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Abstract. We study non-equilibrium order parameter dynamics of the non-linear sigma model in the large
N limit, using Keldysh formalism. We provide a scheme for obtaining stable numerical solution of the
Keldysh saddle point equations and use them to study order parameter dynamics of the model either
following a ramp, or in the presence of a periodic drive. We find that the transient dynamics of the order
parameter in the presence of a periodic drive is controlled by the drive frequency displaying the phenomenon
of synchronization. We also study the approach of the order parameter to its steady state value following a
ramp and find out the effective temperature of the steady state. We chart out the steady state temperature
of the ordered phase as a function of ramp time and amplitude, and discuss the relation of our results to
experimentally realizable spin models.

1 Introduction

The study of quantum field theoretic systems driven out
of equilibrium has received a lot of interest, both in the
context of high energy physics and ultracold atom sys-
tems [1–19]. There are several reasons for such a surge of
interest in this field. The first is the recent experimental
realizability of isolated quantum systems using suitable
combination of lasers and ultracold atoms. Such a setup
may emulate strongly correlated condensed matter models
isolated from its environment. The low energy properties
of such correlated systems are often described by quantum
field theories. Furthermore, the parameters of these ultra-
cold atom systems are easily tunable; therefore they serve
as perfect test beds for studying quantum dynamics of
these models. The study of quantum field theories driven
out of equilibrium is therefore expected to provide rele-
vant input for understanding such experimental systems.
The second motivation is more theoretical in nature and
involves developing an understanding of non-equilibrium
dynamics of quantum field theoretic systems. An example
of such endeavor involves the study of the rate of exci-
tation production in such systems due to the presence of
the drive. Such studies are particularly interesting near
the critical points of these models and in the presence of a
linear or a periodic drive. The former type of drives leads
to the well-known Kibble-Zurek (KZ) scaling [20–30], and
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the latter leads to a realization of Stückelberg interference
phenomenon in these systems [31–39]. In addition, the
study of such system allows us to address the notion of uni-
versality in such out-of-equilibrium systems, whose details
may differ significantly from their equilibrium counterpart
[40–45].

Moreover, there are two other broad theoretical motiva-
tions for studying such dynamics in field theoretic models.
The first of them involves understanding the transient
dynamics of a driven field theory. Such dynamics can in
principle be complicated due to the interplay of the drive
frequency with several inherent frequency scales of the
model (arising out of its mass and interaction parameters).
The second involves the approach of such a driven system
to its steady state and eventual onset of thermalization. It
is usually expected that for a non-integrable model, such
a steady state would be thermal and shall thus be charac-
terized by an effective temperature [19]. These issues have
been studied recently in the context of the SYK model
[46]. However, the dependence of this effective temper-
ature on the drive amplitude and frequency is a model
dependent phenomenon, and has not been widely studied
for non-integrable quantum field theories beyond d = 1
[47–49].

The study of out-of equilibrium dynamics in interact-
ing field theories, however, is technically challenging even
at zero temperature. The difficulty involved stems from
the fact that the properties of the driven system may
depend, in principle, on all its states. This situation is
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to be contrasted with the study of equilibrium field the-
ories, where one requires the knowledge of the ground
state of the theory, which can be computed using sev-
eral known perturbative techniques. For this reason, most
of the studies on dynamics of such field theories have con-
centrated on free field theories which are integrable. Such
studies are interesting in their own right and lead to a
wealth of information about dynamical aspects of several
systems [50–54]. However, several properties of such inte-
grable field theories are fundamentally different from their
non-integrable counterparts. One key example involves the
property of steady states that the driven system reaches at
sufficiently long time; for integrable theories, such states
are not necessarily thermal and are described by a gen-
eralized Gibbs ensemble (GGE). In contrast, the steady
state of driven non-integrable models are usually thermal
in accordance with the eigenstate thermalization hypoth-
esis (ETH) [55]. However a detailed study of such steady
state behavior for d > 1 quantum field theoretical systems
turns out to be difficult.

