper, we examine the spin-1/2 XXZ0
sawtooth-chain model [25] focusing on the specific flat-
band features, i.e., localized-magnon properties. We also
compare this model with the two isotropic Heisenberg
sawtooth-chain flat-band cases which were mentioned
above and studied previously [2–5,13,14,16,19–22]. To be
specific, in what follows we consider the spin-1/2 XXZ
Hamiltonian

H = J1

N∑
i=1

(
sx2i−1s
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2i+1 + sy2i−1s

y
2i+1 + ∆1s

z
2i−1s

z
2i+1

)
+J2
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x
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z
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)
− h

N∑
i=1

szi (1)

on the sawtooth-chain lattice of N sites (see Fig. 1), where
we have N = (N − 1)/2 for open boundary conditions
and N = N/2 for periodic boundary conditions. In what
follows we choose the following flat-band parameter sets:

• model 1: J2 = J1 > 0, ∆1 = ∆2 = −1/2 [25];
• model 2: J2 = −2J1 < 0, ∆1 = ∆2 = 1 [16];
• model 3: J2 = 2J1 > 0, ∆1 = ∆2 = 1 [5],

where model 1 corresponds to the XXZ0 model men-
tioned above. It is convenient to set J1 = 1 for model 1
[25], but J1 = 1/2 for models 2 [16] and 3.

In addition to analytical investigations of the models
presented in Sections 2–4 we will use full exact diagonal-
ization (ED) employing J. Schulenburg’s spinpack code
[30] and the finite-temperature Lanczos (FTL) technique
[31–35] to discuss numerical data for finite sawtooth chains
in Sections 4 and 5.

2 Constituents for many-body physics

We begin with the illustration of some key elements
relevant for the localized-magnon picture and for the
three-coloring representation. First of all we note that the
spin Hamiltonian H commutes with total Sz =

∑N
i=1 s

z
i

that allows us to consider the eigenstates of the Hamil-
tonian in each of N + 1 subspaces of Sz = N/2, N/2 −
1, . . . ,−N/2 separately. Clearly, the fully polarized fer-
romagnetic state |0〉 is the only eigenstate of H in the
subspace with Sz = N/2 with the energy E0 and it can be
considered as the magnon vacuum state. It is straightfor-
ward to get the eigenstates and eigenvalues in the subspace
with Sz = N/2− 1 (one-magnon states), see below.

Since the sawtooth chain is a one-dimensional array of
corner-sharing triangles, see Figure 1, its Hamiltonian can
be written as a sum over Hamiltonians of each triangle,

H =
∑
4

H4,

H4 = J1

(
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(2)

(the Zeeman term is omitted). Below we also discuss the
eigenstates and eigenvalues of the spin Hamiltonian H4
as they explain the three-coloring representation for the
sawtooth-chain spin model 1 and provide a route to con-
struct the eigenstates of the sawtooth-chain spin models
1 and 2.

It is worth mentioning that the triangles in model 1
have the full C3 symmetry before they are connected and
that models 2 and 3 are isotropic in spin space.

2.1 Flat bands and localized magnons

Imposing periodic boundary conditions, sαN+1 = sα1 (N is
even), we find straightforwardly the energies of the one-
magnon excitations above the fully polarized ferromag-
netic state |0〉 (magnon vacuum) for all three spin models.
All of them exhibit flat bands. For the models at hand we
have

E1(k)− E0 = 0, E2(k)− E0 =
3
2

+ cos k (3)

for model 1,

E1(k)− E0 = 0, E2(k)− E0 =
3
2

+
1
2

cos k (4)

for model 2, and

E1(k)− E0 = −2, E2(k)− E0 = −1
2

+
1
2

cos k (5)

for model 3 (recall that J1 = 1/2 for models 2 and 3),
where E0 is the energy of the ferromagnetic state. Here, as
usually, k acquires N/2 values within the region between
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−π and π. Note that in the cases 1 and 2 the (lowest-
energy) flat-band excitations have zero energy.

Furthermore, one can construct the flat-band states as
localized states where a magnon is located on three adja-
cent sites of the lattice (magnon trap), see Figure 1, where
a trap built by sites 4, 5, 6 is brownly highlighted. We have

|li〉 = li|0〉, i = 1, . . . ,
N

2
(6)

with

li = s−2i−2 − s
−
2i−1 + s−2i (7)

for model 1,

li = s−2i−2 + 2s−2i−1 + s−2i (8)

for model 2, and

li = s−2i−2 − 2s−2i−1 + s−2i (9)

for model 3, see Figure 1. Note that with periodic bound-
ary conditions 0 ≡ N , i.e., s−0 ≡ s−N . The local nature
of the one-magnon ground states (6) allows to construct
many-magnon ground states, see Section 3.

2.2 Spin model on a triangle

Here we provide some formulas which we need in the
following sections. Eight eigenstates of the triangle Hamil-
tonian H4 (2) with different Sz = 3/2, 1/2,−1/2,−3/2
for the model 1 may be written in the form

|1〉 = | ↑↑↑〉,
|2χ〉 = | ↓↑↑〉+ ω| ↑↓↑〉+ ω2| ↑↑↓〉,
|3χ〉 = | ↓↑↑〉+ ω2| ↑↓↑〉+ ω| ↑↑↓〉,
|4〉 = | ↓↑↑〉+ | ↑↓↑〉+ | ↑↑↓〉,
|5χ〉 = | ↑↓↓〉+ ω| ↓↑↓〉+ ω2| ↓↓↑〉,
|6χ〉 = | ↑↓↓〉+ ω2| ↓↑↓〉+ ω| ↓↓↑〉,
|7〉 = | ↑↓↓〉+ | ↓↑↓〉+ | ↓↓↑〉,
|8〉 = | ↓↓↓〉, (10)

where the states |1〉, |2χ〉, |3χ〉, |5χ〉, |6χ〉, and |8〉 are the
ground states of the triangle with the eigenvalue −3/8 and
the states |4〉 and |7〉 are excited states with the eigenvalue
9/8. Here

ω = exp
2πi
3
. (11)

The eigenstates |2χ〉, |3χ〉, |5χ〉, and |6χ〉, are also the
eigenstates of the chirality operator of the triangle and
thus their form is important for constructing a three-
coloring representation for the ground-state manifold of
model 1 [25]. However, to get a better relation to the
investigations of references [16,19] we may introduce other

linear combinations of these states, namely,

|2〉 = | ↓↑↑〉 − | ↑↓↑〉 ∝ |2χ〉 − ω|3χ〉,
|3〉 = | ↓↑↑〉 − | ↑↑↓〉 ∝ ω|2χ〉 − |3χ〉,
|5〉 = | ↑↓↓〉 − | ↓↑↓〉 ∝ |5χ〉 − ω|6χ〉,
|6〉 = | ↑↓↓〉 − | ↓↓↑〉 ∝ ω|5χ〉 − |6χ〉. (12)

We use these eigenstates in Section 3 while constructing
many-magnon ground states.

