
Eur. Phys. J. B (2020) 93: 42
https://doi.org/10.1140/epjb/e2020-100429-1 THE EUROPEAN

PHYSICAL JOURNAL B
Regular Article

Free fermion representation of the topological surface code
Ashk Farjamia

School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK

Received 2 September 2019 / Received in final form 30 December 2019
Published online 4 March 2020
c© The Author(s) 2020. This article is published with open access at Springerlink.com

Abstract. The toric code is known to be equivalent to free fermions. This paper presents explicit local
unitary transformations that map the Z2 toric and surface code – the open boundary equivalent of the
toric code – to fermions. Through this construction it is shown that the surface code can be mapped to a
set of free fermion modes, while the toric code requires additional fermionic symmetry operators. Finally,
it is demonstrated how the anyonic statistics of these codes are encoded in the fermionic representations.

1 Introduction

The toric code [1–3] and its open boundary version,
the Z2 surface code [4,5], have been the test-bed for
numerous investigations of condensed matter phenomena
as well as quantum information applications [6–8]. The
main reasons for the popularity of the toric code are its
ability to support Abelian anyons, exotic quasiparticles
that can fault-tolerantly encode and manipulate quantum
information, its eigenstates have non-trivial topological
entanglement entropy [9], while it is exactly solvable. An
important feature of this topological model is that it is rel-
atively simple, where for example, the anyonic statistics
and fusion rules emerge directly from the algebraic prop-
erties of Pauli matrices. At the same time the toric code
enjoys many applications. It can be used as a fault tol-
erant quantum memory protecting against spurious local
perturbations [10], it can perform topological quantum
computation resilient against control errors [1], or it can
encode more complex anyonic models such as Majorana
fermions at lattice defects [11,12].

The toric code has been experimentally simulated with
highly entangled four-photon GHZ states [13] and the
four-body interaction has been physically realised with
Josephson junctions [14,15]. However, it has been argued
by Wen that the Hilbert space of the toric code, in the
presence of an external magnetic field contains a low
energy subspace that can be described effectively by hop-
ping fermionic excitations coupled to a Z2 gauge field
[16]. This gauge field does not introduce interactions, but
encodes the exotic statistics of the excitations. Moreover,
previous investigation of the toric code’s ground state in
terms of the interaction distance [17] showed that the
system is equivalent to free fermions [18]. As this paper
will show this is part of a more general result, where all
eigenstates of the toric code are Gaussian states having
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entanglement spectra given in terms of free fermions. In
addition, the energy spectrum has a similar decomposition
in terms of single particle energies. Hence, it is expected
that a unitary transformation exists that maps the toric
code to a free fermion Hamiltonian. Nevertheless, a free
fermion system can support neither anyonic statistics
nor eigenstates with non-trivial topological entanglement
entropy. Hence, these properties have to be encoded non-
trivially in the unitary transformation that maps between
these two physically different models.

Previous works studying transformations of the toric
code include the paper [19], where the authors provide a
duality mapping from a cluster state on an N ×N lattice
to the toric code on an N × (N − 1) lattice. The clus-
ter state can be mapped to individual spin Hamiltonians,
which are equivalent to free fermions. The mapping to the
toric code takes some of the cluster state’s boundary terms
to stabilizers of non-contractible loops in the toric code,
thus removing the degeneracy of the ground state. In addi-
tion, the paper [20] maps the toric code onto decoupled
Ising chains, and the papers [21,22] give duality mappings,
built from CNOT gates, from the toric and surface code in
the presence of external magnetic fields to Ising models.

This paper demonstrates that indeed it is possible
to find a unitary transformation that maps the surface
code to free fermions and presents its explicit form. It
also presents the explicit form of a unitary transforma-
tion mapping the toric code to free fermions with an
interacting fermionic parity operator, which ensures the
excitations of the model are created in pairs, as in the
toric code. These transformations comprise of products
of C4 Clifford rotations [23] that act on each plaquette,
and are directly generalisable to arbitrary size systems.
The resulting system of the surface code transformation
consists of free fermion modes with local chemical poten-
tials, that can encode the excitations of the plaquettes,
and of a single zero energy fermion mode that does not
appear in the Hamiltonian, encoding the logical state of
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the model. The toric code supports quasiparticle excita-
tions that come always in pairs, while the surface code
can have individual excitations. On the other hand the
free fermion system described can support single particle
excitations. As the unitary transformation is isospectral,
it cannot map the toric code to a system of this form.
The toric code is mapped to a similar system, with one
extra zero mode to encode the second logical qubit of the
toric code and a fermionic parity operator ensuring any
excitations are created in pairs, thus fixing the isospectral
nature of the transformation. The possibility to transform
the surface code to free fermions could have a variety of
applications, e.g. in condensed matter, by dissecting the
way anyonic statistics emerge, or in quantum information,
as free fermion systems and their manipulation have a very
efficient descriptions [5,24].

The paper is organised as follows. Section 2.1 reviews
the spin description of the surface and toric code, which
will be the starting models. Section 2.2 explicitly presents
the local unitary transformations, US and UT , that map
between the surface and toric code and their fermionic
counterparts, respectively, for arbitrary size systems. Sec-
tion 2.3 studies the resulting models, showing how the
states of the models split into “dynamic” and “zero” (or
“logical”) modes. Section 3 looks at how string operators
transform between the systems. It is demonstrated how
the mapping keeps endpoints of anyonic string operators
fixed, while extending their support into the dynamic and
logical modes of the fermionic systems. Finally, it is shown
how the anyonic statistics of the surface code are encoded
in excitations of the free fermion model and how the same
statistics of the toric code are encoded in its fermionic
counterpart.

