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Abstract. One of the most striking properties of graphene is the relativistic-like Dirac-Cone spectrum of
charge carriers. By applying high-frequency laser fields, the system can be described with the use of similar
spectrum which is based on a concept of electron quasi-energy. There in this spectrum a creation and anni-
hilation of new Dirac points and cones as well as opening a gap may arise. This allows controlling electron
motion without applying DC periodic fields which are effectively described by graphene superlattices. Here
we demonstrate that coherent electromagnetic fields applied to graphene can generate new Dirac and Weyl
points, induce Lifshitz quantum phase transition for slightly doped graphene and produce an anisotropy of
the Dirac cones, which can be even infinite.

1 Introduction

Graphene has gained a huge interest since it has been dis-
covered [1,2]. It is the basic structuring unit for building all
graphitic materials [3]. Graphene has linear, gapless spec-
trum. The development of optoelectronic devices requires
to open the gap. The issue of the energy gap opening
and controlling in graphene has attracted a significant
interest [4]. On the other hand, in order to maintain
the carriers’ high mobility in graphene, its energy spec-
trum should have linear Dirac form [5]. Hence, there is a
demand for effective gap controlling i.e. opening, closing
and new methods for manipulation of critical points such
as minima and maxima of electronic zone in single layer
graphene. The goal is to maintain the high carrier mobil-
ity. That will also allow a manipulation of Dirac points
and cones such as suggested in references [6,7] as well as
a creation of new 2D Weyl points and hyperbolic Dirac
phase [8].

One of the most effective methods to control and to
manipulate electron spectrum of graphene is to apply
periodic electrostatic potentials (so-called graphene super-
lattices [9–13] and/or electro-magnetic fields. Recently, an
analogy was found between electron spectrum in graphene
superlattices and its modification in externally applied
fields produced by laser [6]. The application of laser
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fields to graphene creates a quasi-energy band gap struc-
ture (due to so-called a Stark effect, that is causing
this gap opening). Moreover, the value of such gap can
be easily controlled by changing electric field amplitude
and frequency. Applying different frequencies or ampli-
tudes of the laser field we are able to change the size
and location of the gap in the spectrum in addition to
forming new Dirac cones [6] which positions and form
can be easily manipulated [7]. Nevertheless, the ques-
tion remains if and how the laser-induced Dirac cones is
distorted/squeezed near the laser-generated Dirac points.
Typically in graphene, the constant energy map near
Dirac points is expected to form circular curves. Here we
derived and plot such curves from the dispersion relation
which is the dependence of the quasi-energy on momen-

tum
⇀

k . The natural analysis of our simulations leads us to
the suggestions that besides Dirac points there arise Weyl
points which appear always in pairs. Each pair of Weyl
points corresponds to one Dirac point, where the first are
topologically protected and the latter is only symmet-
rically protected. The creation and destruction of Dirac
points therefore can be achieved by symmetry breaking,
and, in particular, to inversion breaking. When this hap-
pen further tuning of electric field that breaks inversion
will not remove Weyl points but only change their posi-
tions. The only case where Weyl points are removed is if
we have two points at the same position with opposite chi-
rality. Otherwise, the Dirac and 2D Weyl points have very
similar behavior. They are both representations of simi-
lar Dirac and Weyl equations [7]. The Dirac points are
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formed in 3D topological insulators and they are topolog-
ically protected [7]. The Weyl point are formed mostly in
semimetal and there are very robust in 3D space [14], e.g.
different classes of topological Weyl semimetals have been
described [8]. One of these types is the 3D Dirac semimetal
is distinguished by its Dirac cone having a fourfold degen-
eracy. It emerges from twofold degeneracy of the time
symmetry reversal (T invariance) plus twofold degeneracy
of the spatial inversion symmetry (P invariance). Another
topological metal type is Weyl semimetals, which appears
in the breaking of either symmetries (T or P). Thus, this
type has a twofold degeneracy cones forming two Weyl
points, which always appears in pairs. The pair hold two
different topological charges +1 and−1, caused by the chi-
rality of the Weyl fermions. Therefore, Weyl points form
some kind of “magnetic” monopoles and anti-monopoles
in momentum space.