For the model 2, the states |↑↑↑〉, | ↓↑↑〉+ | ↑↓↑〉+ | ↑↑↓〉,
| ↓↑↑〉 − | ↑↑↓〉, | ↑↓↓〉 + | ↓↑↓〉 + | ↓↓↑〉, | ↑↓↓〉 − | ↓↓↑〉,
| ↓↓↓〉 are the eigenstates with the eigenvalue −3/8 and
the states | ↓↑↑〉− 2| ↑↓↑〉+ | ↑↑↓〉, | ↑↓↓〉− 2| ↓↑↓〉+ | ↓↓↑〉
are the eigenstates with the eigenvalue 9/8.

For consistency, we give also the states for the model
3. This set of states has a completely different structure:
The highest-energy is the quadruplet (|↑↑↑〉, |↓↑↑〉+ |↑↓↑
〉 + | ↑↑↓〉 etc.) with the energy 5/8, the two states | ↓↑↑
〉 − | ↑↑↓〉 and | ↑↓↓〉 − | ↓↓↑〉 have the energy −3/8, and
finally the two states | ↓↑↑〉 − 2| ↑↓↑〉 + | ↑↑↓〉 and | ↑↓↓
〉 − 2| ↓↑↓〉+ | ↓↓↑〉 have the energy −7/8.

3 Many-magnon states of model 1

So far only for the models 2 and 3 the construction of
localized-magnon states was described in the literature,
see, e.g., reference [16] for model 2 and references [2,3,13]
for model 3, but not for model 1. Therefore, we sketch
now the construction rules of localized-magnon states for
model 1 in this section. In addition, we will briefly discuss
the relation of the localized-magnon states to the promis-
ing three-coloring picture developed in references [25,26].

We begin with a short outline of the three-coloring rep-
resentation for the ground-state manifold of the spin-1/2
XXZ0 sawtooth chain (i.e., model 1 in our notation). The
starting point is the definition of three single-spin coloring
states

|r〉 ≡ | ↑〉+ | ↓〉, |b〉 ≡ | ↑〉+ω| ↓〉, |g〉 ≡ | ↑〉+ω2| ↓〉, (13)

where ω = exp(2πi/3), see equation (11). The states in
equation (13) describe spin-1/2 coherent states [36], asso-
ciated with three particular directions, each separated by
120 degrees, in the plane perpendicular to the z-axis.
These states are represented by the colors red, blue, green,
respectively. A multi-spin state on a lattice is constructed
by putting a single-spin coloring state at each lattice
site. The state can be graphically represented as a three-
coloring of the lattice (i.e., no two vertices connected by
a bond have the same color). Obviously, the two three-
coloring states |r1b2g3〉 and |r1g2b3〉 on a triangle are
superpositions of states given in equation (10) with the
ground-state energy −3/8, where states with different Sz
are mixed. In other words, the states |r1b2g3〉 and |r1g2b3〉
belong to the ground-state manifold. The three-coloring
can be straightforwardly extended to a thermodynami-
cally large lattice. The total number of three-colorings for
the open sawtooth chain of N = 2N + 1 sites grows as
2N , where N = (N − 1)/2 is the number of triangles in
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the open sawtooth chain. Moreover, constructing resonat-
ing color loops, one can single out a localized magnon state
[26], see also below for an example. However, by contrast
to the flat-band localized-magnon description, the utiliza-
tion of the three-coloring picture to determine properties
of corresponding frustrated spin models, such as model
1, is much less elaborated, i.e., it is still a task to be
addressed in the future. One difficulty is certainly the
mixing of states with different Sz that requires a sub-
sequent projection onto the Sz-subspaces to restore this
symmetry of Hamiltonian (1). In what follows, we there-
fore mainly exploit the localized-magnon picture for the
one-dimensional sawtooth-chain spin model.

First we mention that in the subspace Sz = N/2 − 1
the localized-magnon (or flat-band) states introduced in
Section 2 are exact eigenstates. For the sawtooth chain
model 1 of N = 2N + 1 sites with open boundary condi-
tions there are two classes of localized one-magnon states,
namely, “boundary” states such as

|l1〉 = (−| ↓1↑2↑3〉+ | ↑1↓2↑3〉) | . . . ↑ . . .〉 (14)

and “bulk” states such as

|l2〉 = (| ↓2↑3↑4〉 − | ↑2↓3↑4〉+ | ↑2↑3↓4〉) | . . . ↑ . . .〉, (15)

where the numbers at the up- and down-arrows corre-
spond to the numbering in Figure 1, top; | . . . ↑ . . .〉 in
equation (15) means the state with all the spins 1, 5, 6, . . .
up. Both states belong to the ground-state manifold. (For
an explicit proof we refer to Appendix A.) Note here
that the localized boundary ground states exist also for
model 21 but not for model 3.

Let us also give an example how to get a localized
magnon state from the three-coloring representation. We
have

|l2〉 ∝ PSz= N
2 −1(|r1b2g3b4r5 . . .〉−|r1g2b3g4r5 . . .〉), (16)

where PSz stands for the projector onto the subspace with
the specific Sz and the numbers 1, . . . , 5 correspond to
those given in the first line of Figure 1.