2 The transformation to fermions

In order to perform the transformation of the Z2 surface
[5] and toric code [1] to free fermions and fermions with
fermionic parity operators, respectively, let us first adopt
a suitable representation of the models in terms of spins
located at the vertices of the lattice [4]. We will then
study the energy and entanglement spectra and show that
they both exactly correspond to those of free fermions.
This description can be formalised through the use of
the interaction distance, DF , [17,18]. We then see that
the stabilizer groups of both the surface and toric codes
are isomorphic to groups generated by commuting Pauli
operators, thus giving a description of the form of these
unitarily equivalent fermion models. Two explicit uni-
taries, US and UT , are then presented. The first of which
transforms the surface code to decoupled fermions, and
the second transforms the toric code to fermions coupled
to two fermionic parity operators.

2.1 The spin description of the surface and toric code

We now review the spin description of the surface and
toric code [4]. We start with the surface code. The distance
d surface code has support on a d × d lattice with open
boundary conditions, where d is always odd. There are d2

Fig. 1. (a) The 3×3 surface code, with physical qubits located
at the vertices of the lattice. Plaquette stabilizers, Bb and Bw,
are on black, b, and white, w, plaquettes respectively. Bb (Bw)
applies a σz (σx) operator to each qubit surrounding b (w)
and detects the parity of σx (σz) operators on these qubits.
Logical Pauli operators XL and ZL are shown as the red and
green lines, respectively, encoding one logical qubit. (b) The
4 × 4 toric code, with physical qubits at the vertices of the
lattice. Plaquette stabilizers, Bb and Bw, are of the same form
as those in the surface code. The choices of X and Z logical

operators are shown in red and green, respectively, with X
(1)
L

and Z
(2)
L depicted as the horizontal lines and Z

(1)
L and X

(2)
L as

the vertical lines. These encode the two logical qubits of the
toric code. A σx operator acting on a single qubit producing
a string with an excitation on the plaquettes at each end, is
shown in blue.

physical qubits, or spins, one on each site of the lattice,
that encode one logical qubit. The code has an alternating
checker pattern of stabilizers, Bb and Bw, at the black, b,
and white, w, plaquettes, built from σx or σz Pauli oper-
ators on the surrounding physical qubits, respectively, as
shown in Figure 1a. The stabilizers corresponding to the
semicircle plaquettes on the boundary and square plaque-
ttes have support on two and four qubits, respectively. We
can define two logical operators, XL and ZL, as strings of
σx and σz operators, respectively, with support on the
d physical qubits along the left and bottom of the lat-
tice, respectively. These map between degenerate states
of the model and are built from σx and σz operators,
respectively. The Hamiltonian is given by

HSC = −J
∑
b

Bb − J
∑
w

Bw (1)

where Bb =
∏
j∈b σ

z
j and Bw =

∏
j∈w σ

x
j , with {b} and

{w} the set of all black and white plaquettes, respectively,
and j is the site the Pauli operator acts on. The form of the
Hamiltonian, HSC, suggests that it is strongly interacting.
Excitations in this model arise due to string operators,
OXC and OZC , which are strings of σx and σz operators
respectively,

OXC =
∏
j∈C

σxj , OZC =
∏
j∈C

σzj , (2)
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that create localised excitations at the endpoints of the
path, C, of the string operator. OXC operators create exci-
tations at black plaquettes and OZC at white plaquettes.
Crossings between these string operators on qubits give
rise to the anyonic statistics through the Pauli commu-
tation relations. A single σx or σz is the smallest string
operator, having endpoints on two plaquettes, diagonally
adjacent to each other. This is the standard form of the
surface code in terms of qubits (spins).

The toric code is similar to the surface code. The dis-
tance d toric code has support on a d × d lattice on
the surface of a torus with periodic boundary conditions,
where d is always even. It still has d2 physical qubits,
but now encodes two logical qubits and supports four

logical operators, X
(1)
L , Z

(1)
L , X

(2)
L and Z

(2)
L . These oper-

ators can be chosen arbitrarily as long as X
(1)
L and Z

(2)
L

loop around the same non-contractible loop of the torus,

Z
(1)
L and X

(2)
L loop around the other, and the following

commutation and anti-commutation relations are obeyed,

[X
(1)
L , X

(2)
L ] = [Z

(1)
L , Z

(2)
L ] = [X

(1)
L , Z

(2)
L ] = [Z

(1)
L , X

(2)
L ] =

0 = {X(1)
L , Z

(1)
L } = {X(2)

L , Z
(2)
L }. For any distance d toric

code we choose all logical operators to be of length d and

parallel loops (X
(γ)
L and Z

(τ)
L , where γ 6= τ) to be a dis-

tance d/2 from each other. This choice is shown for the
4 × 4 toric code in Figure 1b. The code has an alternat-
ing checker pattern of square plaquettes, with support on
four qubits each. Most other aspects of the two codes are
equivalent, including the Hamiltonian,

HTC = −J
∑
b

Bb − J
∑
w

Bw. (3)

Excitations of the toric code are produced by string oper-
ators of the same form as those in the surface code, given
in (2). A string operator on the toric code, consisting of a
single σx, is shown in Figure 1b. One consequence of the
periodic boundary conditions is that

∏
bBb =

∏
w Bw =

1, this will prove to be important when producing the
unitary mapping from the toric code to free fermions with
fermionic parity operators.

To investigate how close to free fermions these codes are,
we can employ the interaction distance. This distance is
the minimal trace distance of a given density matrix to
the manifold, F , of all Gaussian density matrices,

DF (ρ) = min
σ∈F

D(ρ, σ), (4)

where D(ρ, σ) = 1
2 tr
√

(ρ− σ)2 is the trace distance. A
more convenient expression for the interaction distance
is in terms of the eigenstates of ρ and σ, i.e. DF (ρ) =
min{σk}∈F

∑
|ρk − σk|. The interaction distance can be

determined for ρ being the reduced density matrix from
the bipartition of the system’s ground state or being the
thermal density matrix. In the first case DF probes the
quantum correlations of the system and thus its entan-
glement spectrum, while in the second case it probes its
energy spectrum. Recent studies of the interaction dis-
tance, DF , [17,18], of the Z2 surface and toric code have

found that DF = 0, for the entanglement spectrum of
the ground state. Here we show that not only does the
ground state entanglement spectrum correspond to that
of free fermions but so does the energy spectrum. Let
us first consider in more detail the interaction distance
with respect to the entanglement and energy spectra of
the model. The entanglement interaction distance, Dent =
DF (ρent), is the interaction distance of the reduced den-
sity matrix, ρent, produced by a given bi-partition of the
model in a particular eigenstate. In general, we can write

the eigenvalues of ρent as ρentk = e−E
ent
k , where {Eent

k }
is the entanglement spectrum of the state. For Gaussian
states the entanglement spectra are given by,