In this work, we carry out such a study for quantum
rotors described by the non-linear sigma model in the large
N limit [56]. This model serves as an effective description
for several spin systems [57,58]. Moreover, it is conjec-
tured to be dual to higher spin gauge theories in AdS4

[59]. It is well known that such higher spin gauge the-
ories are often intractable; thus we expect the study of
non-equilibrium dynamics of the more tractable large N
vector model to provide useful information about several
dynamic properties of its dual counterpart. The dynamics
of the paramagnetic phase of this model has been stud-
ied in reference [60]. Here, we concentrate on the ordered
phase of the model, and study the behavior of its order
parameter, either following a ramp or in the presence of
a periodic drive. Such a drive or ramp is implemented
by making the coupling parameter of the model time-
dependent. In this work, we always restrict ourselves to
the case where we are within the ordered phase at all
times, and are sufficiently away from the critical point.

The main results of our work are as follows. First, we set
the Keldysh saddle point equations for the driven model
and provide a prescription for obtaining stable numerical
solutions of these equations. We find that our numerical
method leads to stable convergent solutions for the order
parameter dynamics as long as the drive or ramp ampli-
tude is sufficiently small. Second, using this method, we
study the long time steady state behavior of the order
parameter following a ramp. We study the approach of
the order parameter to its steady state value and com-
pute the effective temperature Teff of the steady state.
We chart out this effective temperature as a function of
the ramp time and amplitude. Third, we study the tran-
sient dynamics of the order parameter in the presence of
a periodic drive. We find that the transient dynamics is
controlled by the drive frequency and the order parameter
oscillation displays synchronization. We explain the reason
for such synchronization using the large N Keldysh sad-
dle point equation of motion. Finally, we discuss our main
results and point out their experimental implications.

The plan of the rest of the paper is as follows. In
Section 2, we study the dynamics of the large N non-linear

sigma model using Keldysh formalism and chart out
our numerical method. This is followed by Section 3
where we present our main results for periodic drive and
quench dynamics. Finally, we discuss our main results and
conclude in Section 4.

2 General formalism

In this section, we first set up the Keldysh formalism fol-
lowing the treatment of the paramagnetic phase of the
model in reference [60], and obtain the saddle point equa-
tions of the order parameter in Section 2.1. This is followed
by a prescription for an efficient numerical solution of
these saddle point equations in Section 2.2.

2.1 Quench dynamics in the ferromagnetic phase

The action of the large N non-linear sigma model in
equilibrium is given by [56]

S[φ∗, φ] =

∫
ddx dt

[
N

2 g(t)
(∂µφ(x, t))

×(∂µφ(x, t)) + λ(x, t) (φ · φ− 1)

]
, (1)

where φ(x, t) is an N dimensional vector with real com-
ponents. In the large N limit, N →∞ while g(t) remains
finite (O(1)). The field λ(x, t) is a Lagrange multiplier
which imposes the constraint φ(x, t) ·φ(x, t) = 1. The sad-
dle point equation of the model implements this constraint
on the average, and leads to a solution with uniform λ. It
is well known that the critical coupling at equilibrium is
given by:

1

gc(T )
=

∫
ddk

(2π)d
coth (β k)

2 k
, (2)

where k = |k|, T is the temperature, β = 1/T , and we
have set the velocity c = 1.

In this work, we are going to concentrate on the magnet-
ically ordered phase which occurs at g < gc. In this phase,
we write φ = (ρ,Π1,Π2, · · · ,ΠN−1) to allow for a finite
expectation value ρ of one of the components of the vec-
tor field φ: 〈φ1〉 = ρ . In equilibrium, the magnetization ρ
is a constant; however, a time-dependent g(t) is expected
to lead to a time-dependence of ρ. Also, we note that we
shall discuss global protocols in this work, which allow
ρ to be independent of space. The action in the ordered
phase in the presence of the drive is then given by