Below we describe a few different situations where 2D
Weyl points is originating from a deformation of the quasi-
energy spectrum induced by external electromagnetic
field. In particular that field creates the oval like singular-
ity in the quasi-energy spectrum, and forms an anisotropic
Dirac cones. Moreover we consider in details a similar
diverse modification of the electron energy spectrum of
graphene superlattices. We focus on the cases when both
periodic static electric/magnetic field and laser field are
applied to a single graphene layer. We show that the cre-
ation of the cones can be controlled by either periodic
static magnetic or electric field and their shape depend
on the amplitudes and frequencies of laser field. In partic-
ular at some critical field value the Dirac cone anisotropy
changes drastically from fully symmetric, circular one to
infinitely asymmetric, the completely squeezed one. That
changing quasi-energy spectrum anisotropy may induce
interesting anisotropic graphene properties, e.g. the Klein
tunnelling induced by the laser light irradiation. We
believe that such an effect can be easily experimentally
verified.

2 Model of graphene placed in linear
resonator

The dynamics of charge carrier in graphene placed in lin-
ear resonator are described by 2D Dirac equation, which
can take the following form considering the natural units
e = ~ = vF = 1 [6]:{
−→σ .
[
−→p −

−→
A (t)−

−→
A
H

(x)

]
+ U (x)

}
ψA,B =

i∂ψA,B
∂t

(1)

where t is the time, −→σ is pauli matrices and ψA,B =(
ψA
ψB

)
is the wavefunction describing charge carriers

on the two triangular sublattices A and B of graphene
honeycomb lattice. The resonator is characterised by
the following distributions of the electromagnetic fields
inside the resonating cavity forming a standing wave.
The first component of this wave is the time periodic

electric field, which can be created by laser irradia-
tion of the resonator. It is represented by the vector

potential
−→
A (t):

−→
A (t)x = A0 cos (θ) cos (ωt);

−→
A (t)y = A0 sin (θ) cos (ωt)

(2)

where A0 is the amplitude, the frequency is ω = 2π
T , and θ

is the angle between the dynamic laser and static magnetic
fields. The magnetic field inside the resonator is described

by the vector potential:
−→
A
H

(x) =

(
−→
A
H

(x),
−→
A
H

y (x)

)
,

where this can be a spatially periodic magnetic field, which
is oriented perpendicular to the graphene layer as

−→
A
H

(x)y = AH0 cos (µHx) (3)

with amplitude of AH0 and frequency µH . There inside the
resonator exists also a static periodic electric field oriented
in plane of the graphene. It is described by the potential:

U (x) = U0 cos (µx) (4)

with U0 is its amplitude and µ is its period. Such con-
figuration of the electromagnetic field may be achieved
by several means. Due the two-dimensional geometry,
graphene is perfectly fit for enclosure within different
micro-cavities. Any photonic structures or interferometers
that confines optical fields between two highly reflecting
mirrors with a spacing of many wavelengths of light may
form the desirable structure which induce the described
field configuration. Two counter propagating laser beams
is another alternative. So far it was popular to place
graphene in such cavities, where graphene plane was paral-
lel to the mirrors plane [15] or the laser beams was directed
perpendicular to the graphene layer [16,17]. The main goal
of these papers to find means of controlling the otherwise
featureless optical absorption. The usage of waveguides in
another means to make such field configuration [18]. Depo-
sition of metal grading helps to create periodic electric
field [19]. In all these systems the light-matter interaction
is strongly enhanced, and they open up the opportunity
for investigating fundamental changes in graphene it-self.
In particular, here we show that there in slightly-doped
graphene may arise a series of Lifshitz quantum phase
transitions induced by applied electro-magnetic fields and
strong light absorption observed in these systems [14–19]
may be related to the light transformation of the graphene
energy spectrum.

Floquet theory plays an essential role in analysing
dynamical systems, where periodic systems can be trans-
formed to linear forms. The Hamiltonian is periodic in
time, with period of T , and in space with the same spatial
periodicity as the crystal. Floquet theory illustrates that
time periodic potentials transfers the electron’s energy
into a quasi-energy confined within its Brillouin zone and
gives a solution of the form:

Ψ (x, t) = e−iεtΦ (x, t). (5)
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
(7)

Given that Φ (x, t) has the same time periodicity as
the Hamiltonian, and ε is the quasienergy or Floquet
energy. Within the resonance approximation [6], the wave
function can be expanded as:

