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Abstract. We address the electronic properties of quantum dots in the two-dimensional oo — 73 lattice when
subjected to a perpendicular magnetic field. Implementing an infinite mass boundary condition, we first
solve the eigenvalue problem for an isolated quantum dot in the low-energy, long-wavelength approximation
where the system is described by an effective Dirac-like Hamiltonian that interpolates between the graphene
(pseudospin 1/2) and Dice (pseudospin 1) limits. Results are compared to a full numerical (finite-mass)
tight-binding lattice calculation. In a second step we analyse charge transport through a contacted oo — 73
quantum dot in a magnetic field by calculating the local density of states and the conductance within the
kernel polynomial and Landauer-Biittiker approaches. Thereby the influence of a disordered environment

is discussed as well.

1 Introduction

Quantum matter with Dirac-cone functionality is
expected to provide the building block of future electron-
ics, plasmonics and photonics. Against this background,
above all graphene-based nanostructures were intensively
examined, both experimentally and theoretically, in the
recent past. This is because their striking electronic
properties can be modified by nanostructuring and
patterning, e.g., manufacturing nanoribbons [1], nanor-
ings [2], junctions [3], quantum dots [4], or even quantum
dot arrays [5,6]. Thereby the transport behaviour heavily
relies on the geometry of the sample (or device) and its
edge shape [7,8].

The mutability of systems with Dirac nodal points,
which is especially important from a technological point
of view [9], can also be achieved by applying external elec-
tric (static or time-dependent) fields. One of the options
is nanoscale top gates that modify the electronic structure
in a restricted area [10]. This allows to imprint junc-
tions and barriers relatively easy, and therefore opens
new possibilities to study fascinating phenomena such as
Klein tunnelling [11,12], Zitterbewegung [13,14], particle
confinement [15,16], Veselago lensing [17], Mie scattering
analogues [18-22] and resonant scattering [23,24]. Clearly
the energy of the charge-carrier states can be manipulated
by (perpendicular) magnetic fields as well. With this the
quantum Hall effect, the Berry phase curvature, the Lan-
dau level splitting and Aharonov-Bohm oscillations have
been investigated [2,25,26].

Shortly after the field of graphene was opened,
Dirac-cone physics was combined with flat-band physics
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in a modified lattice, the o« — 73 lattice, which is obtained
by coupling one of the inequivalent sites of the honey-
comb lattice to an additional atom located at the centre
of the hexagons with strength « [27-29]. Obviously, such
a lattice interpolates between graphene (o = 0) and the
Dice lattice (a = 1). Most notably, the flat band crosses
the nodal Dirac points, which has peculiar consequences,
such as an a-dependent Berry phase [30], super-Klein
tunnelling [31,32], or Weiss oscillations [33]. Interest-
ingly, the magneto-optical response will be also enhanced
due to the flat bands [34]. Analysing the frequency-
dependent magneto-optical and zero-field conductivity of
Hg,_,Cd,Te [35] at the critical cadmium concentration
2. ~ 0.17 (marking the semimetal-semiconductor transi-
tion), it has been shown that this material can be linked to
the a — 73 model with o = 1/v/3 [36]. Other possibilities
to realise the a — 73 and Dice (o = 1) models experimen-
tally are cold bosonic or fermionic atoms loaded in optical
lattices [30,37].

The massless Dirac equation [38] provides the basis
for numerous theoretical investigations of the low-energy
excitations in these novel, strictly two-dimensional sys-
tems [29,32,39-53], whereby the quasiparticles carry a
pseudospin 1 in the Dice lattice rather than pseu-
dospin 1/2 in the case of graphene. Accordingly one
usually works with a three- (Dice) and two-component
(graphene) realisation of the standard Dirac-Weyl Hamil-
tonian. Investigating the electronic properties of o — 73
quantum dots in magnetic fields, we also start from such
a description, and therefore must implement a bound-
ary condition when the dot is cut out from the plane
[39,54,55]. Of course, this approach has to be approved
by comparison with lattice model results obtained numer-
ically [55-57]. Addressing the transport behaviour of
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contacted dots and the influence of disorder on that we
have to work with the full lattice model in any case.