S=

∫
ddx dt

[
N

2 g(t)

{
(∂µΠ(x, t)) · (∂µΠ(x, t)) + (∂tρ(t))2

}
+λ(x, t)

(
Π ·Π + ρ2 − 1

) ]
, (3)

where Π(x, t) = (Π1,Π2, . . . ,ΠN−1) is an (N − 1)-
dimensional vector with real components. In the large N
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limit, N → ∞ with g(t) remaining O(1). Redefining the
fields as

Π→ ψ =

√
N

g(t)
Π , (4)

the action becomes

S[ψ∗, ψ] =

∫
dtL,

L =
1

2
(∂ψ)2 +

N

2g(t)
ρ̇2 − 1

2
Σ(x, t)

(
ψ2 + (ρ2 − 1)

N

g(t)

)
+
Nα(t)

g(t)
, (5)

where

α(t) =
1

4

[
3

2

(
ġ

g

)2

−
(
g̈

g

)]
,

−1

2
Σ(x, t) =

g(t)

N
λ(x, t) + α(t). (6)

The last term in equation (5) is field independent, and
can be therefore ignored. We note that we have ignored
all total derivative terms in writing the expression for L.

Following reference [60], we express the partition func-
tion using the Schwinger-Keldysh path integral technique.
This involves defining the fields ψ+(−) on the forward and
backward contours. The partition function can be then
written as

Z =

∫
Dψ±DΣ± e

i[S(ψ+,Σ+)−S(ψ−,Σ−)], (7)

where S[ψ±,Σ±] ≡ S± are given by equation (6), and are
defined on the forward and backward Keldysh contours.
Next, integrating out the fields ψ± leads to the effective
action for Σ± and ρ± as

Seff =
(N − 1)

2
Tr log(D−1) +N

∫
ddx dt

ρ̇2
+ − ρ̇2

−
2g(t)

−N
∫
d2x dt

(
1− ρ2

+(t)
)

Σ+ −
(
1− ρ2

−(t)
)

Σ−

2g(t)
,

(8)

where D is the propagator matrix whose inverse is

D−1 =

(
∂2 − Σ+ 0

0 −∂2 + Σ−

)
. (9)

In the large N limit, saddle point equations therefore take
the form:

1− ρ2
+(t)

g(t)
= −Tr D++,

1− ρ2
−(t)

g(t)
= Tr (D−−),

ρ+ Σ+ = ρ̈+, ρ− Σ− = ρ̈−, (10)

where D−1
++ = ∂2−Σ+ and D−1

−− = −∂2 + Σ−. At the sad-
dle point, we should have ρ+ = ρ− = ρ and Σ+ = Σ− = Σ,
similar to the structure in the paramagnetic phase. This
means we need to solve the two coupled equations:

1− ρ2(t) = g(t) Tr D , ρ(t) Σ(t) = ρ̈(t),

D = −D++ = D−−. (11)

Following reference [60], the first of the two coupled
equations can be written as:

ρ2(t) + g(t)

∫
ddk

(2π)d
1

2 Ωk(t)
coth

(
β k

2

)
= 1, (12)

where Ωk(t) satisfies the equation:

1

2

Ω̈k
Ωk
− 3

4

(
Ω̇k
Ωk

)2

+ Ω2
k = k2 + Σ(t). (13)

In equilibrium, we have ρ̇ = 0. Therefore, the saddle has
Σ+ = Σ− ≡ 0 for, say, when g = constant in the ordered
phase with non-zero ρ, and the other equation to solve is:

ρ2 + g

∫
ddx 〈x, t|D|x, t〉β = 1. (14)

However, here we seek a solution such that g(t), and hence
Ωk(t), are slowly-varying functions of t. Let us assume an
expansion

ρ(t) =

∞∑
n=0

εn ρ(n)(t), Ωk(t) =

∞∑
n=0

εn Ω
(n)
k (t). (15)