Efree
k = E0 +

N∑
j=1

εjnj(k), k = 1, 2, . . . , 2N , (5)

where εj are the single particle energies of the free fermion
modes, nj(k) are the single particle occupations corre-
sponding to the energy level k and N is the number of
fermion modes in the system [25]. Bi-partitioning the state
of an anyonic system into two parts A and B gives an
entanglement spectrum of the form,

Eent
k = − log(

N c
a

∏
l∈i dal

D|∂A|−1
), (6)

where i is a specific anyonic configuration related to k, a
is the set of all anyons in i, c is the total anyonic charge
across the bi-partition, N is the multiplicity of the fusion
of the anyons a to c, dal is the quantum dimension of
an anyon al, D is the total quantum dimension of the
system and |∂A| is the size of the boundary of A [26,27].

Then |αi|2 =
N ca

∏
l∈i dal

D|∂A|−1 is the normalised probability of
having an anyonic configuration, i, at the boundary of the
partition, with total charge c. The entire spectrum is built
from all possible anyonic configurations, i. The surface
and toric code are abelian models, so N c

a = 1 for all valid
sets of anyons a that fuse to c and zero otherwise. The
quantum dimensions, dal , of all anyons of the these codes
are equal to one and there are four species of anyon [8].

Hence, D =
√∑

a d
2
a = 2, where the sum is over all anyons

of the code. Therefore each state of the surface and toric
code has a flat entanglement spectrum with degeneracy
proportional to the size of the boundary of the partition
Eent
k = − log( 1

2|∂A|−1 ), [18,26]. This spectrum has the same
form as that of (5) with all εj ’s set to zero. Therefore
Dent = 0 for the entanglement spectrum of all states of
the surface and toric code for all possible partitions.

The thermal interaction distance, Dβ
th = DF (ρth(β)),

is the interaction distance of the thermal density matrix,
ρth = 1

Z e
−βH , where Z = tr(e−βH) is the partition func-

tion and T = 1
β is the temperature. The eigenvalues of ρth

have the form ρthk = 1
Z e
−βEk , where {Ek} is the energy

spectrum. The energy spectrum of free states should sat-
isfy the same relation as (5). For the surface and toric
code, the energy spectrum, Ek, is given by the syndrome
pattern of anyonic excitations at plaquettes. These excita-
tions all have the same energy contribution, as seen from
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(1) and (3), hence the spectrum of the surface code can
be reproduced with a set of d2 − 1 single particle ener-
gies, {εj}, (corresponding to the d2 − 1 plaquettes of the
d × d surface code) arranged in all possible occupation
patterns, nj(k). The spectrum of the toric code can be
reproduced with a set of d2 single particle energies (cor-
responding to the d2 plaquettes of the d × d toric code)
arranged in all possible occupation patterns, with even
total occupation number. Therefore, the thermal interac-

tion distance of these codes is zero. The fact that Dβ
th = 0

means these codes are isospectral to free fermion systems.
This suggests, there should exist unitary transformations,
U , mapping the surface and toric code presented above to
such isospectral free fermion models.

By studying the group structure that corresponds to the
surface and toric code we find the form of the fermionic
models they map to. The group generated by the set of
all surface code stabilizer operators, {Bp}∈P , where P
is the set of all plaquettes, all stabilizers square to the
identity and stabilizers commute with one another, is iso-
morphic to a group generated by a set of commuting Pauli
operators.

〈
Bp|B2

p = 1, [Bλ, Bη] = 0
〉 ∼= 〈σzi∀i=1,...,|P|

〉
, (7)

for all plaquettes λ and η in P. This suggests it should
be possible to map each plaquette operator of the surface
code to a single free fermion mode.

The toric code stabilizer group has the added restriction
that the product of all stabilizers supported on a black,
Bb, or white, Bw, plaquette, respectively, must be equal
to the identity. The group generated by these stabilizer
operators is isomorphic to a group generated by a set of
commuting Pauli operators two smaller than that of the
surface code,〈
Bp|B2

p =
∏
p∈Pb

Bp =
∏
p∈Pw

Bp = 1, [Bλ, Bη] = 0

〉

∼=
〈
Bp|B2

p = 1, [Bλ, Bη] = 0
〉〈∏

p∈Pb Bp =
∏
p∈Pw Bp = 1

〉 ∼= 〈σzi∀i=1,...,|P|−2

〉
. (8)

The resulting group generated by the Pauli operators in
(8) will be one quarter the size of that in (7). All pla-
quette operators in the toric code should be mapped
to free fermion modes, except one black and one white
operator which will each be mapped to fermionic parity
operators over the set of all black and white modes respec-
tively. Hence, even though the interaction distance tells us
that the toric code is isospectral to a free fermion model,
we actually find these interacting fermionic parity opera-
tors are necessary by studying the group structure. These
symmetry terms are a result of the periodic boundary con-
ditions of the toric code and the fact that excitations in
the code are created in pairs. This is discussed in more
detail in Section 3.

The surface and toric code are mapped by unitary
transformations, US and UT , respectively, to fermionic

models

USHSCU†S = HFS

UTHTCU†T = HFT

(9)

whereHFS is a free fermion model Hamiltonian andHFT is
a fermionic model Hamiltonian, consisting of free fermion
terms and two interacting fermionic parity operators. It is
the purpose of the next section to present the exact form
of US and UT .