The outline of this paper is as follows. In Section 2
we introduce the a — 73 model, discuss the continuum
approach, derive the infinite-mass boundary condition,
and solve the eigenvalue problem for an isolated quan-
tum dot in a constant magnetic field in dependence on
a. Section 3 contains our numerical results for the eigen-
value spectrum, the (local) density of states and the
conductance. Thereby we critically examine how the con-
tinuum model results compare to the numerical exact
tight-binding lattice-model data (Sect. 3.1). Afterwards
we study transport through a quantum dot subject to a
magnetic field in the end-contacted lead-sample geome-
try most relevant for experiments (Sect. 3.2), and analyse
boundary disorder effects (Sect. 3.3). We conclude in
Section. 4.

2 Theoretical approach

2.1 o — 73 model

We start from the tight-binding Hamiltonian

H® = — Z tei®ii ajbj — Z ate!®ii b;rcj
(ig) (i3)

+A Z (ajai - bzbi + c;rci) +Hec., (1)

where a(f), b(f) and ¢(f) annihilate (create) a particle
in a Wannier state centred at site A, B and C' of the
a — T3 lattice, respectively. The nearest-neighbour trans-
fer amplitude between A and B sites is given by ¢, and
will be rescaled by « if hopping takes place between
nearest-neighbour B and C sites, see Figure la. In this
way, the scaling parameter interpolates between the hon-
eycomb lattice (& = 0) and the Dice lattice (aw = 1). In the
presence of a vector potential A(r), hopping is modified
further by the Peierls phase ®;; = 27 /¢y [ A(r)dr with
¢0 = h/e

In order to implement boundary conditions below, we
have introduced a sublattice-dependent onsite potential
A, which opens a gap in the band structure at the charge
neutrality point. In what follows we assume that A > 0;
the case A < 0 is obtained by changing the sign of the
energy FE. Note that a positive A will shift the flat band
to the bottom of the upper dispersive one.

Next we write down the corresponding continuum
Dirac-Weyl Hamiltonian in momentum space in the
absence of a magnetic field, being valid for low energies
near the Dirac-points K (7 = +1) and K’ (1 = —1):

HE = veSE - p+UA, (2)

where ¢ = arctana and 7 is the valley index. In
equation (2), vp = 3at/2k is the Fermi velocity, where
a refers to the lattice constant, and p = —iAV denotes
the momentum operator in two spatial dimensions. The
components of the pseudospin vector S¥ = (7.5¢,5¢) in
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Fig. 1. (a) a — 73 lattice with basis {A, B,C} and Bravais-
lattice vectors a; and as. Next-nearest neighbours are con-
nected by 84, (i = 1,2,3) where a gives the ratio of the
transfer amplitudes A-B and B-C. In the numerical work
we use graphene-like parameters, i.e., a lattice constant a =
0.142 nm and a transfer integral ¢ = 3.033 eV which sets the
energy scale. (b) Continuum model energy dispersion near K
or K’ when A = 0 with two linear dispersive bands and a flat
band at £ = 0. (¢) o — 73 dot setup with a constant mag-
netic field, perpendicular to the (z,y) plane. The quantum dot
D (blue region) with radius R and zero gap (A = 0) is sur-
rounded by a ring of width W (grey, dashed border) having a
gapful band structure (A > 0). The vector np is perpendicular
to the boundary.

(three-dimensional) spin space,

0 cos ¢ 0
S¥ = |cosp 0 sing |,

0 sin 0
0 —icos 0
Sy =|icose 0 —ising | , (3)
0 7sin @ 0
represent the sublattice degrees of freedom. In

equation (2), the matrix

1 0 0
U:<O -1 o) (4)
0 0 1

introduces a mass term, similar to o, in the standard
(spin-1/2) massive Dirac-Weyl equation. Therefore HY¥
comprises the limiting cases of massive pseudospin 1/2
(e = 0) and pseudospin 1 (a = 1) Dirac-Weyl quasi-
particles. Rescaling the energy by cos, the eigenvalues
E; s|¢;) of H|[¢,) = E. s|1);) become

E,o=A, (5)
Er,s =S (va)z + AQ} (6)
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where s = +1 marks the band index. Note that the energy
eigenvalues are valley degenerate.