In summary, the ground-state degeneracy for the open
sawtooth chain 1 of N = 2N + 1 sites in the subspace
Sz = N/2− 1 is N + 1, because all the localized-magnon
states are linearly independent [37]. A corresponding con-
sideration holds for the open sawtooth-chain model 2, i.e.,
the ground-state degeneracy is also N + 1. On the other
hand, for the open sawtooth-chain model 3 the degeneracy
in the subspace Sz = N/2− 1 is lower and equals N − 1,
because the localized boundary states are missing.

We pass to the subspace Sz = N/2 − k with k = 2
down spins. Because of the localized nature of the one-
magnon excitations, independent localized two-magnon
eigenstates can be constructed satisfying the hard-dimer
rule (see lines 1 and 2 in Fig. 2), i.e., two localized one-
magnon states are not allowed to be in touch. There
are CkN−k+2, k = 2, such states for the open sawtooth

1 The analogue of the state (14) for the model 2 is |l1〉 =
(2| ↓1↑2↑3〉+ | ↑1↓2↑3〉) | . . . ↑ . . .〉.

Fig. 2. Visualization of the ground states in the subspace
Sz = N/2 − 2 on the auxiliary linear chain (open boundary
conditions) which corresponds to the N = 11 sawtooth chain.
Line 1: two independent localized magnons can be pictori-
ally represented as a spatial configuration of two hard dimers.
A hard dimer extends over two lattice constants. Overlap-
ping of two dimers is forbidden, i.e., two neighboring sites
of the auxiliary linear chain cannot be occupied by indepen-
dent localized magnons. Line 2: corresponding position of the
localized magnons (filled brown circles). Lines 3 and 4: two dif-
ferent two-magnon complexes of overlapping localized magnons
corresponding to equations (17) (line 3) (18) (line 4).

chain of N = 2N + 1 sites, where Cnm = m!/[n!(m− n)!] is
the binomial coefficient. This construction rule was first
found for model 3 and can be extended to more than two
magnons (so called independent localized multi-magnon
states) leading finally to a huge ground-state degener-
acy of model 3 at the saturation field hsat that grows
exponentially with system size N , cf. [2,3,13]. Obviously,
the above illustrated construction of independent local-
ized multi-magnon states also holds for models 1 and
2 [16,19]; the (natural) number of the magnons k for
these open chains varies in the region 2 ≤ k ≤ (N + 2)/2.
However, there are two important differences to model
3: (i) all these multi-magnon states are degenerate at
zero field h = 0 [cf. Eqs. (3)–(5)] and (ii) in addition
to the independent localized-magnon states also specifi-
cally overlapping localized magnons are ground states [16].
Thus, the ground-state degeneracy of models 1 and 2 is
much larger than for model 3.

To illustrate overlapping localized magnons, we consider
a localized two-magnon complex at the boundary defined
as [16,19]

l1 (cl1 + l2) |0〉 = l1

(
− l1

2
+ l2

)
|0〉

=
(
−s−1 + s−2

)(s−1
2

+
s−2
2
− s−3 + s−4

)
|0〉,

(17)

where in equation (17) we have defined the symbol c =
−1/2 instead of using the concrete value −1/2 to avoid
cumbersome expressions in a number of formulas given
below, see line 3 in Figure 2 for a pictorial representation
of the state (17). In Appendix A we check that this state
is among the ground states with Sz = N/2− 2.
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Fig. 3. Visualization of the ground states in the subspace
Sz = N/2− 3 (here N = 11 sites, open boundary conditions).
Line 1: three independent localized magnons can be pictorially
represented as a spatial configuration of three hard dimers.
Line 2: localized magnon and localized two-magnon complex.
Line 3: localized three-magnon complex of one-bracket type,
see equation (20). Lines 4, 5, and 6: localized three-magnon
complexes of two-bracket type, see equation (22).

A two-magnon complex away from the boundary is
given by the formula

l2 (l1 + cl2 + l3) |0〉 = l2

(
l1 −

l2
2

+ l3

)
|0〉

=
(
s−2 −s

−
3 +s−4

)(
−s−1 +

s−2
2

+
s−3
2

+
s−4
2
−s−5 +s−6

)
|0〉 (18)

(c = −1/2), see line 4 in Figure 2. Again, in Appendix A
we check that this state is among the ground states with
Sz = N/2− 2.

It is easy to count the ground states in the sector Sz =
N/2− 2. We have C2N independent localized two-magnon
states and N + 1 localized states built by localized two-
magnon complexes, in total

gN (Sz = N/2− 2) = C2N +N + 1 =
2∑
k=0

CkN . (19)

We have checked equation (19) by exact diagonalization
of open sawtooth chains 1 of up to N = 39 sites pro-
viding evidence for the completeness of the constructed
ground states in the subspace Sz = N/2 − 2. Moreover,
these states are linearly independent [37].

Now we turn to the subspace Sz = N/2− k with k = 3
spins down. Again, because of the local nature of the
independent localized-magnon states and the localized
two-magnon complexes, we can construct a number of
ground states in the sector Sz = N/2 − 3 placing such

states sufficiently far from each other. This way we con-
struct C3N−1 independent localized magnon states and
2C2N−1 states consisting of a localized magnon and a local-
ized two-magnon complex, see lines 1 and 2 in Figure 3 for
N = 11. More ground states in this subspace are the local-
ized three-magnon complexes, where we have two types,
which we will denote as one-bracket type and two-bracket
type, see equations (20)–(22) below. These localized three-
magnon complexes are sketched in Figure 3 for N = 11,
see line 3 for the one-bracket type and lines 4, 5, and 6 for
the two-bracket type.

An example of a localized three-magnon complex of one-
bracket type that belongs to the ground-state manifold
with Sz = N/2− 3, see Appendix A, is given by

l2l4 (l1 + cl2 + l3 + cl4 + l5) |0〉 (20)

(c = −1/2), see line 3 in Figure 3. Other three-magnon
complexes of one-bracket type are given by the formulas:

l1l3 (cl1 + l2 + cl3 + l4) |0〉,
l3l5 (l2 + cl3 + l4 + cl5 + l6) |0〉,

...
lN−1lN+1 (lN−2 + clN−1 + lN + clN+1) |0〉. (21)

Altogether, there are N − 1 three-magnon complexes of
one-bracket type.