The initial conditions are: Σ(0) = 0 so that ρ(0) =√
1− g(0)/gc(T , t = 0), and ρ̇(0) = 0. We note that a

time-dependent g generates a non-zero Σ(t), which is not
necessarily small. Nevertheless, for protocols with small
ω, Σ̇ is expected to be small [O(ε)]. This implies that Ω̇k
and Ω̈k are O(ε) and O(ε2), respectively. It is only under
this condition that one can consider the derivative terms
in Ωk(t) as higher order. Performing an expansion and
collecting all terms with the same order in ε, we find, at
zeroth order,

Ω
(0)
k (t) =

√
k2 + Σ(t), Ω̇

(0)
k =

Σ̇

2
√
k2 + Σ

,

Ω̈
(0)
k =

Σ̈

2
√
k2 + Σ

− Σ̇2

4 (k2 + Σ)3/2
. (16)

Then using these in equation (13) at next order, we get:

1

Ωk
=

1√
k2 + Σ2

[
1 +

Σ̈

8 (k2 + Σ)2
− 5 Σ̇2

32 (k2 + Σ)3

]
. (17)

Thus one can develop a systematic perturbative expan-
sion of the saddle point equations for small ω. We shall,
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however, be interested in behavior of the system beyond
this regime. Thus in Section 2.2 we develop a prescription
for exact numerical solution of the saddle point equations.

2.2 Numerical solution of the saddle point equations

In this section, we provide a numerically efficient prescrip-
tion to solve equations (12) and (13). In what follows, we
shall focus on d = 3, for which the ordered phase exists at
finite temperatures. We first consider the initial condition:
ρ̇ = 0,Σ = 0 at t = 0. From the discussion regarding the
zeroth order solution (before Eq. (17)), it becomes clear

that one has Ωk(0) = k and Ω̇k(0) = Σ̇(0)
2 k . At this point,

we note two essential points. First, for numerical solution
of these equations, it is useful to have an initial condition
for Σ̇(0) which we shall take to be a small initial value.
The qualitative features of our numerical results would
not depend on the precise value of Σ̇(0). Second, since
we are in d = 3, the coupling has the dimension of mass.
For numerical calculations, we rescale all length and time
scales by

√
gc(0), where gc(0) is the zero temperature crit-

ical coupling value at equilibrium and hereafter we will set
gc(0) = 1.

We start with a zero initial temperature where the sys-
tem is in its ground state. One can then write a set of three
self-consistent equations that we need to solve. These are
given by

ρ2(t) + g(t)

∫
d3k

(2π)3

1

2 Ωk(t)
= 1,

1

2

Ω̈k
Ωk
− 3

4

(
Ω̇k
Ωk

)2

+ Ω2
k = k2 +

ρ̈(t)

ρ(t)
,

g(t) = g0 + (g1 − g0) ζ(t), (18)

where g0 = g(t = 0), and ζ(t) is a function of time
that satisfies ζ(0) = 0. The form of the second equation
suggests the introduction of new variables:

ρ(t) ≡ ρ(0) eD(t), Ωk(t) ≡ k eBk(t), (19)

with initial conditions D(0) = Bk(0) = 0. Taking deriva-
tives, we get:

ρ̈(t) = ρ(t)
[
D̈(t) + Ḋ2(t)

]
,

Ω̇k(t) = Ωk(t)Ḃk(t),

Ω̈k(t) = Ωk(t)
[
B̈k(t) + Ḃ2

k(t)
]
. (20)

Using these, the second equation of (18) transforms into
(omitting time arguments for simplicity)

B̈k −
1

2
Ḃ2
k + 2k2

(
e2Bk − 1

)
= 2

[
D̈ + Ḋ2

]
. (21)

We transform the above second order ordinary differential
equation (ODE) to first order ODEs, by introduction of a

new set of variables, namely,

χk = Ḃk, ν = Ḋ. (22)

The new equation takes the form:

χ̇k −
χ2
k

2
+ 2 k2

(
e2Bk − 1

)
= 2

[
ν̇ + ν2

]
. (23)