2.2 Infinite mass boundary condition

Implementing the so-called infinite mass boundary con-
dition (IMBC) we take up a proposal by Berry and
Mondragon [58]. For this, we consider the Hamiltonian

H? =S¢ . p+ A@X)U (7)

(setting vp = h = 1 in this section), with a position-
dependent mass term, A(r)U, which is zero (finite) inside
(outside) a circular region D, cf. Figure 1. Note that
Hermiticity of the Hamiltonian in D implies (np -j7)(r) =
0 at every point r of the boundary 0D. Here, j™ = S¥ is
the current density operator and np = (cos ¥(r), sin¥(r))
is the normal vector of D. Then the local boundary condi-
tion for a general wave function ¢, = (¢¥r 4, ¥r B, ¥r.c)
is

1/17,3

=4l (r) (cos ® e”ﬁ(‘")wﬂA
redD

+sing e_i”g(r)wr,c) (8)

reoD

The variable ', (r) can be obtained from the solution
of the scattering problem at a planar mass step, HY =
S?-p+ AO(z), where the height of the barrier is assumed
to be larger than the energy (A > |E|) and the Heaviside
step function divides the (z, y)-plane in regions I for < 0
and II for x > 0. In doing so, we will consider only the
dispersive states, since (j7) = 0 for the flat band states.

In region I, the wave function with wave vector k =
(kz, ky) and propagation direction 6y = arctan k,/k, is

1 [Tcose e im0

Yrs = NG 5 el
Tsin @ /70
T cos g e'T0x
T'r ik'r
+ — -5 e, (9)
\/i 77;7'01(

Tsinp e

Here, k' = (—ky,k;) denotes the wave vector of the
reflected wave having a valley-dependent reflection coeffi-
cient 7.

In region II, the wave function takes the form

11 tr (Tbaﬂs> e~ tikyy
T8 /& 7,8 dia
\/5 TbT,S T,S

where ¢, denotes the valley-dependent transmission coef-
ficient, (ky,ky) = (ig, ky), and

(10)

ars = —icCOS cp\/(q —Tky)2(A+ E),

bro = /(a2 — K2)(A - B),

Page 3 of 11

era = —isingy/ (g +7k,)2(A + B), (13)

dris = \/AG2 + ERZ — thyqeos2p(A+ B). (14)

Obviously, PS is an evanescent wave perpendicular to the
boundary but oscillatory along dD.
Enforcing the continuity of the wave function at x = 0,

roB = Ve (15)
COS (P 1/15’5714 +singp 77/1;570 =cosy wil,s,A
+ sin gmj)H&C , (16)

and performing the limit A — oo (¢ — 00), we obtain

is 4 cos? @ eI 4 sin? p etiT0x (17)
Trs = — - N - .
is — cos2 @ €im0 4 sin? @ e~iT0k

Since |r. s> = 1 VE, the incoming wave is perfectly
reflected at the boundary, regardless of 7 and s. Inserting
the full wave function (9) with (17) and np(x =0) = e,
into equation (8), we find I'; = 7.

Clearly the whole scattering problem can be rotated by
any angle 9, i.e., for the a — 73 lattice the IMBC at 9D
becomes:
iTY 71719) ) (18)

Vr B = 14T (Cos Py 4 e +sinpy, ce

At o = 0 we reproduce the IMBC of graphene [58].

2.3 Eigenvalue problem of the o — 73 quantum dot
in a perpendicular magnetic field

We now consider a circular quantum dot of radius R in
a constant magnetic field, B = Be,, related to the vector
potential A = B/2(—y,z,0). Then, using polar coordi-
nates (z,y) — (r, ¢), the (minimal-coupling) Hamiltonian
is

H? =vpS? - (p+eA)+ AUO(r — R). (19)

In the quantum dot region D (r < R) we have A = 0 and

0 coslL, _ 0
H? = 1hw, | cos L, 4 0 sinpL._ | . (20)
0 singpL, 0

Here, L+ = —ie¥i7® {api L, iTp}, L, = —ihdy,

fwe = 2hop /g, lp = ,/%, and p = r/v/2l 3. Rotational

symmetry ([HY,J.] =0 ) suggests the ansatz:

Xr.A ei(m—ﬂq&

Xr.B €M . (21)
X7,C ei(m+7)¢>
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With this, for the dispersive band states, we obtain the
following differential equation for the x, p component:

1
0:{8§+8p—2m+483
p

m? 9
+27 cos 2¢p — (/)2 +p )}Xr,& (22)
yielding
T COS (ppfquTfT,Aei(me)d)
. 2
Po=N| igp Ly (e e T (23)

Tsinp ™7 f, celmtT)e
The L(x) are the generalized Laguerre polynomials,

ifr=+1
1 (24)

ifr=

. - ;:_nj_ll (p2)7
Fra =9 (- + 1)L (P,

f‘r,C = f*'r,A ) (25)
n, = €2 + (7 cos2¢p — 1)/2 is the principal quantum num-
ber, €2 = (E, s/hw.)?, m is the total angular quantum
number, and N is a normalization constant. Note that
Xr,C # X—r,A Vo, implying a valley asymmetry for o < 1.