2.2 The unitary transformations

This section presents the transformations, US and UT ,
between the spin representation of the surface and toric
code and the fermionic Hamiltonians, HFS and HFT,
respectively, as dictated by (9). These are general uni-
taries for any system size. To achieve this we employ C4

Clifford rotations [23], of the form,

RC4(σ[µ]) = exp(
i

π
σ[µ]) =

1√
2

(1 + iσ[µ]) (10)

where σµi is the Pauli matrix acting on the ith qubit and
σ[µ] ≡ σµ1µ2µ3... ≡ σµ1⊗σµ2⊗σµ3⊗ . . . is the direct prod-
uct of some set of Pauli matrices. The action of RC4

on a
matrix σ[ν] is given by,

σ[ν] → R†C4
(σ[µ])σ[ν]RC4(σ[µ])

=

{
σ[ν], if [σ[ν], σ[µ]] = 0,

iσ[ν]σ[µ], if {σ[ν], σ[µ]} = 0.

(11)

Using this wet can map a collection of spin operators
to a spin operator on a single qubit and the identity
everywhere else. For example,

σ[µ]x[ν] RC4
(−σ[µ]y[ν])

−−−−−−−−−→ −iσ[µ]x[ν]σ[µ]y[ν] = σ[0...]z[0...]

σ[µ]z[ν] RC4
(σ[µ]y[ν])

−−−−−−−−→ iσ[µ]z[ν]σ[µ]y[ν] = σ[0...]x[0...],

(12)

where σ0 = 1.
Let us start with the surface code mapping, US . The

purpose of US is to transform each plaquette stabilizer,
Bp, in HSC to an operator, B̃p = σz = 1 − 2a†a [28] (a†

and a are fermionic creation and annihilation operators,
respectively), on a single free fermion mode (or spin) and

the logical operators, XL and ZL, to operators X̃L = σx =
a† + a and Z̃L = σz = 1− 2a†a with support on a shared
zero mode, not in the Hamiltonian, HFS, hence separate
from those supporting B̃p operators. We split US into N +
2 unitaries,

US = UN+2 . . . U2U1, (13)

where N = d2 − 1 is the number of plaquettes in the
d × d surface code. Each of the U ’s has a similar struc-
ture, transforming one of the d2 − 1 plaquette stabilizers,
or 2 logical operators into single spin operators. The
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Fig. 2. Mapping of the 3× 3 surface code under US . (a) Rotations RC4(σ[0...]yzzz[0...]) and RC4(−σ[0...]y000[0...]) acting on the
top left black plaquette stabilizer, Bb1 , are labelled in black on the interior of b1. (b) Blue arrows indicate the free fermion

modes supporting transformed black plaquette stabilizers, B̃b. The letters in parentheses show the form of operators acted on
non-trivially by the rotations. The letters are orange for white plaquettes, red for XL and green for ZL. Rotations for the other
three black plaquettes are labelled in black in their interior. (c) The C4 rotations corresponding to the white plaquettes are
shown labelled in black in their interior. (d) Orange arrows show the positions of free fermion modes supporting transformed

white plaquette stabilizers, B̃w. The rotations mapping (UN . . . U1)XL(U†
1 . . . U

†
N ) and (UN . . . U1)ZL(U†

1 . . . U
†
N ) to a single σx

and σz, respectively, with support on the logical mode are labelled along the left and bottom of the lattice. (e) Red and green

arrows point to the logical mode supporting X̃L and Z̃L.

first N/2 unitary parts, {U1, . . . , UN/2}, correspond to the
transformation of black (Z) plaquette operators with sup-

port on four qubits, B
(4)
b = σ[0...]zzzz[0...], or two qubits,

B
(2)
b = σ[0...]zz[0...], as shown in Figures 2a and 2b. The

mappings take the following form,

B
(4)
b

RC4
(σ[0...]yzzz[0...])

−−−−−−−−−−−−−→ σ[0...]x000[0...]

RC4
(−σ[0...]y000[0...])

−−−−−−−−−−−−−−→ σ[0...]z000[0...],

B
(2)
b

RC4
(σ[0...]yz[0...])

−−−−−−−−−−−→ σ[0...]x0[0...]

RC4
(−σ[0...]y0[0...])

−−−−−−−−−−−−→ σ[0...]z0[0...],

(14)

where RC4
(σ[0...]yzzz[0...])RC4

(−σ[0...]y000[0...]) is one uni-

tary part, U . We label the resulting operators B̃
(4)
b =

σ[0...]z000[0...] and B̃
(2)
b = σ[0...]z0[0...]. These operators have

support on the top left qubit of the corresponding plaque-
tte, b, or just the top qubit for the order two stabilizers. All
other Pauli operators in the C4 rotation are equal to those

in the operator we are mapping from at each stage, but at
this top left qubit we replace the Pauli operator with a σy

in the first step and a −σy in the second. There is a lot of
freedom in the choice of the specific form of C4 rotations
throughout this section. For example, we could have a−σy
in the first RC4 and a σy in the second. We just present
two particular collections of C4 rotations that work for
the surface and toric code, respectively. These N/2 uni-
tary parts act in order from the top to bottom row of the
lattice. This ensures that their effect on all other black
plaquettes are trivial. The effect of these unitaries on the
white (X) plaquettes, however are non-trivial. We see in
Figures 2b and 2c that some σx operators of the white
plaquettes are mapped to σz operators by the first N/2
unitaries. These σx operators are those with support on
the qubits pointed at by the blue arrows.

The white (X) plaquette stabilizers are mapped, by the
next N/2 unitary parts, to σz operators on the bottom
right qubit of the plaquette, or the right qubit in the case
of the order two operators. They are mapped individu-
ally, each by their own U in order from the right to left
column. The form of the U ’s that perform this mapping
vary depending on the effect of the U ’s corresponding to

https://epjb.epj.org/
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the black plaquettes. The mapping (UN/2, . . . , U1) acts
trivially on the semi circle plaquette stabilizers on the
bottom row of the lattice, as is shown in Figure 2c,

(UN/2 . . . U1)B
(2)
w (U†1 . . . U

†
N/2) = B

(2)
w = σ[0...]xx[0...]. For

these types of plaquettes we use the rotation,

B(2)
w

RC4
(−σ[0...]xy[0...])

