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Real materials always contain some kind of quenched
disorder: in regular lattices these are point defects, sub-
stitutional atoms or dislocations; structural disorder is
present in glasses, liquid mixtures and macromolecules;
magnetic materials with random lattices and/or random,
position dependent interactions establish the classes of
random magnets and spin glasses; and experiments with
ultracold atoms can be designed to include disorder in a
controllable way.

The theory of disordered systems is multifaceted and
comprises various topics of fundamental importance: the
localization of electronic states in non-interacting systems
and many body localization in the presence of interac-
tions, quantum phase transitions in disordered quantum
many body systems, dynamical heterogeneities in spin
glasses and glassy materials, phase transitions in random
ferromagnets and random field systems, to name but a
few. Due to the broad range of problems monographs pre-
senting a comprehensive picture of all facets of disordered
systems are still lacking. In the second part of the last
century J.M. Ziman made an effort to lay down the basic
notations about the theory of disordered systems in his
book The models of disorder [1]. However several mod-
ern developments were missing in this treatment, as for
instance Parisi’s solution of the Sherrington-Kirkpatrick
spin-glass model [2-4], the scaling theory of Anderson
localisation [5], the field theory of phase transitions in
random systems [6], the infinite disorder scaling [7,8] and
many more. The theory of disordered systems is still a
notoriously difficult discipline mainly due to the fact that
exactly solved non-trivial problems, which could serve as
guidance to validate approximate and numerical methods,
are scarce.

In this special issue: Recent Advances in the The-
ory of Disordered Systems original research articles,
mini-reviews and pedagogical introductions are collected
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from different areas of research. A broad range of topics
is covered in this issue including classical and quantum
systems, methodological papers, numerical and analytical
computations. In the following we shortly summarize the
subject of the different contributions.

Classical disordered systems

This section starts with a review by Tarjus and Tissier
about the critical behaviour of random field Ising and
O(N) models recent results obtained from the functional
renormalization group method. This approach solved
questions that were pending for many years, such as the
mechanism for the breakdown of dimensional reduction
and the breaking of the underlying supersymmetry below
d=6][9.

Next Kumar, Corberi, Lipiello and Puri numerically
studied the ordering kinetics in a two-dimensional Ising
model in which the fraction of antiferromagnetic links a is
tuned gradually. They found that, upon increasing a, the
behavior changes in a radical way. Small a does not pre-
vent the system from a complete ordering, but this occurs
in an extremely (logarithmically) slow manner. However,
larger values of this parameter destroy complete order-
ing, due to frustration, and the evolution is comparatively
faster (algebraic) [10].

In another paper Delfino and Lamsen presented a field
theoretical study of the disorder rounded first-order tran-
sition in the @ > 4 state random bond Potts model.
Within the recently introduced exact framework of scale
invariant scattering they have found the line of stable fixed
points induced by disorder for arbitrarily large values of
Q[11].

Finally, Cocco, Croce and Zamponi used the Adaptive
Cluster Expansion method to study numerically the direct
Ising problem, that is, to compute the free energy and
the equilibrium observables of spin systems with arbi-
trary two-spin interactions. The properties of the cluster
expansion and its performance are studied in detail for
one dimensional, two dimensional, random and fully con-
nected graphs with homogeneous or heterogeneous fields
and couplings [12].
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Computer simulations

Computer simulations of systems with quenched disorder
are extremely demanding, suffering from the combined
effect of slow relaxation and the need of performing
the disorder average. As a consequence, new algorithms,
improved implementations, and alternative and even
purpose-built hardware are often instrumental for con-
ducting meaningful studies of such systems. The ensuing
demands regarding hardware availability and code com-
plexity are substantial and sometimes prohibitive. Kumar,
Gross, Janke and Weigel demonstrated how with a mod-
erate coding effort leaving the overall structure of the
simulation code unaltered as compared to a CPU imple-
mentation, very significant speed-ups can be achieved
from a parallel code on GPU by mainly exploiting the
trivial parallelism of the disorder samples and the near-
trivial parallelism of the parallel tempering replicas[13].
Schnabel and Janke have described how metastable states
of Ising spin glasses can be counted by means of Monte
Carlo computer simulations. The method is applied to
systems defined on hypercubic lattices in one to six dimen-
sions with up to about 10% spins. It is shown that the
number of metastable states obtained for different dis-
order realizations satisfies a log-normal distribution. The
distribution of energies of metastable states by means of
moments and cumulants are also investigated [14].

Quantum phase transitions and critical systems

A relatively large portion of this topical issue deals with
quantum disordered systems. Many contributions in this
section focus on a class of random quantum systems the
quantum critical properties are controlled by a so called
infinite disorder fixed point, at which disorder fluctuations
are dominant over quantum fluctuations. Such systems are
conveniently studied by the strong disorder renormaliza-
tion group (SDRG) method, which is expected to provide
asymptotically exact results for large scales.

The SDRG method formulated in terms of a tree ten-
sor network is used by Tsai, Chen and Lin to study
spin-1 random Heisenberg antiferromagnetic chains. As
the randomness strength is increased a phase transition is
identified between a gapless Haldane phase and a critical
random-singlet phase. They have determined the critical
exponents related to the average string order parameter,
the average end-to-end correlation function and the aver-
age bulk spin-spin correlation function, both at the critical
point and in the random-singlet phase [15].