Employing now the IMBC (18) for r = R, where np =
n, = (cos ¢, sin ¢), we obtain

0 =cos® p*" fr.a(p)
+sin® @ frc(p) = erp" Ly (p) . (26)
p=R/\2ls

As a result, the energy eigenvalues E: sn,m, are deter-
mined by the (positive and negative) zeros of this equa-
tion, where n, = 1,2,3... is the radial quantum num-
ber. At a = 0, these eigenvalues are related to those
derived previously for graphene [39,47,55] by replacing
m — (m—1).

In the large-R (or large- B) limit, we can exploit the rela-
tion between Laguerre polynomials L% (z) and confluent
hypergeometric functions of the first kind M (a, b, x):

L (z) = (a . b) M(—a,b+1,z). (27)

In leading order, M (—a,b+ 1,z — o0) takes the form [59]:

F(b+1) z,,—a—b—1

M(—a,b+1,2) = () e

[1+O0(lz]7h)].
(28)
Substituting this into equation (26), we obtain sin(wn,) =

0. Consequently n, = 0, 1, 2,...and the energy eigenvalues
(Landau levels) become [30]

1
B, s = shwey/n,s + 3 (1 —7cos2p). (29)
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For the flat band states, a similar calculation gives

B sin (pp—m+TgT7Aei(m—‘r)¢ e

7,0 — . e 7. (30)
cos (pp—m—rf7_7cez(m+7—)¢

Since wTIfB = 0, this is always compatible with the IMBC.
Clearly, E; o =0 [cf. Eq. (5)].

3 Results and discussion

3.1 Isolated quantum dot

3.1.1 Continuum model

Figure 2 presents the analytical results for the mag-
netic field dependence of the energy spectra of (isolated)
a — T3 quantum dots with IMBC. For all «, we observe
flat bands at F = 0 (red lines) and a merging of the
quantum dot states to the Landau levels characterised
by quantum number n, (dotted curves) when the mag-
netic field increases. Note that n, = n,(n,, m) (the data
show the results for n, < 3 and |m| < 10). Different
from normal semiconductors, the Landau levels exhibit
a square-root dependence on B [cf. Eq. (29)], i.e., they
are not equidistant.

In the graphene-lattice model (o = 0, top panels), we
arrive at the same conclusions as previous work [47,55],
also for larger total angular and radial quantum num-
bers. According to the IMBC, the spectra show a broken
particle-hole symmetry and E,, # E_,,, even for B =
0 [where the eigenvalues are twofold degenerate (E, =
E_.)]. For B > 0 time-reversal symmetry is broken and
we have F, = —FE_,. Combining the spectra of both
valleys K and K’, the symmetry is restored.

In the a — 73-lattice model with 0 < o < 1 (see mid-
dle panels), the situation is the same for B = 0, i.e.,
we find E,, # E_,, and valley degeneracy E, = E_..
Clearly time-reversal symmetry is broken at B > 0, but
now FE. # —F_.. As a consequence, the eigenvalues vary
differently when B is increased. Such valley-anisotropy has
been found in the magneto-optical properties of (zigzag)
a — T3 nanoribbons [34].

For the Dice-lattice model (o = 1, bottom panels), we
have a specific situation. Here, F,, = E_,,, at B =0, i.e.,
the state is now fourfold degenerate. When B > 0 the
states in each valley are still two-fold degenerate (Kramers
degeneracy), and the magnetic-field dependence of the
energy spectrum is the same at the K and K’ points.