−−−−−−−−−−−−→ σ[0...]0z[0...]. (15)

All others are acted on non-trivially, such as the top

right square plaquette stabilizer, B
(4)
w , in Figure 2(c),

(UN/2 . . . U1)B
(4)
w (U†1 . . . U

†
N/2) = B̄

(4)
w = σ[0...]xzzx[0...],

where B̄
(4)
w labels the intermediate form of the operator.

For an operator of this form we use the rotation,

B̄(4)
w

RC4
(−σ[0...]xzzy[0...])

−−−−−−−−−−−−−−→ σ[0...]000z[0...], (16)

where the Pauli operators in the RC4
rotation are equal to

those in the operator we are mapping from, B̄
(4)
w , except at

the bottom right qubit of the plaquette where we replace
the σx with a−σy. The operator on the bottom right qubit
of a white plaquette is always unaffected by any previous
U ’s by construction, thus will remain a σx.

Once we have transformed the N plaquette operators,
we transform the logical operators with the two remain-
ing unitaries, UN+1 and UN+2. The logical operator, XL

is mapped by all previous unitaries to a string of σz oper-
ators along the left boundary attached to a σx on the
bottom left qubit of the lattice, where it intersects with
ZL. At the same time ZL is acted on trivially by all pre-
vious unitaries. We label these intermediate forms of the
operators as X̄L = σ[0...]xzz...[0...] and Z̄L = σ[0...]zzz...[0...],
respectively. They are both shown in Figure 2d, along with
the form of UN+1 and UN+2, for a 3× 3 lattice. These act
as,

X̄L

RC4
(σ[0...]zzz...[0...])

−−−−−−−−−−−−−→ σ[0...]y00...[0...]

RC4
(−σ[0...]z00...[0...])

−−−−−−−−−−−−−−→ σ[0...]x00...[0...],

Z̄L
RC4

(σ[0...]xzz...[0...])
−−−−−−−−−−−−−→ −σ[0...]y00...[0...]

RC4
(−σ[0...]x00...[0...])

−−−−−−−−−−−−−−→ σ[0...]z00...[0...]

(17)

for a general size code. Thus XL and ZL are mapped to
X̃L = σ[0...]x00...[0...] and Z̃L = σ[0...]z00...[0...], respectively,
with support on a single shared qubit. UN+1 and UN+2 act

trivially on all previously obtained B̃b and B̃w operators.
The toric code mapping, UT , has a similar form. UT

transforms each plaquette stabilizer, Bp, in HTC to an

operator B̃p = σz on a single free fermion mode, except
one black, Bb1 , and one white, Bw1 , stabilizer, which

are mapped to symmetry operators, S̃b1 =
∏
b\b1 B̃b and

S̃w1
=
∏
w\w1

B̃w, which are the products of all other

black and white transformed stabilizers respectively. The

four logical operators, X
(1)
L , Z

(1)
L , X

(2)
L and Z

(2)
L , are

mapped to operators X̃
(1)
L = σxj , Z̃

(1)
L = σzj , X̃

(2)
L = σxk

and Z̃
(2)
L = σzk with support on two zero modes, j and k,

not in the Hamiltonian, HTS , hence separate from those
supporting B̃p operators. We split UT intoM+2 unitaries,

UT = UM+2 . . . U2U1, (18)

where M = d2 is the number of plaquettes in the d ×
d toric code. Each of the U ’s transforms one of the
d2 plaquette stabilizers, or 4 logical operators into sin-
gle spin operators. The first M/2 − 1 unitary parts,
{U1, . . . , UM/2−1}, correspond to the transformation of

black (Z) plaquette operators, Bb = σ[0...]zzzz[0...], as
shown in Figures 3a and 3b. The mappings take the
following form,

Bb
RC4

(σ[0...]yzzz[0...])
−−−−−−−−−−−−−→ σ[0...]x000[0...]

RC4
(−σ[0...]y000[0...])

−−−−−−−−−−−−−−→ σ[0...]z000[0...],

(19)

where B̃b = σ[0...]z000[0...]. This operator has support on
one of the four qubits of the corresponding plaquette,
b, the same qubit that supports the σy operators in the
C4 rotations. These qubits are the ones positioned at the
heads of blue arrows in Figures 3c–3f. The orientation of
unitary parts, and hence these arrows, vary depending on
the location of plaquette, b, on the lattice. The rule for
an arbitrarily sized d × d lattice with the XL operators
positioned along the central row and column and the ZL
operators along the top row and left column of the lat-
tice, as depicted in Figure 3, goes as follows. The blue
arrows of plaquettes in the top right quarter of the lat-
tice point towards the bottom left, those in the bottom
left and right quarters point towards the top right and
left, respectively, and those in the top left in general point
towards the bottom right. There are two exceptions to this
rule. One of which is the top left plaquette, which will be
mapped to a symmetry operator with support over all
other B̃b plaquettes, labelled by underlined blue “(Z)”’s
in Figures 3c–3f. Hence, it does not have a unitary part,
U , corresponding to it. The second exception is all other
plaquettes in the top left quarter of the lattice that run
along the diagonal line of black plaquettes from the top
left to the bottom right of the lattice. All arrows along
this diagonal point towards the top left of the lattice. The
orientation of all arrows for the 6× 6 toric code is shown
in Figure 4.