Using the SDRG method Quito, Lopes, Hoyos and
Miranda have shown that strongly disordered spin chains
invariant under the SO(N) group display random-singlet
phases with emergent SU(N) symmetry without fine tun-
ing. The phases with emergent SU(N) symmetry are of
two kinds: one has a ground state formed of randomly dis-
tributed singlets of strongly bound pairs of SO(N) spins
(a ‘mesonic’ phase), while the other has a ground state
composed of singlets made out of strongly bound integer
multiples of N, SO(N) spins (a ‘baryonic’ phase) [16].

Getelina and Hoyos studied the spin-spin correlations
in two distinct random critical XX spin-1/2 chain mod-
els via exact diagonalization. While the exponents of
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the transverse typical and mean correlations are found
nearly equal, implying a narrow distribution of transverse
correlations, the longitudinal typical and mean correla-
tions critical exponents are quite distinct implying much
broader distributions [17].

Zhang and Rieger studied the phase diagram of the two-
dimensional Bose-Hubbard model with cavity-mediated
long-range interactions and uncorrelated diagonal disor-
der and compared to that of the extended Bose-Hubbard
model with nearest-neighbor interactions in the presence
of uncorrelated diagonal disorder. They show that two
kinds of Bose glass phases exist: one with and one with-
out density wave order and also find that weak disorder
enhances the supersolid phase [18].

Rodsz, Kovdcs and Igloi studied the entanglement
entropy of such subsystems, which has a linear extent L
and contains a fraction of randomly selected points p, in
one- and two-dimensional critical fermionic systems. The
leading contribution to the average entanglement entropy
is found to scale with the volume, to which there is a
logarithmic correction term, b(p)LP~1InL. In 2D the
prefactor has a different functional form of p below and
above the percolation threshold [19].

Localization/Anderson transition and energy spectra

Contributions in this section focus the localization and
the Anderson transition disordered quantum systems by
analyzing the eigenstates of the Hamiltonian defining the
system.

Using numerical simulations Slevin, Kettemann and
Ohtsuki investigated the distribution of Kondo temper-
atures at the Anderson transition. In agreement with
previous work, they find that the distribution has a
long tail at small Kondo temperatures and checked
the validity of a recent theoretical prediction in three
dimensions [20].

Eleuch and Hilke studied one-dimensional localisation
in the presence of a random potential characterized by
an arbitrary autocorrelation function. They calculated
the localization length of wave solutions beyond the
Born approximation and compared it with numerical
results [21].

Kim and Han used the framework of Boltzmann trans-
port theory to investigate metal-insulator transitions at
finite temperatures. They focus on two dimensional metal-
insulator transitions and compare them with those in
three dimensions, considering the diffusion constant as a
function of both disorder strength and bath temperature.
Their result implies that the role of dephasing in renor-
malization of the diffusion constant is more complex in
two dimensions than that in three dimensions [22].

Thomson and Schiré used flow equation methods to
study localisation in disordered quantum systems, and
particularly to obtain the non-equilibrium dynamical evo-
lution of observables. They show how this method can
be used to compute quench dynamics of simple observ-
ables, demonstrate how this formalism provides a natural
framework to understand operator spreading and show
how to construct complex objects such as correlation
functions [23].
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Chavez, Mattiotti, Méndez-Bermidez, Borgonovi and
Celardo presented a comparison between the single par-
ticle spectrum of the discrete Bardeen-Cooper-Schrieffer
(BCS) model, used for small superconducting grains, and
the spectrum of a paradigmatic model of Single Excitation
Superradiance (SES). They are both characterized by an
equally spaced energy spectrum (Picket Fence) where all
the levels are coupled between each other by a constant
coupling which is real for the BCS model and purely imag-
inary for the SES model. They show that the transition to
a Superradiant regime can be connected to the emergence
of an imaginary energy gap, similarly to the transition
to a Superconductive regime where a real energy gap
emerges [24].

In a related context Skipetrov studied the density of
states (DOS) in band gaps of ideal and disordered three-
dimensional photonic crystals of finite size. The DOS
inside a band gap of the ideal crystal is found to decrease
as the inverse of the crystal size and disorder narrows
the band gap and DOS exhibits enhanced fluctuations
near the new band edges. However, the average DOS
still exhibits the same scaling with the crystal size within
the remaining band gap. A phenomenological explanation
of this scaling suggests that it should hold for one- and
two-dimensional photonic crystals as well [25].

Other problems

Luck has studied stochastic games exhibiting Parrando’s
paradox, in which two rules, A and B, are played at dis-
crete time steps, following either a periodic pattern or
an aperiodic one, be it deterministic or random. These
games are mapped onto 1D random walks and calculat-
ing the gain involves products of non-commuting Markov
matrices, which are somehow analogous to the transfer
matrices used in the physics of 1D disordered systems.
One of the most original sides of this work is the iden-
tification of weak-contrast regimes for capital-dependent
and history-dependent Parrondo games, and a detailed
quantitative investigation of the gain in the latter scaling
regimes [26].

Finally Monthus presents a pedagogical introduction
to the theory of large deviations in the field of disor-
dered systems. Various emblematic classical and quantum
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disordered systems are considered in order to highlight the
unified perspective the typical events and the rare events
that occur on various scales [27].
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