Let us now discuss the convergence of the eigenvalues
against the Landau levels in some more detail. The first
Landau level comprises all eigenvalues with m < 0; the
higher Landau levels have contributions with m < n..
This holds for K and K’, independent of a. Obviously,
the eigenvalues with positive (negative) energies cross the
Landau levels first, before they converge towards these
values from below (above) at the K (K') point when the
magnetic field increases. The greater «, the more pro-
nounced this kind of “overshooting” appears to be. This
effect (being largest at a« = 1) is not observed for negative
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100 0 50 100

Fig. 2. Eigenvalue spectra of an o — 73 dot with radius R =
20 nm. Solid lines give the solutions of (26) as a function of
the perpendicular magnetic field B in valleys K (left) and K’
(right) when oo = 0, 0.25, and 1 (top to bottom). Only results
with n, =1 (blue), 2 (violet) and 3 (orange) with —10 < m <
10 are shown. Flat bands are marked in red. Dashed black lines
give the Landau levels (29).

(positive) energies at K (K’). We note that in certain
cases the eigenvalue levels form a wide band of states
and can be hardly resolved after bending up. In addition,
looking for instance at the blue curves for @ = 0.25 (K’
point, E > 0), it seems that there is no convergence of this
array of curves to a Landau level. Figure 3 (right panel)
shows, however, that convergence of the K’-eigenvalue sets
is reached for larger values of the magnetic field. The inset
demonstrates an avoided crossing for m = —3: While the
eigenvalue belonging to n, = 1 (blue curve) converges to
the first Landau level, the eigenvalue with n, = 2 (violet
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Fig. 3. Eigenvalue spectra of a quantum dot with @ = 1/\/§
up to B =200 T (other model parameters and notation as in
Fig. 2). Inset: Magnification of solutions with m = —3, and
n, = 1 (blue) respectively n, = 2 (violet), at an avoiding
crossing.

curve) tends to the second one. The same happens for the
curves with other values of m.

3.1.2 Tight-binding model

We now analyse the validity range of the continuum model
derived in the low-energy charge carrier regime close to
the Dirac points K and K’. For this we consider the
case of a circular dot imprinted on the a — 73 lattice,
whereby the dot region is not surrounded by an infinite
mass medium but by a ring (of width W with finite mass
potential A, cf. Fig. 1), which has the same lattice struc-
ture as D. In this way particularly good results can be
achieved if A/t > a/W. The eigenvalue problem of such a
finite (non-interacting) system can be solved numerically,
e.g., in a very efficient way by using the kernel polynomial
method [60]. By the kernel polynomial method we have
also direct access to the local (L) density of states (DOS),

LDOS(E); = Y [(ill)[*3(E — Ey) (31)
l

(i is a singled out lattice site and n numbers the single-
particle eigenvalues), the DOS

DOS(E) = > §(E - E,), (32)
and the integrated (I) DOS
E
IDOS(FE) = / DOS(E')dE’. (33)

Figure 4 contrasts the DOS of our quantum dot lat-
tice model with the eigenvalues of the continuum model,
in dependence on the strength of the applied magnetic
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Fig. 4. Logarithmic density of states, log(DOS) (grey curves),
of an o — 73 quantum dot (R = 20 nm) embedded in a circular
ring-barrier potential A/t = 0.8 (width W = 5 nm). For com-
parison, the continuum model eigenvalues of Figures 2 and 3
are incorporated (yellow curves). Again the flat band is marked
in red.
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field B, for different values of «. In general we can say
that the continuum model provides an excellent approxi-
mation to the exact data for negative energies, regardless
of B and «. At this point let us emphasise once again
that if we had used a negative A, positive and nega-
tive energy results would change roles. Comparing the
data, one has to remember that the numerical exact
tight-binding approach takes into account larger angu-
lar momenta (m) than our continuum model calculation;
therefore additional eigenvalues will appear also for £ < 0.
In the case of graphene (o = 0), we obtain a very good
agreement also for positive energies, even though some
features, such as the anti-crossing of energy levels, are
not reproduced in the continuum model [55]. At finite «
(and E > 0), the greatest difference between the contin-
uum and tight-binding model results is the “horizontal
band” of states at low energies, where the width of the
band increases when « is growing. These states are mainly
localised at the quantum dot’s boundary (see below), and
can be related to the sublattice-dependent potential A
along JD. Similar “anomalous” in-gap states were also
found in two-dimensional pseudospin-1 Dirac insulators
and have been attributed to the boundary between two
regions with different flat-band positions in a gapped Dice-
lattice system [61]. The edge states in our system have the
same origin: The position of the flat band is shifted by A
when changing from region I to II.