These M/2− 1 unitary parts act in a certain order. No
unitary part may act before the unitary corresponding to
the plaquette their arrow points at. So as can be seen
from Figure 3 the first plaquette is the one whose arrow
points towards the top left plaquette, as this has no uni-
tary part of its own. This ordering ensures that the effect
of each part on all other black plaquettes that are yet to
be transformed is trivial. However, the effect of each of
these parts on the top left plaquette is non-trivial. This
is mapped to a symmetry operator, with a σz supported
at each qubit supporting a B̃b. This non-trivial effect is
marked in Figures 3b–3f, by the position of underlined
blue “(Z)”’s. Similarly to the surface code mapping, the

https://epjb.epj.org/
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Fig. 3. Mapping of the 4× 4 toric code under UT (a) Rotations RC4(σ[0...]yzzz[0...]) and RC4(−σ[0...]y000[0...]) acting on the black
plaquette stabilizer, Bb2 , are labelled in black on the interior of b2. (b) Blue arrows indicate the fermion modes supporting

transformed black plaquette stabilizers, B̃b. The letters in parentheses show the form of operators acted on non-trivially by
the rotations. The letters are orange for white plaquettes, blue for black plaquettes, red for XL and green for ZL. They are
underlined for the two plaquette operators that will be mapped to fermionic parity operators. Rotations for the other black
plaquettes are labelled in black in their interior. (c) The C4 rotation corresponding to the bottom left white plaquette is shown
labelled in black in its interior. (d) Rotations for the remaining white plaquettes are shown in their interior. Orange arrows

show the positions of fermion modes supporting transformed white plaquette stabilizers, B̃w. (e) Rotations mapping the partly
transformed logical operators to single Pauli operators, with support the two logical modes are labelled along the paths of the

original logical operators. (f) Red and green arrows point to the logical modes supporting X̃
(1)
L , Z̃

(1)
L , X̃

(2)
L and Z̃

(2)
L . The black

and white symmetry operators are labelled in blue and orange, respectively, with support on all transformed operators of the
same colour.

effect of these unitaries on the white plaquettes are also
non-trivial. Figures 3b–3d shows that some σx operators
on white plaquettes are mapped to σz operators by the
first M/2− 1 unitaries. These σx operators are those with
support on the qubits pointed at by the blue arrows.

The next M/2−1 unitary parts each act on a white pla-
quette stabilizer mapping them to single σz operators. The
form of the U ’s that perform this mapping vary depend-
ing on the effect of the U ’s corresponding to the black
plaquettes. The mapping (UM/2−1, . . . , U1) acts trivially
on the two plaquette stabilizers in the bottom left and
top right corner of the lattice, as is shown in Figure 3c,

(UN/2 . . . U1)Bw(U†1 . . . U
†
N/2) = Bw = σ[0...]xxxx[0...]. For

these types of plaquettes we use the rotation,

Bw
RC4

(−σ[0...]xyxx[0...])
−−−−−−−−−−−−−−→ σ[0...]0z00[0...]. (20)

All others are acted on non-trivially, such as the left-
most plaquette on the top row, Bw, in Figure 3c,

(UM/2−1 . . . U1)Bw(U†1 . . . U
†
M/2−1) = B̄w = σ[0...]xxzz[0...],

where B̄w labels the intermediate form of the operator.

For an operator of this form we use the rotation,

B̄w
RC4

(−σ[0...]yxzz[0...])
−−−−−−−−−−−−−−→ σ[0...]z000[0...], (21)

where the Pauli operators in the RC4
rotation are equal to

those in the operator we are mapping from, B̄w, except at
the top left qubit where we replace the σx with a −σy.
The operator on the qubit that will support the final
B̃w operator will always be unaffected by any previous
U ’s by construction, thus will remain a σx. These qubits
are the ones positioned at the heads of orange arrows in
Figures 3e–3f. The orientation of the second M/2− 1 uni-
taries, hence the orange arrows are fixed in a similar way
to the first M/2− 1. The rule for an arbitrarily sized d× d
lattice goes as follows. The orange arrows of plaquettes in
the top left and right quarters of the lattice point towards
the top left and right, respectively, those in the bottom
right quarters point towards the bottom right, and those
in the bottom left in general point towards the bottom left.
There are again two exceptions to this rule. One of which
is the top rightmost plaquette in the bottom left quarter,

https://epjb.epj.org/
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Fig. 4. The orientation of all unitary parts, U , for the 6 × 6
toric code.

which will be mapped to a symmetry operator with sup-
port over all other B̃w plaquettes, labelled by underlined
orange “(X)”’s in Figures 3e and 3f, and thus does not
have a unitary part corresponding to it. The second is all
other plaquettes in the bottom left quarter of the lattice
which run along the diagonal line of white plaquettes from
the top right to the bottom left of the lattice. All other
arrows along this diagonal point towards the top right of
the lattice. The orientation of all arrows for the 6× 6 toric
code is shown in Figure 4.

As with the first M/2 − 1 unitary parts, the second
M/2 − 1 act in a particular order. No unitary part may
act before the unitary corresponding to the plaquette
their arrow points at. As can be seen from Figure 3
the first plaquette must be the one whose arrow points
towards the top right plaquette of the bottom left quar-
ter of the lattice, as this has no unitary part of its own.
This ordering ensures that the effect of each part on all
other white plaquettes that are yet to be transformed
is trivial.

Once we have mapped all plaquette operators to sin-
gle σz operators or symmetry operators, we transform
the logical operators with the four remaining unitaries,

UM−1, . . . , UM+2. The logical operators, X
(1)
L and X

(2)
L ,

are mapped by all previous unitaries to strings of σz

operators along the qubits they originally had support

on with a σx on the qubits that intersect with Z
(1)
L

and Z
(2)
L , respectively. While Z

(1)
L and Z

(2)
L are acted on

trivially by all previous unitaries. We label these inter-

mediate forms of the operators as X̄
(1)
L = σ[0...]xzz...[0...],

X̄
(2)
L = σ[0...]xzz...[0...], Z̄

(1)
L = σ[0...]zzz...[0...] and Z̄

(2)
L =

σ[0...]zzz...[0...]. They are shown in Figure 3e, along with
the form of the unitaries UM−1, . . . , UM+2, for a 4 × 4
lattice. These act as,

X̄
(1)
L

RC4
(σ[0...]zzz...[0...])

−−−−−−−−−−−−−→ σ[0...]y00...[0...]

RC4
(−σ[0...]z00...[0...])

−−−−−−−−−−−−−−→ σ[0...]x00...[0...],

Z̄
(1)
L

RC4
(σ[0...]xzz...[0...])