We pass to the N + 1 localized three-magnon complexes
of two-bracket type

l1(cl1+l2)
(
c2l1+cl2+l3

)
|0〉+ dl31|0〉,

l2(l1+cl2+l3)
(
cl1+c2l2+cl3+l4

)
|0〉+ dl32|0〉,

l3(l2+cl3+l4)
(
l1+cl2+c2l3+cl4+l5

)
|0〉+ dl33|0〉,

...
lN+1(lN+clN+1)

(
lN−1+clN+c2lN+1

)
|0〉+ dl3N+1|0〉. (22)

(c = −1/2 and d = 1/8), see lines 4, 5, and 6 in Figure 3.
(Note that the last term in the first and the last lines of
equation (22) is redundant [since l31 = (−s−1 + s−2 )3 = 0
and l3N+1 = (s−N − s

−
N+1)3 = 0], it is written for similarity

to the other lines, where this kind of terms are relevant.)
Again, some more detailed calculations checking that
the above presented states are ground states with Sz =
N/2− 3 are transferred to Appendix A.

In sum, the number of ground states in the sector Sz =
N/2− 3 is

gN (Sz=N/2−3) = C3N−1 + 2C2N−1 +N−1 +N+1

=
3∑
k=0

CkN . (23)

As previously, we have confirmed the analytical expres-
sion (23) by exact diagonalization for models 1 with open
boundary conditions of up to N = 39 sites. Moreover,
these states are linearly independent.
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The construction of the linearly independent ground
states for k ≥ 4 follows the same lines as explained above,
although it becomes more tedious. We find that model
1 with open boundary conditions is identical to model 2
[16]. After all, the degeneracy of the ground-state mani-
fold of the open sawtooth-chain model 1 with N = 2N + 1
sites in the subspaces Sz = N/2− k for k = 0, 1, 2, . . . ,N
is given by

gN (Sz = N/2− k) = C0N + C1N + . . .+ CkN , (24)

cf. equations (19) and (23). Then the total
degeneracy of the ground-state manifold of the
open sawtooth-chain model 1 with N = 2N + 1
sites is

W(N) = 2
N∑
k=0

(
C0N+C1N+ . . .+CkN

)
= 2

N∑
k=0

(N+1−k) CkN

= 2
[
(N + 1) 2N −N2N−1

]
= (N + 2) 2N . (25)

As already found for the sectors with k = 2 and 3, the gen-
eral formula (24) and of course also (25) match perfectly
with corresponding exact-diagonalization data.

We add here the known information on the degen-
eracy of the ground-state manifold in the subspaces
Sz = N/2 − k for k = 0, 1, 2, . . . ,N of the models 2
and 3 with N = 2N + 1 sites and open boundary con-
ditions. For model 2 equation (24) holds [16] and for
model 3 the flat-band states exist only in the subspaces
Sz = N/2 − k, k = 0, 1, 2, . . . ,N/2, and the degeneracy
is gN (Sz = N/2 − k) = CkN−k, i.e., it is smaller, because
only independent localized multi-magnon states exist, but
no additional complexes [2,3,5].

Let us now briefly discuss the ground-state degeneracy
of periodic sawtooth chains of N = 2N sites. For model
3 independent localized multi-magnon ground states exist
in the subspace Sz = N/2 − k with k = 0, 1, 2, . . . ,N/2.
Their degeneracy is G(3)

N (Sz) = [N/(N − k)]CkN−k [2,3,5].
For model 2, the ground states in the subspace Sz =

N/2 − k with k = 0, 1, 2, . . . ,N were found in refer-
ences [16,19]; their degeneracy is

G
(2)
N (Sz) =


CkN , k = 0, 1, . . . , N2 ,

C
N
2
N , k = N

2 , . . . ,N − 1,

C
N
2
N + 1, k = N .

(26)

For periodic chains, the model 1 exhibits more ground
states than the model 2 if k ≥ 3:

G
(1)
N (Sz) = G

(2)
N (Sz) +Gadd

N (Sz), (27)

Gadd
N (Sz)=


Ck−3
N , k = 3, . . . , N2 ,

2C
N
2 −3

N −CN−k−3
N , k = N

2 +1, . . . ,N−3,

2C
N
2 −3

N , k = N−2,N−1,N .

The total degeneracy of the ground-state manifold of the
periodic sawtooth-chain model 1 with N = 2N sites then

is

W(N) =
(
N
3

+ 1
)

2N +
2N
3

+ 1, (28)

cf. equation (25). We confirmed the numbers given in
equations (26)–(28) by exact diagonalization for the peri-
odic sawtooth-chain model 1 of up to N = 32 sites (see
also Tab. 1).

Apparently, the ground-state degeneracies depend on
the imposed boundary conditions for finite chains, but
in the thermodynamic limit N → ∞ the boundary con-
ditions become irrelevant. Therefore, it is sufficient to
consider for the analytical calculations of low-temperature
thermodynamic quantities (see the next section) the sim-
pler case of open boundary conditions. However, for the
numerical techniques used in Section 5 to study finite sys-
tems, periodic boundary conditions are more appropriate,
because more symmetries can be used, i.e., longer chains
are feasible.

4 Low-temperature thermodynamics
of model 1

From previous investigations of models 2 and 3 it is known
that the huge manifold of localized flat-band ground states
may dominate the low-temperature thermodynamics
[2–5,14,16]. We may expect that this statement is valid
also for model 1. Following this argument, in this section
we derive analytical formulas for the field and tem-
perature dependences of magnetization, entropy, specific
heat, and susceptibility for model 1 taking into account
flat-band states only. We compare this low-temperature
approach with numerical data taking into account all
eigenstates.