ψA,B = e−iεt+ikxx+ikyy
[
ψ++
A,B e

iωt
2 + iµx

2 + ψ+−
A,B e

iωt
2 −

iµx
2

+ ψ−+A,B e
−iωt

2 + iµx
2 + ψ−−A,B e

−iωt
2 − iµx2

]
(6)

where ω is the temporal frequency of the laser field,
and µ is the spatial frequency of the spatially-periodic
electric/magnetic field. Sine the Hamiltonian is time-
dependent, then the Φ (x, t) states should represent the
stationary energy eigenstates, thus ε = E (the quasi-
energy eigenvalue). In this paper, we applied a linearly
polarized laser field to a single layer graphene [6,20]. The
2D Dirac Hamiltonian provides a differential equation,
which describes the graphene subjected to the applied
potentials. Substituting the wavefunction in a form of sug-
gested by Floquet theorem [21], and restricting ourselves
with several first harmonic of the corresponding Fourier
expansion we obtain the matrix, which plays now a role
of Hamiltonian:

See equation (7) above

where k = kx − iky, hence, k∗ = kx + iky, C,Cn&Cm are
constants that can be determined by the initial condi-
tions, AH0 is the amplitude of the magnetic potential, U0

is the amplitude of the electric potential, f = µ or k0
is the frequency of the applied potential, ω and A0 are
the amplitude and the frequency of electromagnetic field
from the lases. In the case of circularly polarised laser
A0 will be multiplied in the matrix by the coefficient(
1± ieiϕ

)
, and θ is the angle between an orientation of

the static and dynamic fields. The zeros of the determi-
nant for this matrix allow to determine the quasi-energy
spectrum ε (kx, ky) at any fixed applied field parameters.

3 Graphene superlattices in static magnetic
field formed inside resonator

We consider an applied static magnetic field described by

the vector potential
−→
A
H

(x). It is oriented perpendicularly

to the graphene sheet. This corresponds to the situation
when graphene has been put in linear resonator. Then

we also apply the electromagnetic field d
−→
A (t) /dt with

electric component in plane assuming U0 = 0. This fields
are forming a standing wave in the resonator. Solving
the 2D Dirac equation for Floquet states we obtain the
quasi-energy spectrum near ε = 0 (Fig. 1a). The spectrum
consists of two linear nearly isotropic cones, where each
holds two Dirac points (Fig. 2). It has four zero energy
points in total. In the plane ky = 0 we see that each pair of
Dirac points is created by an intersection of two parabolic
curves, while in the planes kx = 0.45, and kx = 0.55 the
spectrum is linear (see Figs. 2b and 2c). We found that
the spectrum is very sensitive to the value of the frequency
and amplitude of electromagnetic field applied.

At different value of frequencies ω of the resonator the
spectrum has a different shape and the number of Dirac
points, e.g. in agreement with our preliminary studies [21].
Overall, the spectrum can be described by a cross-section
of the cones and a plane corresponding to a constant
energy. We choose the value of quasi-energy close to zero.
The results of the cross-sections are loops in momentum
space and may be viewed as “Fermi surface” assuming the
doping level lifts the Fermi energy from a Dirac point to
this quasi-energy value. Such “Fermi surface” has always
the shape of a few loops or their pairs reminding in gen-
eral the shape of Cassini ovals (see Fig. 3). At small value
of ω it is starting with two loops – two Cassini ovals, and
then, with increasing ω, it is evolving into three and then
into four loops. Such transformation of Fermi surface is
usually called as Lifshitz quantum phase transitions [22].
Each Fermi loop here has two fixed foci points (±A, 0),
and the product of the distance from any point on the
spectrum to the foci’s is fixed by the value B2. The curve
of each such Fermi loop has an equation of the form:(

(kx −A)
2

+ k2y

)(
(kx +A)

2
+ k2y

)
= B2. (8)

We can identify here three different regimes (phases),
originated for different frequency range: (1) small
(ω < 0.5), (2) intermediate (0.5 < ω < 1.5), (3) for the
specific particular frequency value, ω = 1, and (4) for
large ω > 1.5. Here ω is measured in units of π/T. The
transformation between these phases are due to the quan-
tum Lifshitz phase transitions, which are similar to those
described in reference [22].
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Fig. 1. The quasienergy spectrum of graphene in a linearly polarised laser and a static magnetic fields calculated at the following
values of the parameters: ω = 0.1, µH = 1, measured in the units of π/T and AH

0 = 1 (a) 3D plot of the spectrum showing two
points at which upper and lower surfaces are touching each other, where ε (kx, ky) = 0. (b) The contour plot for this dependence
of the energy on momentum, when the energy is positive, see (a).