Using a simple central difference scheme with dis-
cretized time and step size ∆t:

f ′(n) =
f(n+ 1)− f(n− 1)

2∆t
+O

(
∆t2

)
, (24)

the ODEs read (the time arguments are shifted for
convenience):

Bk(n+ 1)−Bk(n− 1) = 2 ∆t χk(n)

D(n+ 1)−D(n− 1) = 2∆t ν(n), (25)

χk(n)− χk(n− 2)

−∆t
[
χ2
k(n− 1) + 4k2

(
1− e2Bk (n−1)

)]
= 2 ν(n)− 2 ν(n− 2) + 4 ∆t ν2 (n− 1).

In order to fulfill the constraint equation, we seek an equa-
tion of the form Bk(n,D(n)). Inserting the second expres-
sions for ν(n) into the last equation of equation (25), we
get:

χk(n) = χk(n− 2) + ∆t χ2
k(n− 1)

+ 4 ∆t k2
(

1− e2Bk(n−1)
)

+ 2
D(n+ 1)−D(n− 1)

2∆t

− 2 ν (n− 2) + 4 ∆t ν2 (n− 1). (26)

Using equations (25) and (26), for Bk(n), we obtain:

Bk(n) = [Bk(n− 2) + 2D(n)− 2D(n− 2)]

+ 2 ∆t [χk (n− 3)− 2 ν (n− 3)]

+ 2 ∆t2
[
χ2
k (n− 2) + 4 k2

(
1− e2Bk(n−2)

)
+ 4 ν2 (n− 2)

]
. (27)

Note that the term ∝ ∆t2k2 in equation (27) is small for
sufficiently small ∆t and for the k modes which participate
in the dynamics till the time we carry out the numerics.

The equation for the constraint can be written in terms
of ρ(n) as

ρ4(n)− ρ2(n) + G̃ = 0,

G̃ =
g(n)

(2π)3

∫ Λ

0

d3k
ρ2(0)

2 k
e2D(n)−Bk(n,D(n)), (28)
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where Λ =
√

8π2 is the ultraviolet cutoff. The last equa-
tion can be solved symbolically in terms of G̃. It yields:

ρ2(n) =
1

2

[
1±

√
1− 4 G̃

]
. (29)

Hence, the integration for G̃ has to be performed only once
per time step. The sign of the solution is chosen such that
∆ρ(n) ≡ |ρ(n) − ρ(n − 1)| is minimized. The condition

4 G̃ ≤ 1 must be fulfilled at all times. This restricts the
validity of this approach to quenches or drives which keep
the system well within the ordered phase.

The initial conditions (ρ̈(0) = ρ̇(0) = Ω̈k(0) = Ω̇k(0) =
0) are chosen to be:

ρ0 =

√
1− g(0)

gc
, χk(0) = χk(1) = 0, ν(0) = ν(1) = 0,

Bk(2) = Bk(1) = Bk(0) = 0, D(2) = D(1) = D(0) = 0.

(30)

The full problem has been reduced to a simple numerical
integration and iteration per time step. This procedure
can be computed very fast and at a low computational
cost. In the next section, we shall use this computational
procedure to study the dynamics of the order parameter
in the presence of a periodic drive or following a sudden
quench of g. We shall restrict our study here within the
ordered phase for which g(t)/gc ≤ 1/2 at all times dur-
ing the evolution; we have checked numerically that this
is enough to ensure the stability of the above-mentioned
procedure.

3 Numerical results

In this section, we chart out our numerical results, which
involve two separate classes of studies. The first involves
steady state of the driven system, while the second
pertains to short-time transient dynamics.