We consider the influence of a magnetic field h on
the manifold of the localized ground states of the open
sawtooth-chain model 1 with N = 2N + 1 sites. For h 6= 0
only the single fully polarized ferromagnetic state remains
the ground state with energy E0(h) = E0 − hN/2, and
all the other localized flat-band states become excited
states. The contribution of all these states to the partition
function is determined by their degeneracy gN (Sz) given
in equation (24) and their Zeeman energy E(h, Sz) =
E0 − hSz:

Zfbs(T, h,N) = 2 exp
(
−E0

T

)
×
N∑
k=0

(
C0N + C1N + . . .+ CkN

)
cosh

(
N + 1

2 − k
)
h

T

= exp
(
−E0

T

) N∑
k=0

CkNFk(x,N ),

Fk(x,N ) =
sinh [(N + 1− k)x]

sinh x
2

, x =
h

T
. (29)

As mentioned already above, this part of the parti-
tion function is identical for models 1 and 2 (but not
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for model 3, where no complexes of overlapping localized
magnons exist) and may dominate the low-temperature
physics. It yields thermodynamic quantities which depend
on x = h/T only. Clearly, the full partition functions of
models 1 and 2 are different because of different excited
non-flat-band states which come into play at nonzero tem-
peratures, and we can reveal these differences by an exact-
diagonalization analysis of finite chains, see Section 5. We
note that (how it should be) for h = 0, T → 0 the partition
function reproduces the total ground-state degeneracy
(25), i.e., Zfbs(x = 0, N) =W(N) exp(−E0/T ).

The residual ground-state entropy is given by s =
ln[W(N)]/N , i.e., we get in the thermodynamic limit for
the residual entropy per spin s = ln 2/2 ≈ 0.346 574. As
mentioned above, for N → ∞ the boundary conditions
become irrelevant: Because only the exponential term in
equations (25) and (28) is essential, we get the same value
for open and periodic chains. Obviously, s = s(T = 0) is
already half of the maximum entropy for T → ∞. Note
that the residual entropy for model 3 at the saturation
field is smaller, s = (1/2) ln[(1+

√
5)/2] ≈ 0.240 606 [2,3].2

Interestingly, although the residual entropy following from
equation (25) resembles that of flat-band systems of the
so-called monomer universality class [3,5], the universal
magneto-thermodynamics for both systems is different:
For monomer flat-band systems the partition function is
as in equation (29), however, with Fk(x,N ) = exp(kx),
see reference [5].

A nonzero residual ground-state entropy leads to effi-
cient magnetic cooling [5,38,39]. Importantly, for models
1 and 2 the residual entropy is present at zero field, i.e.,
it is relevant for cooling by varying the field around zero
[40,41], which is obviously an advantage from the practical
point of view compared to model 3.

From the Helmholtz free energy obtained from the par-
tition function (29) by Ffbs(T, h,N) = −T lnZfbs(T, h,N)
we get thermodynamic quantities such as magnetization,
susceptibility, entropy or specific heat. The magnetiza-
tion M = −∂F/∂h and the susceptibility X = ∂M/∂h
are given by the formulas

Mfbs(x,N) =
∑N
k=0 CkN

∂Fk(x,N )
∂x∑N

k=0 CkNFk(x,N )
(30)

2 This result follows from the formula for the total number of
ground states for the open sawtooth chain 3 of N = 2N + 1 sites at
h = hsat,

W(N) =

[N2 ]∑

k=0

Ck
N−k,

which implies the following recurrence relation:

W(N − 4) +W(N − 2) =W(N)

(to prove it, one has to use the identity Cp
M + Cp+1

M = Cp+1
M+1) or

W(N − 4)

W(N − 2)
+ 1−

W(N)

W(N − 2)
= 0.

Evidently, we have arrived at a Fibonacci sequence. In the limit N →
∞, the ratio W(N − 2)/W(N) tends to ϕ = (

√
5− 1)/2, i.e., in the

thermodynamic limit, W(N) = ϕ−
N
2 resulting in s = (1/2) ln[(1 +√

5)/2].

and

TXfbs(x,N)

=

∑N
k=0 CkN

∂2Fk(x,N )
∂x2 −

[∑N
k=0 CkN

∂Fk(x,N )
∂x

]2
[∑N

k=0 CkNFk(x,N )
]2 , (31)

respectively. The entropy S = −∂F/∂T and the specific
heat C = T∂S/∂T are given by the formulas

Sfbs(x,N) = ln
N∑
k=0

CkNFk(x,N )− x
∑N
k=0 CkN

∂Fk(x,N )
∂x∑N

k=0 CkNFk(x,N )

= lnZfbs(x,N)− xMfbs(x,N) (32)

and

Cfbs(x,N) = x2

∑N
k=0 CkN

∂2Fk(x,N )
∂x2 −

[∑N
k=0 CkN

∂Fk(x,N )
∂x

]2
[∑N

k=0 CkNFk(x,N )
]2

= x2TXfbs(x,N), (33)

respectively. Clearly, the magnetization is an odd function
of x, whereas the susceptibility, the entropy, and the spe-
cific heat are even functions of x. Below we consider the
thermodynamic quantities per site to be denoted by small
letters, e.g., m = M/N , etc.

The contribution of the flat-band states to the partition
function is identical for models 1 and 2 in the thermody-
namic limit as well as for finite open sawtooth chains.
This contribution was discussed in detail in reference [16].
In particular, it was shown that the magnetization mfbs(x)
calculated in such a reduced basis depends essentially on
N and in the thermodynamic limit N →∞ it tends to 1/4
at x = h/T → 0 in contradiction to the theorem that the
magnetization should vanish in vanishing field at T > 0
for one-dimensional systems. However, for finite chains the
“reduced-set” magnetization given by equation (30) may
give a good estimate, see Figure 3 and discussion after
equation (31) in reference [16].

To illustrate the contribution of the localized flat-
band states to the low-temperature thermodynamics in a
magnetic field, we compare in Figure 4 thermodynamic
quantities as they follow from equation (30)–(33) with
exact-diagonalization data for the full open sawtooth-
chain model 1 (J1 = 1) with N = 19. While for T = 0.001
the results are indistinguishable (top panel), for T = 0.05
the difference is definitely seen (bottom panel). Never-
theless, the shape of the curves of the full model and of
the universal behavior given by equation (30)–(33) is still
very similar at T = 0.05. This comparison indicates the
region of temperatures and fields within which the univer-
sal behavior (30)–(33) determined by x = h/T emerges.
It is obvious that for larger magnetic fields (i.e., large val-
ues of x in Fig. 4) the localized-magnon states cover the
thermodynamics not only at very low temperatures.