Fig. 2. The cross-sections of the linear dispersion relation of electrons in graphene placed in linear resonator taken in the planes
(a) ky = 0; (b) kx = 0.45 and (c) kx = 0.55. Such complex shape of the spectrum is also arising at K′ point.

At small frequencies (ω < 0.5), two Dirac-like cones
have fixed foci points P and P ′ at (kx, ky) =
(±0.5, 0) (π/T ), where A = ±0.5. However, the param-
eter B in equation (8) depends on ω, e.g it is different
for each value of ω, indicating a change in the geometri-
cal shape of the Fermi loops at every value of ω. When

ω = 0.1, and B = 0.45 (it is measured in units
(
π
T

)2 · v2F ).
B is here smaller than the value of the parameter A, then
the Fermi surface consists of two loops (see Fig. 3). As
ω increases, the value of the parameter B also increases,
i.e. to B = 0.48 ≈ A at ω = 0.3. Then the Fermi sur-
face has the shape of Lemniscate of Bernoulli (see Fig. 3).
When the value ω = 0.5, the value B = 0.8, which is now
larger than the value of A. Here the Fermi surface con-
sists of one loop having a shape of Cassini oval (see Fig. 3,
middle). At the next increasing value of ω > 0.5, another
Lifthitz quantum transition occurs, where the Fermi sur-
face is transformed from the Cassini oval into three Fermi
loops (see Fig. 3).

At intermediate frequencies. When ω increases and it
is higher than 0.5 the two circles associated with Dirac

cones first slightly deformed towards each other and then
overlap and transformed into a new single elongated oval.
With further increasing frequency ω this elongated Fermi
surface evolves from a single quadratic Cassini oval to a
pair of ovals. In this frequency range when ω 6= 1 a pair
of 2D Weyl points, associated with two ovals located on
the sides shown in Figure 3 do arise. Meanwhile in a mid-
dle between these two ovals there arises a very elongated
Fermi surface in the form of Cassini oval. Therewith, it
is constituting the Lifshitz quantum phase transition. As
the frequency increases further, these pair of side ovals
change slightly their positions as shown in Figure 4. We
associate that structure with the Dirac monopole or anti-
monopole which are connected by a Dirac string. That
interaction between the monopole and the anti-monopole
affects the Dirac cones anisotropy.

At the value ω = 1, the middle oval shows a special
case where the spectrum has three zero energy points.
The more detail consideration reveals that in the vicin-
ity of the middle zero-energy point, that is at K point
of BZ, i.e. (ε = 0 at kx = ky = 0) the spectrum shows a

https://epjb.epj.org/
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Fig. 3. The evolution of Fermi surface for graphene inside lin-
ear resonator, when its resonating frequency, ω, increases. The
Fermi surface is created by a cross-section of Dirac cones by a
plane of the constant quasi-energy. ω is expressed in the units
of π/T . The Fermi surface has a form of loops and Cassini
ovals. The electric and magnetic fields in the resonator can
be created by the application of static magnetic field and by
two beams of the linear polarised laser light, which have oppo-
sitely oriented momenta. In the calculations we have used the
following parameters: θ = 0, A0 = 1, µH = 1 and AH

0 = 1.
Here, with each oval a 2D Weyl point is associated. Note that
with rising frequency value there new Weyl points are created,
and always in pairs, having opposite circulation. Depending
on the sign of this circulation (positive or negative), the Weyl
point is the Dirac monopole or anti-monopole. At intermediate
frequencies, 0.5 < ω < 1.7, we see, that the new two “baby”
Weyl points just about to be created and they are connected
by Dirac string (presented by an elongated middle oval). At
the critical value of ω these new Weyl points appears, there
the strong(infinite) anisotropy of the associated Dirac cones
arises.

parabolic dependence on the momentum ky (see Fig. 5a)
and a linear dependence on kx (Fig. 5b). This fact can
be interpreted as divergence of anisotropy α at the zero-
energy point, which is here arises at K or K ′ points of BZ.
These parabolic and linear dependencies along orthogo-
nal axis in the momentum space indicate effectively an

Fig. 4. The positions of Cassini ovals foci points as well as
Dirac points in the quasi-energy, momentum space. Here only
the positive momenta, kx > 0, are presented. In these cal-
culations the values of the parameters were taken as θ = 0,
A0 = 1, µH = 1 and AH

0 = 1.

appearance of strong anisotropy. It is formed by an odd
number of zero energy points: by two Weyl points and
one having highly anisotropic spectrum arising due to the
linear and parabolic contributions.