Figure 5 compares the DOS of the tight-binding
quantum-dot model and the distribution of the eigenval-
ues in the continuum IMBC model (with n, < 3, |m| <
20) for weak and strong magnetic fields. The heights of the
steps in the integrated DOS can be taken as measure of
the spectral weight of the corresponding eigenstates, par-
ticularly with regard to the degeneracy of the levels (note
that the IDOS is not drawn for E > 0 for display reasons).
The figure shows once again that the main energy levels
are extremely well approximated by the continuum IBMC
model for £ < 0. The sector £ > 0 is reproduced less
accurately, obviously there are many states which are not
taken into account within the continuum approach. For
weak magnetic fields (B = 2 T, upper panel), the Landau
levels are more difficult to identify. For high magnetic
fields (B = 140 T, lower panel), states with large angu-
lar quantum numbers m contribute to each Landau level.
Note that we have included in the figure series of states
which are not yet converged for the n,- and m-values used
(vertical dashed yellow lines).

3.2 Contacted quantum dot

We now consider a more realistic situation, where the o —
75 quantum dot is contacted by leads. The boundary of
this “device” is realised covering the whole setup by a
sheath of width W with a gapful band structure due to
a (finite) mass term A, see Figure 6. To determine the
conductance between the left (L) and right (R) leads in the
limit of vanishing bias voltage, we employ the Landauer-
Biittiker approach [62]:

G=Go Y,

meL,neR

|Sn,m (34)
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IDOS [108]

-0.5 0.0 0.5 1.0
E [eV]

Fig. 5. DOS (black lines, left axis) and integrated DOS
(dashed lines, right axis; included for F < 0 only) of an a — 73
quantum dot (where a = 1/4/3) in a perpendicular magnetic
fields: B =2 T (upper panel) and B = 140 T (lower panel).
Yellow vertical lines mark the energy eigenvalues of the contin-
uum model with IMBC. For B = 140 T, the Landau levels are
included (red lines). Other model parameters are as in Figure 4.

Fig. 6. Drawing of the a — 73 lattice quantum dot (radius
R) contacted by leads (width Iy ). The boundary condition is
realised by a W-wide stripe with mass term A that covers the
whole element. The leads are docked by an additional mass
term Ajeaq (blue region); the homogenous magnetic field B
points out of the plane. In the calculations we use R = 20 nm,
A/t =0.5, W =5 nm, and Iy = 80v/3a — 2W.

with Go = 2e2/h. Gy is the maximum conductance per
channel. The scattering matrix between all open (i.e.,
active) lead channels, S, ,,, can be easily calculated with
the help of the Phyton-based toolbox Kwant [63].

Figure 7 shows the conductance of the contacted o — 73
quantum dot as a function of energy at weak (upper panel)
and strong (lower panel) magnetic fields. The conductance
essentially probes the extended (current-carrying) states
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Fig. 7. Conductance of the contacted oo — 73 quantum dot with
a = 1/v/3 as a function of energy for B =2 T (top) and B =
140 T (bottom). The other dot parameters are as indicated in
Figure 6. Results for Ajcaqa = 0 (Ajeaa = 0.2 eV) are shown in
black (blue). Yellow vertical lines are those included in Figure 5
as well. Landau levels are marked by red lines. The LDOS for
the selected signatures (1), (2) and (3) is given in Figure 8
below.

of the dot. Again, we choose a = 1/4/3, in order to allow
for a direct comparison with the DOS data of the iso-
lated dot depicted in Figure 5. Let us first consider the
case Ajead = 0 (black dashed lines). For B =2 T, we see
that the first five peaks at £ < 0 can be assigned to the
eigenvalues of the continuum model for the isolated dot.
For larger negative energies the conductance resonances
will start to overlap, resulting in broader peaks, more
specifically bands. In this range the rotation symmetry
is completely destroyed by the contacts, and m is not
a good quantum number anymore. For positive energies
we recognise larger deviations from the continuum eigen-
values as is the case for the DOS (cf. Fig. 5); overall
much more conductive channels appear. At B = 140 T,
we observe the expected Landau level quantisation of the
conductance. Obviously, the steps respectively plateaus
are less pronounced at positive and larger absolute values
of the energy once again. The conductance quantisation
basically breaks down if the cyclotron diameter d. =
2|E|/vreB exceeds the lead width Iy ; in this case the
charge carriers, moving on a cyclotron trajectory along
the quantum dot circumference, will miss the way out at
the right lead.