−−−−−−−−−−−−−→ −σ[0...]y00...[0...]

RC4
(−σ[0...]x00...[0...])

−−−−−−−−−−−−−−→ σ[0...]z00...[0...],

(22)

where the operators X̄
(2)
L and Z̄

(2)
L are transformed in a

similar way. Thus X
(1)
L , Z

(1)
L , X

(2)
L and Z

(2)
L are mapped

to X̃
(1)
L = σxj , Z̃

(1)
L = σzj , X̃

(2)
L = σxk and Z̃

(2)
L = σzk. The

unitaries UM−1, . . . , UM+2 act trivially on all previously

obtained B̃b and B̃w operators.

2.3 The Fermion models

Let us now focus on the properties of the models, HFS

and HFT, that result from the transformations, US and
UT , of the surface and toric code, respectively. We will
start with the surface code. The plaquette stabilizers are
mapped to σz operators on free spins (qubits), which
are equivalent to free fermion modes. The excitations of
plaquettes can now be encoded by the occupation of iso-
lated dynamic fermion modes subject to a local chemical
potential that encode the corresponding increase of the
energy by 2J test when the plaquettes are populated.
As a result the Hamiltonian of the transformed model
is,

HFS = −J
∑
p

B̃p, (23)

where B̃p = σz = 1−2a†a [28], and a† and a are fermionic
creation and annihilation operators, respectively.

Applying UT to a state of the surface code, |ψ〉S, gives,

U |ψ〉S = ˜|ψ〉S. (24)

In general for a distance d code, any given state, ˜|ψ〉S, has
d2 − 1 dynamic modes, each corresponding to a plaquette
of the surface code and one zero mode, which supports the
transformed logical operators, X̃L and Z̃L. The ground
state, |ψg〉S, of the original surface code, HSC, is stabi-
lized by all plaquette operators, i.e. Bp |ψg〉S = |ψg〉S for
all plaquettes, p. This relationship is preserved by the

transformation, UT . Therefore, B̃p ˜|ψg〉S = ˜|ψg〉S for all p,
implying the ground state of this model is a collection of
d2 − 1 empty free fermion modes, with a degeneracy of
2 encoded by the logical zero mode. Occupied dynamic
modes indicate the positions of local anyonic excitations
in this model.

The transformed d×d toric code, HFT, has many of the
same properties. The Hamiltonian is,

HFT = −J

∑
b\b1

B̃b +
∑
w\w1

B̃w +
∏
b\b1

B̃b +
∏
w\w1

B̃w

 ,

(25)

https://epjb.epj.org/
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where b \ b1 and w \w1 are the sets of all black and white
plaquettes, respectively, minus the plaquettes, b1 and w1,
that become fermionic symmetry operators over all other
transformed plaquettes of the same colour. These symme-
try operators are S̃b1 =

∏
b\b1 B̃b and S̃w1

=
∏
w\w1

B̃w in

(25). The other d2 − 2 transformed plaquette stabilizers

have the same form as those in (23), B̃p = σz = 1− 2a†a.
Any transformed state has d2 − 2 dynamic modes, each

corresponding to a plaquette of the toric code and two zero
modes, which support the four transformed logical opera-
tors. The ground state, |ψg〉T, of the toric code is stabilized
by all plaquette operators, i.e. Bp |ψg〉T = |ψg〉T for all p.

Hence the transformed ground state, ˜|ψg〉T, is stabilized
by all transformed plaquette stabilizers, including the

symmetry operators, B̃p ˜|ψg〉T = S̃b1
˜|ψg〉T = S̃w1

˜|ψg〉T =
˜|ψg〉T for all p, implying the ground state is a collection of

d2 − 2 empty free fermion modes, with a degeneracy of 4
encoded by the two logical zero modes. Occupied dynamic
modes indicate the positions of local anyonic excitations
in this model. A single occupied mode, b, would result in
an increase in energy due to the violated stabilizer opera-
tor B̃b, and symmetry operator, S̃b1 . This reflects the fact
that excitations are created in pairs at the ends of string
operators in HTC, with one end of the string being at pla-
quette b and one at b1. The symmetry operators, S̃b1 and

S̃w1
, restrict excitations in HFT to be created in pairs.

There is a more detailed discussion of the excitations of
HFS and HFT in the next section.

3 Encoding anyonic statistics in free
fermions

Previous sections have shown that the surface code is
unitarily equivalent to a free fermion model, as individ-
ual spins are equivalent to free fermion modes. Hence,
these models should have equivalent physical properties.
Nevertheless, operators on single free fermions cannot
account for the anyonic statistics supported by the surface
code. The exotic statistics of its excitations arises due to
the commutation and anti-commutation relations of the
σx and σz’s the string operators are built from. In this
section we show how these relations are preserved by the
unitary transformation, US , and how they are encoded in
the action of operators on the dynamic and logical modes
of the system.

The string operators of the surface code, OXC and OZC ,
presented in (2), are a product of σxj or σzj operators,
respectively along the path C, producing local excitations
at their endpoints. Crossings of these strings give rise
to the anyonic statistics through the Pauli commutation
relations. These string operators transform as follows,

USOxCU
†
S = Õx

C̃S
, USOzCU

†
S = Õz

C̃S
, (26)

where Õx
C̃S

and Õz
C̃S

are string operators acting on the

dynamical and logical fermion modes along the path C̃S
in HFS.

All commutation relations of operators are preserved
by US . If OXC creates an excitation at plaquette b,

then {OXC , Bb} = 0 = {ÕX
C̃S
, B̃b}. If not, [OXC , Bb] = 0 =

[ÕX
C̃S
, B̃b]. Hence the endpoints of C̃S are the transformed

versions of the plaquettes, which were the endpoints of C.
Paths between endpoints of string operators may change,
but the endpoints are fixed at the transformed versions
of the plaquettes. Hence, the paths remain homotopically
equivalent to those of the untransformed operators. The
commutation relations of operators with each other are
also preserved, by the mapping US . Crossings of these
strings may appear in the dynamic or logical modes.
Therefore, the anyonic statistics of excitations of the sur-
face code are encoded in the free model by a mix of the
dynamic and logical modes.