The more detail investigation of the ovals just in the
close vicinity of the Dirac points placed on the sides show
that there has the form of ellipses for all ω. Figure 6
presents this elliptical shape at ω = 1 (here the constant
energy plane is cutting the cone perpendicular to its axis).
The ellipse has a central point, (kx, ky) = (1, 0), which is
the zero energy point at this case, and the curve can be

described by
k2x
b +

ky
2

a = 1 with anisotropy α = a
b = 2.1.

(The value α represents the aspect ratio of geometrical
shapes, where α = 1 is a circle, 1 < α ≤ 2 is an ellipse, and
α > 2 is a super-ellipse, etc.) As the frequency increases,
the Dirac cones deformed more, hence the aspect ratio
increases (see Fig. 7).

The similar transformations of the quasi-energy spec-
trum and Fermi surface for a slightly doped graphene
arise in this resonator when the intensity of the electro-
magnetic field or its amplitude, A0, increases. The effect
of the Fermi surface splitting is also leading to a series
of the Lifshitz quantum phase transition. These phenom-
ena have been here investigated for a range of the field
amplitudes (A0) and, indeed, show the strong similarity
with effects described in the previous section, when the
frequency ω changes. Besides, the increasing intensity of
the field in the resonator results in a direct opening and
closing of gap in the centre of the spectrum (see Fig. 8). To
illustrate the effect, we start from the special case, when
A0 = 1(in units of π

T .vF ) and ω = 1. The spectrum here
is presented in Figure 8. For amplitudes A0 < 1, the mid-
dle point is transformed to a non-zero energy (see Fig. 8a),
producing a gap, which is inversely proportional to A0. As
the amplitude increases further the gap becomes smaller
and smaller it reaches zero at A0 = 1. When A0 < 1 the
spectrum has two Dirac cones/points. The value A0 = 1 is

https://epjb.epj.org/
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Fig. 5. (a) A cross-section of quasi-energy spectrum in the plane ky = 0, i.e. the dependence, ε (kx, 0). It shows parabolic
behaviour: ε ∝ k2x. (b) A cross-section of quasi-energy spectrum in the plane kx = 0, i.e. the dependence, ε (0, ky). It shows linear-
type dependence ε ∝ |ky|. These qualitative differences in the energy momentum behaviour indicate on an infinite anisotropy
arising in the vicinity of the point: kx = ky = 0.

Fig. 6. The cross-section of the energy spectrum in for
graphene in linear resonator. It is presented for the Dirac cone
located on a side of the spectrum. There is static magnetic
field and linear polarised dynamic fields (standing wave) with
the frequency ω = 1 inside resonator. The ellipses have a fixed
anisotropy of α = 2.1, that represents a deformation of the
Dirac cone.

critical. There, besides two existing Dirac points emerges
the third zero energy point. When A0 > 1 this point is
splitting into two 2D Weyl points with opposite circula-
tions. As a result, we have here already four Weyl points.
These points move apart from the centre as the amplitude
A0 increases (see Fig. 8b). With each of these zero energy
points of spectrum there are associated anisotropic Dirac
cones, which change shape and position as A0 varies. The
spectrum cross sections at a fixed energy which is related
to the Fermi energy for the slightly doped graphene has a
form of Cassini ovals. With its transformations there arise
a series of Lifshitz quantum phase transitions which starts
with the phase where the Fermi energy consists of one pair

Fig. 7. The aspect ratio of the cross section or the anisotropy
parameter for a (side) Dirac cone as a function of electro-
magnetic laser field frequency ω in the units of π/T . The
parameters used in the calculations equal to θ = 0, A0 = 1,
µH = 1 and AH

0 = 1.