Working with additional barriers at the lead contacts
(Ajead = 0.2 eV, blue dashed lines), the conductance res-
onances are sharpened to some extent. This is because the


https://epjb.epj.org/

Page 8 of 11

0.2
20 +

(1)

0.1

LDOS

—20 -

0.0

—-20 0 20

0.2

0.1

LDOS

0.0

0.2

LDOS [107]

0.0

—-20 0 20
x [nm)]

Fig. 8. LDOS for the contacted a — 73 quantum dot at the
resonances indicated in Figure 7 by (1), (2) [B =2 T; two
upper panels] and (3) [B = 140 T; lowest panel] for Ajeaqa =
0.2 eV. Remaining parameters given in Figure 6. The dashed
line marks the dot boundary.

dot region now is more self-contained. Of course, the trans-
mission of the device is reduced in total when the barrier
becomes too high (we have backscattering effects and, dis-
regarding Klein tunnelling, only evanescent particle waves
will enter the dot region).

Further information about the nature of the states
belonging to specific resonances can be obtained from
the LDOS. Figure 8 records and visualises the spatial
variation of the LDOS at the (resonance) energies E =
—0.055 eV (1), E = 0.059 eV (2) and E = 0.5 (3) for
B =2T and B = 140 T, respectively. For (1), the LDOS is
almost rotationally symmetric (owing to the leads there is
some weak asymmetry) and has a maximum at the centre
of the quantum dot. This is in accord with the correspond-
ing continuum solution (m =0, sn, = —1 and 7 = —1),
which according to equation (23) has no angle dependence.

Eur. Phys. J. B (2020) 93: 169

0.2

o
LDOS

0.0

0.2

o
LDOS

0.0

0.2

LDOS [107}]

0.0

—20 0 20
x [nm]

Fig. 9. LDOS of the contacted a — 73 quantum dot surrounded
by a disordered circular ring. The LDOS is shown for a single
(but typical) realisation of the random mass term, where the
A; are drawn out of the interval [0,1.6], i.e., A=028. Again we
consider the resonances (1), (2) [B = 2 T; two upper panels]
and (3) [B = 140 T; lowest panel] with system parameters as

in Figures 6, 7 and 8.

Resonances at higher energy, belonging to larger values
of m, will lead to more complicated LDOS pattern (not
shown). For (2), the LDOS is more or less localised at the
boundary of the quantum dot, i.e., this resonance will not
correspond to a bulk state as (1). Note that we find almost
the same conductances, G/Gy ~ 0.98 (1) and G/Gy ~ 1
(2), which indicates that we have one perfect current car-
rying (bulk or edge) state. In both cases, we observe some
scattering and “localisation” effects at the edges of the
(lead) mass barrier. At resonance (3), the LDOS at the
quantum dot boundary is also much larger than those in
the bulk (although by a factor of ten smaller compared to
cases (1) and (2); note the different scale of the color bar).
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Fig. 10. Conductance G/Gq for the resonances (1) [black
curves], (2) [blue curves] and (3) [red curves| (cf., Fig. 7) cal-
culated at different (discrete) disorder strengths A. Results
obtained for the disorder realisation used in Figure 9 (two other
disorder realisations) are marked by solid (dashed) lines, which
should guide the viewer’s eye only. All other parameters are as
in the previous figures.

Regardless of this, G/Gp ~ 2.9, i.e., we have almost three
perfect transport channels. In this case we already entered
the quantum Hall regime, where quantum Hall edge states
evolve which differ in nature from the edge state (2).

3.3 Disorder effects

As a matter of course, imperfections will strongly influ-
ence the transport through contacted Dirac-cone sys-
tems [57,64,65]. This holds true even up to the point of
complete suppression, e.g., by Anderson localisation [66].
Nevertheless most of these nanostructures appear to be
conducting [67,68], simply because the (Anderson) local-
isation length exceeds the device dimensions for weak
disorder in one or two dimensions [67,68]. In our case, the
disorder caused by the boundary of the quantum dot is
of particular importance. To model these disorder effects,
we let the mass term fluctuate in the circular ring of
width W. More precisely, we assume A — A; in equa-
tion (1), where A; is evenly distributed in the interval
A — AA+ A] with A < A, ie., A > 0 measures the
disorder strength. We note that only suchlike short-range
disorder causes intervalley scattering, and thus may lead
to Anderson localisation [69]. This holds at least in the
case a = 0 (graphene) and within the Dirac approxima-
tion. Long-range disorder, on the other hand, gives rise to
intravalley scattering which is not sufficient to localise the
charge carriers [70].