For addressing the steady state of this model, we use
the following protocol. We drive the system using a drive
protocol with time period T :

g(t) = gi + (gf − gi) sin2 (2π t/T ) (31)

for t ≤ T/4, and then let the system evolve with a time
independent Hamiltonian H[gf ]. This amounts to Hamil-
tonian evolution of the system following a ramp with a
characteristic time T . One expects the system to reach a
steady state in the course of such an evolution, and the
goal of our study is to understand the behavior of the
magnetization in this steady state. Here we choose the
initial (gi) and the final (gf ) values of the coupling such
that g(t) ≤ gc/2 for all times; this ensures numerical sta-
bility as discussed in Section 2.2. We track the evolution of
the order parameter (magnetization) ρ(t) during its subse-
quent evolution following the ramp. The behavior of ρ(t),
for T = 4 and gi(gf ) = 0.1(0.45)gc , is shown in Figure 1.
We find that ρ(t) shows a fast decay (within t ≤ T/4),

Fig. 1. Plot of the order parameter ρ(t) as a function of t/T ,
showing approach of ρ to its steady state value for T = 4,
gi/gc = 0.1 and gf/gc = 0.45. See text for details.

Fig. 2. Plot of the steady state value of ρ as a function of the
drive amplitude (gf − gi)/gc and ramp time T , for gi/gc = 0.1.
The plot shows ρ to be a monotonically decreasing function of
the drive amplitude for any T in the ordered phase. See text
for details.

and then displays small oscillations around a steady state
value. The amplitude of these oscillations decay with t,
and for t ≥ 10, the magnetization reaches its steady state
value. Thus we find a relatively fast onset of steady state
behavior for order parameter dynamics of this model in
its ordered phase. This behavior is to be contrasted with
that in the paramagnetic phase, where such fast onset was
not observed [60].

In Figure 2, we plot the steady state order parameter
value as a function of the ramp amplitude (gf − gi) and
the time period T , for gi/gc = 0.1. We find that the steady
state order parameter value is a monotonically decreasing
function of the ramp amplitude. This behavior may be
understood by noting that for any fixed T , a larger ramp
amplitude amounts to pumping more energy in the sys-
tem. Consequently, the steady state, which is a thermal
state for non-integrable models, exhibits higher effective
temperature for larger ramp amplitude. Both a larger gf

https://epjb.epj.org/
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Fig. 3. Plot of the steady state value of ρ as a function of the
ramp time T , for gf/gc = 0.45 and gi/gc = 0.1 (fixed). The
plot shows that ρ plateaus at large T . See text for details.

Fig. 4. Plot of the effective temperature of the steady state
as a function of T and (gf − gi)/gc, for a fixed gi/gc = 0.1.
The plot shows that the effective temperature increases with
decreasing T and increasing drive amplitude. See text for
details.

and higher effective temperature lead to a lower steady
state value of ρ. In contrast, we find that for a fixed gf −gi,
the steady state value of ρ is almost a constant within the
range of T studied. This feature is specifically pointed out
in Figure 3, where we find that the steady state value of ρ
plateaus to a constant value with increasing T . This is a
consequence of the gapped nature of the system, leading
to almost no energy absorption at low drive frequencies
(large T ).

Next, in Figure 4, we plot the effective tempera-
ture Teff of the steady state as a function of the ramp
amplitude and T . Teff can be calculated from ρ2

f = 1 −
gf/gc(Teff), with ρf being the steady state value of ρ,
and gc(Teff) is obtained from equation (2). We find that
Teff increases with both decreasing T and large ramp
amplitude. This behavior is expected since for gapped
closed systems, efficient energy absorption can not occur
at T ≥ [∆0(gi)]

−1, where ∆0 denotes the zero temperature
equilibrium energy gap for g = gi.

Finally, we discuss the transient dynamics of the model.
For this, we drive the system using the protocol given by
equation (31), and track the dynamics of the order param-
eter in the presence of the drive. The oscillation of the
magnetization ρ(t) is plotted in the left panel of Figure 5
as a function of time. The right panel of Figure 5 indicates
the plot of the oscillation frequency of ρ as a function of
both drive amplitude and frequency. From these plots, we
find that the oscillations have the same time period as the
drive for a wide range of drive amplitudes and frequencies.
This synchronization can be understood from our saddle
point solution in the following manner. First, we note from
equation (29), the dynamics of ρ(t) is controlled by G̃.