of ovals. Then with increasing intensity the Lifshitz quan-
tum phase transition arise at which the form of Fermi
surface transforms into the two pairs of Cassini ovals (see
Fig. 9). For stronger intensity, at the critical A0 = 1.9
another such quantum transition occurs. There the mid-
dle pair of the Fermi surface loops splits and merges with
the side pair (see Fig. 9). The change in the positions of
Dirac pairs is presented in Figure 10. As we see from this
figure their number increases for amplitudes larger than
A0 = 1. The cross-sections of the constant energy for side
cones form ellipses with aspect ratio or the anisotropy
that decreases as the amplitude A0 increases (see Fig. 11).
Similar transformations of quasi-energy spectrum happen
when instead of static periodic magnetic field we apply
static periodic electrical field, that is when U0 > 0.

https://epjb.epj.org/
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Fig. 8. The graphene inside linear resonator subjected to a static magnetic field and a linearly polarised electromagnetic field
from laser forming a standing wave inside the resonator. The cross-sections of the quasi-energy spectrum ε (kx, ky) by the plane
ky = 0 taken at different value of the amplitude A0 = 0.2; 0.4; 0.6; 0.8; 1.0; 1.2; 1.4; 1.6; and 1.8. It is measured in the units of
π/T . The spectrum was calculated when the parameters θ = 0, ω = 1, µH = 1 and AH

0 = 1. (a) Shows the modification of the
spectrum where at zero kx momentum and at the value A0 = 1.0 there arises the parabolic zero energy point; (b) illustrates a
splitting of the parabolic zero energy point at kx = 0 (in the middle) into two Weyl points (sharp corners on the Figure) which
are moving apart when the amplitude of the electromagnetic field in the resonator, A0 increases further (A0 > 1). At the same
time, the side Weyl points are shifting toward the new ones.

Fig. 9. The evolution of Fermi surface for graphene inside lin-
ear resonator, when the amplitude of the electromagnetic field,
A0, increases. That evolution indicates that there arise three
Lifshitz quantum phase transitions. For the first phase of small
amplitudes A0 < 1, the Fermi surface consists of two Cassini
ovals. Then, at A0 = 1, the Lifshitz quantum phase transition
occurs and there in the Fermi surface appears additional very
elongated loop. In the range of 1.1 < A0 < 1.2, these loops
split into two and for the next phase the Fermi surface consists
of 4 elliptical-like loops. Finally, at large amplitudes 1.2 < A0

in another quantum phase transition the Fermi surface again
is transformed into two loops. A0 is here measured in the units
of π/T . In these calculations we used the following parameters
θ = 0, ω = 1, µH = 1 and AH

0 = 1.

4 Conclusion

In this paper, we highlighted the relativistic properties of
graphene by changing the Dirac-Cone spectrum of charge

Fig. 10. The positions of Dirac points in the Brillouin zone
for graphene driven by both the linear polarised laser light
and static magnetic field as the amplitude A0 changes. θ = 0,
ω = 1, µH = 1 and AH

0 = 1.

carriers. The theoretical modification of the spectrum is
approached by applying high-frequency laser fields in the
presence of static electric/magnetic fields. The number
of Dirac points, the shape of Dirac cones and the gap
in spectrum can all be controlled by changing the laser’s
parameters. In different potentials the spectrum shows dif-
ferent anisotropy, which can be further changed in specific
potentials applications by changing their parameters.
Thus, the modification of the anisotropy of the Dirac cone
causes destruction/creation of Dirac points, hence opto-
electronic graphene properties can be modified. We have
demonstrated that anisotropic structures in monolayer
graphene can be controlled by changing high-frequency
lasers’ parameters, which even allow generation of infi-
nite anisotropy. Moreover, we have also shown that for
the slightly doped graphene there may arise Lifshitz

https://epjb.epj.org/
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Fig. 11. The dependence of aspect ratio of the Dirac side cones
anisotropy α on the laser’s light amplitude A0 measured the
units of π/T . Here θ = 0, ω = 1, µH = 1 and AH

0 = 1.

quantum phase transitions where the shape of the Fermi
surface takes dramatic topological transformations when
the amplitude or the frequency of the laser light changes.
In recent experiments, graphene layer formed on SiC has
been irradiated with laser light of the different frequen-
cies [23]. The paper reported a discovery of remarkable
photo-physical phenomena arising in graphene with the
laser irradiation. There it was found that the electrical
resistance of graphene increases under light illumination
in contrast to conventional materials where it normally
decreases. One simple explanation may come from the
results of the present paper, namely, by an opening of the
gap in the Dirac spectrum, the resistance of the graphene
must increase. An interesting question arises how this gap
will be closed when the laser irradiation is stopped. We
expect that the future studies will address this issue.
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