Figure 9 illustrates how the LDOS shown in Figure 8
for three characteristic resonances will change if we ran-
domise the mass potential A; with strength A =08 in
the ring covering the quantum dot. For this we have cho-
sen a randomly selected but from a physical perspective
typical realisation (sample) and followed the resonances

(1), (2) and (3) by increasing A from zero to its final
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value 0.8. Thereby the positions of the resonances (1) and
(2) are slightly shifted compared to the ordered case: We
find E = —0.057 eV (1) and E = 0.058 ¢V (2) for the
sample used in Figure 9. Since the plateau structure is
completely destroyed for the (disordered) high-field case
B =140 T, we will leave E = 0.5 ¢V (3). It is obvious
that the LDOS of the “bulk-state” resonance (1) is not
changed much by the edge disorder (upper panel). This is

also reflected in the conductance G/Go(A = 0.8) = 0.93 ~
G/Gp(0). A completely different behaviour is observed
for the “edge-state” resonance (2). Here the LDOS is
not homogeneously distributed along the periphery region
anymore. Instead we find an imbalance between energy
states (and associated transport channels) in the upper
and lower half of the quantum dot, which depends on
the specific sample of course. For other realisations the
LDOS will be larger in the lower half of the quantum
dot. In any case the conductance is substantially reduced,
however, for example, we have G/Go(A = 0.8) = 0.54 for
the depicted realisation. The effect of the disorder is simi-
larly strong for the quantum Hall edge-state resonance (3),

G/Go(A = 0.8) = 1.85), but here the LDOS is uniformly
spread about the upper and lower halves of the quantum
dot. Interestingly, it appears that now states can penetrate
more deeply into the barrier region.

Finally, we show in Figure 10 how the conductance
depends on the disorder strength A, for resonances (1),
(2) and (3) and three different disorder realisations each.

Despite the strong fluctuations at larger values of A7 which
clearly result from large local differences of the onsite ener-
gies and a varying overlap of energetically adjacent states,
one observes a noticeable reduction of the conductance for
the states (2) and (3) located primarily near the quantum
dot boundary whereas the conductance of the bulk state
(1) is only little affected. Since the spatial dimensions of
the device are in the nanoscale regime, the conductance
of our setup is not self-averaging. Determining the prob-
ability distribution for the LDOS and conductances from
a large assembly of disorder realisations [71] could be a
promising approach to deal with this problem, but this is
beyond the scope of the present work.

4 Conclusions

To summarise, we considered a generalisation of both
graphene and Dice lattices, the so-called o — 73 lattice,
and studied the electronic properties of a quantum dot,
imprinted on this material, in a perpendicular static mag-
netic field. The quantum dot boundary condition was
implemented in a consistent manner by an infinite mass
term (circular ring having a finite band gap) in the con-
tinuum (tight-binding model) description. For an isolated
quantum dot we analysed the magnetic-field dependence
of the eigenvalue spectra at the K and K’ Dirac nodal
points and demonstrated significant differences between
the graphene, Dice and « — 73 continuum model results,
particularly with respect to the degeneracy and the con-
vergence towards the Landau levels at high fields. The
comparison of our analytical results with exact numerical
data for the a — 73 tight-binding lattice shows that the
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states with negative band energies were generally satis-
factory reproduced (if not too far away from the neutral
point), whereas the lattice effects play a more prominent
role at positive energies. For a contacted quantum dot, our
transport calculations confirm the existence of transport
channels, i.e., current carrying states, at weak magnetic
fields, and Landau level quantisation of the conductance
(related to quantum Hall edge states) at larger fields. The
local density of states reveals the different physical nature
of these states. The LDOS not only indicates how the
boundary and the contacts affect the electronic structure,
but also how disorder in the quantum dot’s surrounding
will influence its transport behaviour. While transport
channels related to bulk resonances were less impacted,
edge channel resonance and quantum hall edge states are
strongly affected, giving rise to a significant reduction of
the conductance.

All in all, we are optimistic that the (strong) magneto-
response of valley-contrasting quasiparticles in o« — 73
model materials provides a good basis for promising
valleytronics applications in near future.
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