Next, from equation (28), we note that G̃ ∼ g(t) at any
instant. Moreover, from equation (27), it is easy to see that

the exponent [2D(n)−B(n,D(n))], which appears in G̃
within the integral is always small. This follows directly
from equation (27), the boundary condition B(0) = 0,
and the fact that ∆t is always a small quantity. Conse-
quently, the time dependence of G̃ is always controlled
by g. Moreover, since we scale all quantities by the cutoff
Λ, it is easy to see that G̃ � 1 for any g(t). As a result,

one can expand
√

1− 4 G̃ ' 1− 2 G̃+O(G̃2). Thus, from
equation (29), one finds that the time dependence of ρ

is essentially the same as that of G̃. Thus, synchroniza-
tion occurs in this model as a structure of its saddle point
equations, which governs the dynamics.

4 Discussion

In this work, we have studied the magnetization dynamics
in the ordered phase of the non-linear sigma model within
a large N approximation, in the presence of either a ramp
or a periodic drive. Our analysis uses Keldysh path inte-
gral techniques, and obtains the saddle point equations
describing the magnetization dynamics. A key result of
this work is to provide a scheme to obtain stable numeri-
cal solution of these saddle point equations. The method
we chart out is effective in the ordered phase of the model
as long as g(t)/gc < 1/2. We find that any further prox-
imity to the critical points leads to numerical instability.
Thus the dynamics of magnetization in such systems near
the critical point still remains an open question which we
leave for future study.

Using this method, we obtain several results regarding
both transient dynamics and long-time steady states of the
order parameter. For the former, we find that the oscil-
lation of the magnetization synchronizes with the time
period T of the drive for all ranges of drive amplitudes.
We tie this behavior to the structure of our saddle point
equation, and show that this phenomenon is expected
to be robust in the ordered phase. Such a robustness is
confirmed in our numerical simulation for a wide range
of T .

We also study the behavior of the steady states that
the system reaches via evolution, subsequent to a ramp
with characteristic time T . We find that the steady state
is always thermal, and that the onset of thermalization
occurs within a small value of of t/T . We compute the

https://epjb.epj.org/
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Fig. 5. Left: Plot of the ρ(t) as a function of t/T , for (gf − gi)/gc = 0.2, gi/gc = 0 and T ∈ [2π/15, 4 · 2π]. The plot shows
transient oscillations of ρ. Right: Plot of the oscillation frequency of ρ as a function of drive amplitude and 2 π/T , indicating
almost perfect synchronization. See text for details.

temperature of the steady state as a function of both the
ramp time and the amplitude. We find that the steady
state temperature increases with increasing ramp ampli-
tude; in contrast, within the range of ramp times we study,
it displays a relatively weak dependence on the ramp time
T . The latter behavior can be attributed to the presence
of a gapped spectrum in the ordered phase of the system.

There are several spin models which can be described
under various approximations by such non-linear sigma
model [56,57], within the large N approximation. Such
systems often have a large effective S due to spin-orbit
coupling, which makes them ideal candidates for large N
analysis. Our analysis indicates that the magnetization
dynamics of such systems in the ordered phase should
show fast approach to a thermal steady state for evolution,
following a ramp. Moreover, the transient order parameter
dynamics in the presence of a periodic drive would display
synchronization.

To conclude, we have used the Keldysh technique to
study non-equilibrium magnetization dynamics in the
ordered phase of the non-linear sigma model within the
large N approximation. We have studied both transient
dynamics of the order parameter in the presence of peri-
odic drive, and its approach to a steady state following a
ramp. Our results indicate that the transient order param-
eter oscillation synchronizes with the drive frequency.
Moreover, the system evolves to a thermal steady state
following a ramp, whose temperature is charted out as a
function of the ramp time and the amplitude.
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