In Figure 5 we show the specific heat in dependence on
x = h/T at the same three temperatures as in Figure 4 for
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Fig. 4. Universal dependences m(x), s(x), Tχ(x), and c(x)
versus x = h/T for the open sawtooth-chain model 1 with N =
19 (N = 9). Symbols correspond to the full model (J1 = 1)
at different temperatures T = 0.001, 0.01, 0.05 (from top to
bottom), lines correspond to formulas (30)–(33).

N = 17 and N = 19 (open boundary conditions imposed)
and N = 16 and N = 20 (periodic boundary conditions
imposed). Comparing the data for N = 16 and N = 20
as well as for N = 17 and N = 19 at T = 0.001 (black
curves) it is evident that the finite-size effects are small
(finite-size effects cannot be seen in this scale for T = 0.01
and T = 0.05 and therefore the data for N = 16, 17 are
not shown at these temperatures). However, comparing,

Fig. 5. Specific heat versus x = h/T at low temperatures
T = 0.001 (black), T = 0.01 (green), T = 0.05 (red) for the
sawtooth-chain model 1 (J1 = 1) of N = 16, 17, 19, 20 sites.

e.g., N = 19 with N = 20 there is a noticeable influence
of the boundary conditions for the considered finite values
of N .

As already mentioned above, the universal behavior is
identical for models 1 and 2 (but not for model 3). Leaving
the range of validity of formulas (30)–(33) which display
the contributions of flat-band states only, the physics of
the full spin model is determined more and more also by
the non-flat-band states. This issue is studied in the next
section by large-scale numerical calculations of the full
spin models 1, 2, and 3.

5 Numerical investigations of finite systems

Now we consider models 1 and 2 at zero field and model
3 at the saturation field, i.e., all excitations are non-flat-
band states. We present full exact diagonalization (ED)
and finite-temperature Lanczos (FTL) data for the consid-
ered sawtooth-chain models of finite size N . We focus here
on periodic chains allowing to access larger system-sizes
N by exploiting the translational symmetry not present
in open chains. Using ED we can study up to N = 20 and
using FTL we will provide data up to N = 32.

We begin with the excitation gaps ∆(i)(Sz) (i = 1 cor-
responds to model 1 and i = 2 corresponds to model 2),
considered in each sector of Sz separately, see Table 1 for
N = 20 (and also Tab. I in Ref. [16] for model 2 with
N = 16, 20, 24, 28 and k = 1, . . . , 6). For both models the
gaps ∆(i)(Sz = N/2− k) are rather small if k > 1. How-
ever, for model 2 the gap ∆(2) becomes virtually zero for
k > 4, but not for model 1. This means that the contribu-
tion of low-lying excited states to the partition function
enters for model 2 at lower temperatures than for model
1, compare the specific heat in the low-temperature region
shown in Figure 7 and discussed below.

First, we pass to the density of states, see Figure 6.
Although the models 1 (J1 = 1, blue curves) and 2 (J1 =
1/2, magenta curves) do not have identical energy spec-
tra, a similarity between both models is evident. On the
other hand, the density of states of model 3 (J1 = 1/2, red
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Table 1. Ground-state degeneracies G(i)(Sz) and exci-
tation gaps ∆(i)(Sz) ≡ E

(i)
1 (Sz) − E0 for the periodic

sawtooth-chain model 1 (J1 = 1, i = 1) and model 2
(J1 = 1/2, i = 2) both of N = 20 sites (N = 10) in
different subspaces Sz. E(i)

1 (Sz) is the energy of the low-
est excitation in the subspace Sz and E0 = −3.75 is the
ground-state energy (which is identical for models 1 and
2). The results in the third and fifth columns coincide
with the predictions according to equations (27) and (26).
For (finite) periodic sawtooth chains of N = 20 sites, the
total number of ground states for model 1 is 4445 and for
model 2 it is 3545.

Sz k G(1)(Sz) ∆(1)(Sz) G(2)(Sz) ∆(2)(Sz)

9 1 10 0.5 10 1.0
8 2 45 0.026 996 110 0 45 0.021 776 745 4
7 3 121 0.011 213 200 0 120 0.000 484 876 3
6 4 220 0.005 858 780 0 210 0.000 013 213 8
5 5 297 0.002 110 250 0 252 0.000 000 197 4
4 6 332 0.002 256 090 0 252 0.000 000 064 1
3 7 341 0.003 116 320 0 252 0.000 000 064 1
2 8 342 0.003 828 620 0 252 0.000 000 035 8
1 9 342 0.003 247 900 0 252 0.000 000 007 5
0 10 343 0.003 792 860 0 253 0.000 000 007 5

curves in Fig. 6) is completely different. A striking feature
of the density of states of models 1 and 2 is the collec-
tion of about 6% of the states in the low-energy region
below E − E0 . 0.6, where this region is separated by
a quasi-gap from the high-energy region E − E0 & 0.6.
This feature together with the huge ground-state degener-
acy is responsible for the unconventional low-temperature
physics of models 1 and 2.

We have to comment on the height of the blue and
magenta peaks at E −E0 = 0 in Figure 6. As it has been
explained above, the ground-state degeneracy for the peri-
odic model 1 (4445) is larger than for the periodic model
2 (3545), see Table 1. That would imply that the blue
peak at E −E0 = 0 is higher than the magenta one. How-
ever, the gaps for model 2 are much smaller than for
model 1 and within the first histogram bar between E0

and E0 + ∆E with ∆E = 0.02 or ∆E = 0.002 not only
the ground states but also excited states are collected.
According to the above discussion of the gaps, there are
a lot of excited states in the first ∆E interval for model 2
but much less for model 1.