It is more instructive to look at how string operators,
ÕC̃S , in the free model,HFS, are mapped under the inverse

unitary transformation, U†S , to string operators, OC , in
the surface code, HSC. A σx operator on a single spin (or
a† + a on a single mode) in the free model transforms to
a string operator with one end point at the plaquette, p,
corresponding to that spin (or mode) and one at a bound-
ary not associated with a logical degree of freedom (the
top boundary if p is black and the right if p is white).
This has to be the case as it is the only type of operator
that anti-commutes with just one plaquette. This also sug-
gests why there could not exist a unitary transformation
from the toric code with periodic boundary conditions to
decoupled free fermions (without the symmetry operators
in (25)). If each plaquette in the toric code were mapped
to a fermion mode in the free model, any operator creat-
ing a single fermion population would be mapped to one
creating a single plaquette excitation in the toric code.
However, all excitations in the toric code must be created
in pairs, as dictated by its periodic boundary conditions.
In other words the boundary conditions of the surface code
are what facilitate such a mapping.

A string operator with end points on any two plaquettes
of the same colour in the surface code may be obtained by
mapping from a product of two σx’s at the spins (or two
a†+a operators at the modes) corresponding to those pla-

quettes in HFS. The string operators, Õx
C̃S

or Õz
C̃S

, that

will map to string operators, OxC or OzC , creating logi-
cal excitations (i.e. those with end points at the bottom

and left boundaries, respectively), contain X̃L and Z̃L,
respectively. Any other string operator, OxC or OzC , with
the same end points and effect on the logical qubit as
those already mentioned may be obtained by including
some combination of σz’s in the operators Õx

C̃S
or Õz

C̃S
.

These σz’s alter the string operator’s path by applying
stabilizer operations, thus including a loop around the
corresponding plaquette to the path, C.

The string operators in the toric code are mapped via
the unitary transformation, UT , to string operators in a
system of fermion modes coupled to two fermionic parity
constraints, in a similar way to those in the surface code,

UTOxCU
†
T =Õx

C̃T
,

UTOzCU
†
T =Õz

C̃T
,

(27)
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where Õx
C̃T

and Õz
C̃T

are string operators acting on the

dynamical and logical fermion modes along the path C̃T
in HFT.

The commutation relations of operators are preserved
by UT . If OXC creates an excitation at a black plaquette

b, then {OXC , Bb} = 0 = {ÕX
C̃T
, B̃b} and {ÕX

C̃T
, S̃b1} = 0.

If b = b1 then we say B̃b = S̃b1 . If OXC does not create
an excitation at any black plaquette then, [OXC , Bb] = 0 =

[ÕX
C̃T
, B̃b] and [ÕX

C̃T
, S̃b1 ] = 0 for all b. Hence the endpoints

of C̃T are the transformed versions of the plaquettes,
which were the endpoints of C. Paths between endpoints
of string operators may change, but the endpoints remain
fixed. As in the surface code transformation, the com-
mutation relations of operators with each other are also
preserved, by the mapping UT . Crossings of these strings
may appear in the dynamic or logical modes. Therefore,
as with the surface code mapping, the anyonic statistics of
excitations of the toric code are encoded in the fermionic
model by a mix of the dynamic and logical modes.

We now look at how string operators, ÕC̃T , in the free
model, HFT, are mapped under the inverse unitary trans-

formation, U†T , to string operators, OC , in the toric code,
HTC. A σx operator on a single spin in the free model
transforms to a string operator with one end point at the
plaquette, p, corresponding to that spin and one at the
plaquette that was mapped to the symmetry operator of
the same colour as p (b1 if p is black and w1 if p is white).
This demonstrates how the symmetry operators ensure
excitations are created in pairs in HFT, as they are in the
toric code.

A string operator with end points on any two plaque-
ttes of the same colour in the toric code may be obtained
by mapping from a product of two σx’s at the spins
corresponding to those plaquettes in HFT. The string
operators, Õx

C̃T
or Õz

C̃T
, that will map to string operators,

OxC or OzC , with strings of σx’s around a non-contractible

loop of the torus, i.e. those which cross the Z
(1)
L and/or

Z
(2)
L operator, contain X̃

(1)
L and/or X̃

(2)
L , respectively.

Those mapping to operators with strings of σz’s around a
non-contractible loop of the torus, i.e. those which cross

the X
(1)
L and/or X

(2)
L operator, contain Z̃

(1)
L and/or Z̃

(2)
L ,

respectively. Any other string operator, OxC or OzC , with
the same end points and effects on the logical qubits
as those already mentioned are produced by the same
method as those in the surface code, by including some
combination of σz’s in the operators Õx

C̃T
or Õz

C̃T
. These

σz’s alter the string operator’s path by including a loop
around the corresponding plaquette to the path, C.

4 Conclusions and outlook

In this paper we have shown that the surface and toric
code are unitarily equivalent to free fermions and free
fermions coupled to a fermionic parity constraint, respec-
tively. Moreover, we have presented unitary transforma-
tions, US and UT , that map these codes to their fermionic

counterparts. We have given the explicit form of these uni-
taries and demonstrated how the statistical properties of
the surface and toric code anyons map to the localised
excitations of the fermionic models. We have shown how
the periodic boundary conditions of the toric code intro-
duce the need for interacting fermionic parity operators
in the fermion model.

We expect the ability to map the surface code to free
fermions, could have a number of applications. We have
shown, for example, how the anyonic statistics of the exci-
tations are encoded by the unitary transformation. This
has allowed for an intuitive and unique understanding of
the origins of these statistics. Moreover, descriptions for
the construction and manipulation of free fermion systems
are more efficient than current interacting descriptions
of the surface code [5]. We believe extending the group
of mappings, U , to other topological models in two and
higher dimensions could provide valuable insight into the
emergence of exotic statistics in these systems [18].
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