Finally, in Figure 7 we show the temperature depen-
dence (logarithmic temperature scale) of the specific heat
for all three models (models 1 and 2 at zero field and
model 3 at the saturation field). The specific heat of model
3 is characterized by single pronounced maximum followed
by an exponential decay of c(T ) as T → 0 leading to a vir-
tually vanishing specific heat below T ∼ 0.06. By contrast,
the very specific low-energy density of states of models
1 and 2 with much smaller energy gaps and the quasi-
gap at about E = E0 + 0.06 leads to a distinct separation
of temperature scales in the temperature dependence of
the specific heat which is characterized by a pronounced

Fig. 6. Density of states (histogram) for the models 1 and 2
at h = 0 (blue and magenta) and for model 3 at h = hsat (red)
for periodic chains of N = 20 sites (ED). Top: histogram bar
width ∆E = 0.02. Bottom: histogram bar width ∆E = 0.002,
only low-energy part, where the y-axis is cut at 1400 to improve
the visibility.

Fig. 7. Specific heat (logarithmic temperature scale) for peri-
odic model 1 (J1 = 1) and model 2 (J1 = 1/2) at h = 0
as well as for periodic model 3 (J1 = 1/2) at h = hsat

(hsat = 2). Exact diagonalization data (N = 16, 20) and finite-
temperature Lanczos data (N = 24, 28, 32; R = 20 for model
1 and R = 10 for model 2). Finite-size effects are small.
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Fig. 8. Specific heat c(T ) (exact diagonalization data, periodic
chain N = 20) for model 1 (J1 = 1) and model 2 (J1 = 1/2)
at h = 0: green and magenta lines – exact data using the full
spectrum, black lines – approximate data using only the low-
energy spectrum below the quasi-gap. Main panel: logarithmic
temperature scale. Inset: linear temperature scale.

low-temperature profile of c(T ) with two additional max-
ima below the typical main maximum. The difference in
the details of the low-energy spectrum of the two models
results in a deviation of the c(T ) curves of both models
at low temperatures starting at about T = 0.3. For model
1 the finite-size effects are negligible down to T ∼ 0.01,
whereas model 2 exhibits practically no finite-size effects
in the temperature region shown in Figure 7. This dif-
ference can be attributed to the different sizes of the
excitation gaps, cf. Table 1.

To demonstrate the relation of the separation of tem-
perature scales in the c(T ) profile to the very specific
structure of the density of states of the models 1 and 2
we show in Figure 8 the specific heat c(T ) for periodic
chains of N = 20 sites using the full spectrum (i.e., numer-
ically exact data) together with the approximate data for
c(T ) which are calculated using a restricted set of ener-
gies E < E0 + 0.06, i.e., only the low-energy spectrum
below the quasi-gap is taken into account. This compar-
ison reveals that indeed the unconventional features in
c(T ) below the main maximum are entirely covered by
the energy levels below the quasi-gap.

6 Conclusions

To summarize, in the present paper we have exam-
ined three spin-1/2 sawtooth-chain models which for a
special choice of parameters exhibit flat-band physics.
While the universal flat-band behavior of the two mod-
els introduced in references [25] and [16] is identical, it
is different from the universal flat-band behavior of the
model introduced in references [5,13]: In the latter case
flat-band many-magnon localized states are independent
localized magnons only, whereas in the former two cases
the flat-band ground-state manifold is larger contain-
ing in addition specifically overlapping localized magnons
(many-magnon complexes). Flat-band states dominate
the low-temperature thermodynamics around zero field

(models 1 and 2) or around the saturation field (model 3).
The localized nature of flat-band states allows the com-
plete analysis of the massively degenerate ground-state
manifold, and, as a result, to find analytical expressions
for the low-temperature thermodynamics in presence of
a magnetic field. These analytical expressions are com-
plemented by numerical calculations of thermodynamic
quantities of finite sawtooth spin chains.

The spin-1/2 XXZ0 sawtooth-chain model admits
another promising route to examine its properties using
the three-coloring representation [25,26]. Interesting and
still open problems are: how to present the localized
many-magnon complex states within the three-coloring
picture? Is it possible to use the three-coloring represen-
tation for constructing thermodynamics? In the future,
it might be interesting to consider small perturbations to
the basic flat-band sawtooth-chain models (1). One exten-
sion is to introduce into Hamiltonian (1) the interaction
between neighboring apical sites J ′1, ∆′1 to see traces of
the flat-band-states manifolds.
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Appendix A: Some analytical calculations
supplementary to Section 3

Here we present some detailed analytical calculations
mentioned but not presented in the main text.

First we check that in the subspace Sz = N/2 − 1 the
boundary and bulk localized-magnon states defined in
equations (14) and (15) are exact ground states for model
1 of N = 2N + 1 sites with open boundary conditions,
where N is the number of triangles in this chain. We begin
with the boundary state

|l1〉 = (−| ↓1↑2↑3〉+ | ↑1↓2↑3〉) | . . . ↑ . . .〉. (A.1)

https://epjb.epj.org/
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That is a state with one flipped spin located on the bound-
ary bond J2 of the zig-zag path, cf. Figure 1, top. This
state contains the eigenstate |2〉 of the Hamiltonian of
the first triangle H123 with the energy −3/8, cf. equa-
tion (12), and the Hamiltonians of all other triangles act
on the fully polarized state |1〉 (10) giving each time again
the energy −3/8. Therefore, the state |l1〉 (A.1) belongs
to the ground-state manifold of model 1 with the energy
(−3/8)N . We pass to the bulk state

|l2〉 = (| ↓2↑3↑4〉 − | ↑2↓3↑4〉+ | ↑2↑3↓4〉) | . . . ↑ . . .〉, (A.2)

where the numbers at the up- and down-arrows corre-
spond to the numbering in Figure 1, top. We consider
the application of H123 and H345 on |l2〉 (A.2) (all
Hamiltonians H4 of other triangles act on the fully polar-
ized state |1〉4 yielding the energy −3/8). We notice
that H123 acts either on (| ↑1↓2↑3〉 − | ↑1↑2↓3〉) | . . . ↑
. . .〉 = (|3〉 − |2〉)123 | . . . ↑ . . .〉 or on | ↑1↑2↑3〉| . . .〉 =
|1〉123| . . .〉, i.e., on the eigenstates with the energy −3/8,
see equations (12) and (10) in Section 2.2. Furthermore,
H345 acts either on | ↑3↑4↑5〉| . . .〉 = |1〉345| . . .〉 or on
(−| ↓3↑4↑5〉+ | ↑3↓4↑5〉) | . . . ↑ . . .〉 = (−|2〉)345 | . . . ↑ . . .〉,
i.e., once more on the eigenstates with the energy −3/8.
Hence, the state |l2〉 (A.2) also belongs to the ground-state
manifold of model 1.

Next we check that overlapping localized two-magnon
complexes, equations (17) and (18), are eigenstates
of the Hamiltonian (2) with the eigenvalue (−3/8)N .
We start with the state (17) and consider first how
the Hamiltonian H123 acts on this state. It acts either
on
(
−s−1 + s−2

) (
s−1 /2 + s−2 /2− s

−
3

)
|0〉 = (−|5〉)123 | . . . ↑

. . .〉 or on
(
−s−1 + s−2

)
s−4 |0〉 = (−|2〉)123 | . . .〉. In both

cases, H123 acts on its eigenstates with the energy −3/8.
Next, H345 acts either on | ↑3↑4↑5〉| . . .〉 = |1〉345| . . .〉 or
on
(
−s−3 + s−4

)
. . . |0〉 = (−|2〉)345 | . . .〉, i.e., on its eigen-

states with the energy −3/8. Finally, all other H4 acts on
|1〉4| . . .〉, i.e., on their eigenstates with the energy −3/8.
As a result, we conclude that the localized two-magnon
complex l1 (cl1 + l2) |0〉 (17) is indeed among the ground
states with Sz = N/2− 2.

Now we pass to the state (18). We have to con-
sider the application of H123, H345, and H567 on the
state (18), since the rest Hamiltonians H4, while act-
ing on the state (18), “see” the only relevant factor
|1〉4 which is the eigenstate (10) with the eigen-
value −3/8. We begin with H123. It acts either on(
s−2 − s

−
3

) (
−s−1 + s−2 /2 + s−3 /2

)
|0〉 = (|6〉 − |5〉)123 | . . . ↑

. . .〉, or on
(
s−2 − s

−
3

)
. . . |0〉 = (|3〉 − |2〉)123 | . . .〉, or on(

−s−1 + s−2 /2 + s−3 /2
)
. . . |0〉 = (−|2〉/2− |3〉/2)123 | . . .〉,

or on |1〉123| . . .〉, i.e., each time on the eigenstates with the
eigenvalue −3/8. Next, H345 acts either on |1〉345| . . .〉, or
on

(
s−3 /2 + s−4 /2− s

−
5

)
. . . |0〉 = (|3〉 − |2〉/2)123 | . . .〉,

or on
(
−s−3 + s−4

)
. . . |0〉 = (−|2〉)345 | . . .〉, or on(

−s−3 + s−4
) (
s−3 /2 + s−4 /2− s

−
5

)
|0〉 = (−|5〉)345 | . . . ↑

. . .〉, i.e., each time on the eigenstates with the eigenvalue
−3/8. Finally, H567 acts either on |1〉567| . . .〉 or on(
−s−5 + s−6

)
. . . |0〉 = (−|2〉)567 | . . .〉, i.e., each time on

the eigenstates with the eigenvalue −3/8. In sum, the

state l2 (l1 + cl2 + l3) |0〉 (18) belongs to the ground-state
manifold with Sz = N/2− 2. Similar calculations for the
states l3 (l2 + cl3 + l4) |0〉, . . . , lN+1 (lN + clN+1) |0〉 con-
firm that this kind of states belongs to the ground-state
manifold with Sz = N/2− 2.

We consider now a localized three-magnon complex of
the one-bracket type given in equation (20). In more detail
it reads

l2l4 (l1 + cl2 + l3 + cl4 + l5) |0〉

=
(
s−2 − s

−
3 + s−4

)(
s−6 − s

−
7 + s−8

)
×
(
−s−1 +

s−2
2

+
s−3
2

+
s−4
2
−s−5 +

s−6
2

+
s−7
2

+
s−8
2
−s−9 +s−10

)
|0〉

(A.3)

(c = −1/2), see line 3 in Figure 3. We have to check
whether this state is an eigenstate of the Hamiltonians
H123, H345, H567, H789, and H9,10,11 with the eigenvalue
−3/8. As explained above, the Hamiltonians H123 and
H567 while acting on the state (A.3) “see” only their
eigenstates |6〉 − |5〉, |3〉 − |2〉, −|2〉/2− |3〉/2, and |1〉; all
with the eigenvalue −3/8. Next, the Hamiltonians H345

and H789 while acting on the state (A.3) “see” only their
eigenstates −|5〉, −|2〉, −|2〉/2 + |3〉, and |1〉; all with
the eigenvalue −3/8. Finally, the Hamiltonian H9,10,11

while acting on the state (A.3) “sees” only its eigenstates
−|2〉9,10,11 and |1〉9,10,11; both with the eigenvalue −3/8.
Hence, the state given in equation (A.3) [or Eq. (20)]
belongs to the ground-state manifold with Sz = N/2− 3.

Now we check that localized three-magnon complexes of
the two-bracket type are ground states. We consider, for
example, the state given in the third line of equation (22),
i.e.,

[(
s−4 − s

−
5 + s−6

)(
s−2 − s

−
3 +

s−4
2

+
s−5
2

+
s−6
2
− s−7 + s−8

)
×
(
−s−1 +

s−2
2

+
s−3
2
− s
−
4

4
− s
−
5

4
− s
−
6

4
+
s−7
2

+
s−8
2
−s−9 +s−10

)
−3

4
s−4 s

−
5 s
−
6

]
|0〉, (A.4)

see line 6 in Figure 3. Checking that the Hamiltonians
H123, H789, H9,10,11 and so on while acting on the state
(A.4) give −3/8 multiplied by this state is straightfor-
ward by repetition of the calculations explained above.
The role of the terms with d in equation (22) becomes clear
after acting on the state (A.4) by the Hamiltonians H345

and H567: only after accounting the term (−3/4)s−4 s
−
5 s
−
6

these Hamiltonians “see” some linear combinations of
their eigenstates with the eigenvalue −3/8. As a result, in
all cases we arrive at the state (A.4) multiplied by −3/8.
Hence the state (A.4) is within the ground-state manifold
with Sz = N/2− 3.
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